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Abstract

Microglia, the tissue resident macrophages of the CNS, play critical roles in immune defence, 

development and homeostasis. However, isolating microglia from humans in large numbers is 

challenging. Here, we profiled gene expression variation in primary human microglia isolated 

from 141 patients undergoing neurosurgery. Using single cell and bulk RNA sequencing, we 

identify how age, sex and clinical pathology influence microglia gene expression and which 

genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) 

mapping. We follow up one of our findings using an hIPSC-based macrophage model to fine-map 

a candidate causal variant for Alzheimer’s disease at the BIN1 locus. Our study provides the first 

population-scale transcriptional map of a critically important cell for human CNS development 

and disease.

Introduction

Microglia are tissue resident macrophages of the central nervous system (CNS) and play 

critical roles in synaptic pruning, neuronal plasticity as well as maintaining local immune 

surveillance within the brain1–3. Disease studies have implicated microglial dysfunction in a 

number of neurological disorders4–7, but these highly plastic cells have not been studied at a 

population level. To date, studies of microglial gene expression have been restricted to 

relatively small samples of either frozen post-mortem tissue from existing brain banks or 

fresh surgical samples from restricted patient groups, typically temporal lobe resections for 

epilepsy or peri-tumoral tissue. Single cell transcriptomic studies of similar samples have 

suggested that microglial function may vary across age, sex and brain region8–13. However, 

these conclusions are often not replicated in studies of equivalent size.

Here, we performed the first population-scale study of human microglia to understand how 

age, sex, pathology, cortical anatomy and common germline genetic variation influences the 

microglia transcriptome. We used a unique cohort of patients who had been sampled within 

8 hours of an acute haemorrhage or traumatic brain injury to identify two novel signatures of 

acute activation in human microglia. Finally, we examined how our results replicated in a 

scalable cell model system of microglia, using induced pluripotent stem cell derived 

macrophages (IPSDMac) derived from 133 human IPS lines created by the Human Induced 

Pluripotent Stem Cell Initiative14.

Characterisation of microglial cell populations

We undertook analysis of human microglia isolated from 141 patients undergoing a range of 

neurosurgical procedures (Figure 1a). These included a “control” group who had cortical 

microglia sampled at the beginning of a surgical corridor when the distance to the clinical 

pathology exceeded 4cm. We also sampled cortical microglia from patients with 

hydrocephalus, brain tumours, and patients with acute brain injury (spontaneous 

haemorrhage and trauma) who sustained substantial parenchymal injury, enabling us to 

capture in vivo microglial activation.
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For each individual, we isolated CD11b-positive cells and performed both single cell 

(SmartSeq2)15 and bulk RNA-seq. After QC, we retained 112 bulk RNA-seq samples, and 

9,538 single cells from 129 patients (Figure 1b). Our bulk RNA-seq samples clustered 

closely with microglia from two previous studies16,17, and were distinct from both GTEx 

brain and BLUEPRINT monocytes (Figure 1c). Additional clustering only with myeloid cell 

types revealed that iPSC derived microglia were transcriptionally more similar to uncultured 

primary microglia than iPSC derived macrophages, although substantial between-laboratory 

effects on both primary and cultured cells were apparent from this analysis (Extended Data 

Figure 1a).

We compared our single cell data to public datasets of 68K PBMCs isolated from a healthy 

donor18 and 15K brain cells from 5 GTEx donors19. A total of 8,662 cells in our SmartSeq2 

data formed a cluster with the microglia population found in GTEx samples and distinct 

from PBMCs (Figure 1d) and included a range of known microglial marker genes, including 

P2RY12, CX3CR1 and TMEM119 at high levels (Extended Data Figure 1b). We defined 

this population of cells (excluding GTEx samples) as microglia for the remainder of our 

analysis. We identified three less common, putatively infiltrating populations of cells that 

closely resembled other blood cell types, including NKT cells, monocytes or B-cells that 

comprised 8.4%, 0.5% and 0.3% of our single cell dataset, respectively. These cell types 

may reflect either infiltration of immune cells as a result of blood-brain barrier breakdown or 

intravascular contamination within the tissue. Abundance of infiltrating cells was strongly 

correlated with patient pathology, with trauma patients especially enriched (OR=7.6, Fisher 

exact test P=1.2x10-155) (Figure 1e). We also found a significant effect of age on the 

abundance of infiltrating cells (3.4% increase per year, Wald test P=0.014) after adjusting for 

all known confounding factors, which could reflect increasing blood brain barrier 

permeability over the lifespan (Extended Data Figure 1c). Batch correction using our linear 

mixed model showed equivalent performance to Seurat V3 (Extended Data Figure 1d-h), but 

was readily scalable to the 129 donors as batches used in the subsequent analysis (Online 

Methods).

Within microglia, we found a high level of consistency across all patients. We identified four 

populations of cells (Figure 2a). By examining their relative abundance in different patient 

groups, we identified 1 naive and 3 distinct microglial activation states. Population A was 

most common in control and hydrocephalus patients while Population B, which we identify 

as sub-acute activation, was enriched in tumour patients (OR=4.9, P=7.6x10-169). Two acute 

activation populations, C and D, were common in patients with spontaneous haemorrhage 

and traumatic brain injury (comprising 25-76% of cells), but rare in other pathologies (<5% 

of cells) (Figure 2b, c).

To characterise these populations further, we performed differential expression analysis 

between cell populations. We observed higher expression of microglial markers including 

P2RY12 and CX3CR1 in populations A and B. This cohort additionally showed strong 

upregulation of genes involved in catabolic processes (e.g. GPX1) and phagocytosis 

(TREM2). Cells within populations B, C and D also had high levels of general immune 

response and cell activation genes (IL1B, CD83 & CCL3) (Figure 2d, e; Supplementary 

Table 1). Cells from populations C and D exhibited upregulation of acute immune response 
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pathway genes, including NF-kappa B, STAT3, RUNX1 as well as MHC-I expression. 

Population C also showed differential expression of genes associated with stress induced 

senescence and DNA damage (HIST1H2BG), whereas population D expressed genes 

associated with cell proliferation (FLT1) and chemotaxis (CCL4, CXCL8, CXCL16), the 

latter also shared with population B.

Populations C and D are of particular interest as they are unlikely to have been previously 

observed (Figure 2b, c). To test this hypothesis, we compared our population-specific 

markers with differentially expressed genes from Alzheimer’s disease-associated 

microglia20 and marker genes from glioma-associated microglia21 (Extended Data Figure 

2a). This analysis confirmed that populations of microglia identified in previous studies most 

closely resembled Populations A or B in our dataset, and that the activated populations C 

and D were transcriptionally distinct.

To further validate our findings, we performed differential expression between microglia 

from different between patient pathologies and controls (Extended Data Figure 2b). We 

selected 4 candidate marker genes CD63, BIN1, C3 and CCL4 that were upregulated relative 

to controls in haemorrhage, trauma, hydrocephalus and tumour patient groups, respectively 

(Extended Data Figure 2c). Immunohistochemistry for each marker in a fixed tissue section 

confirmed differences in expression between patient groups at the protein level (Extended 

Data Figure 2d). Finally, we confirmed that expression of activation markers in populations 

C and D was not driven by sample processing, using RNAScope in fresh frozen tissue 

sections (Extended Data Figure 2e-f).

Biological determinants of microglial expression

Our sampling design enabled us to explore the relative importance of a wide range of 

biological factors in determining microglial gene expression, while controlling for important 

technical confounders, using variance components analysis (Figure 3a). Of the biological 

factors we examined, clinical pathology explained more variation than all other factors 

combined, although all factors except sex, including age, brain region, dominant hemisphere 

and ethnicity, explained some of the variation that was significantly different from zero (LR 

test FWER 0.05). Individual patient explained the most variability of any single factor in the 

model. However, although this factor captures the contribution of genetic background, it is 

also likely to be dominated by unmeasured technical batch effects, such as variability in cell 

dissociation and surgical sampling. We found 260 genes where age explained a fraction of 

variation that was significantly different from zero, showing upregulation of genes related to 

inflammation (CLEC7A, CIITA and TLR2) and downregulation of cell identity (P2RY12, 

CX3CR1), motility and proliferation genes (CSF1R) with increasing age (Figure 3b-e; 

Supplementary Table 2). Although sex accounted for little of the overall variation, we found 

97 genes that were differentially expressed between males and females (Figure 3f). These 

included multiple genes in the complement pathway and synaptic pruning mechanisms 

(C1QA, C1QC and C3) that were more highly expressed in females than males (Figure 3g; 

Supplementary Table 3). Anatomical region of sampling also had a subtle effect on 

transcriptional variation, with cerebellar microglia, which are known to exhibit a distinct, 

less ramified morphology, having increased expression of several recruitment chemokines 
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(CCL4, CCL3, CCL4L2, CCL3L3) (Figure 3h; Supplementary Table 4). We repeated our 

differential expression analysis using bulk RNA-seq and found a reasonable correlation in 

effect sizes between bulk and single cell data sets for both the age and sex comparisons 

(r=0.61 and 0.39 with P=4.1×10-20 and 4.5×10-8 for age and sex respectively) 

(Supplementary Figure 3).

eQTL mapping in human microglia

Next, we constructed a map of expression quantitative trait loci (eQTLs). After excluding 

samples with low genotyping quality or substantial non-European ancestry, we retained bulk 

RNA-seq data from 93 individuals, and detected 585 eQTLs at FDR 5% using simple linear 

regression model. For comparison, we mapped eQTLs using the same pipeline and 

significance thresholds in both the BLUEPRINT monocyte (N=193) and our own IPSDMac 

data (N=133). This analysis suggested that the number of eQTLs we detected in primary 

microglia was unexpectedly low. In part, this is likely to be because of the higher between-

sample variability in primary microglia, compared with other cell types (Figure 4a). To 

confirm the eQTLs we detected with linear regression we performed eQTL mapping only 

using allele-specific expression22. For eQTLs detected at FDR 5%, the effect sizes estimated 

from linear regression and from allele-specific analysis were highly correlated (r=0.71) 

suggesting the majority are real (Extended Data Figure 4a).

Next, we explored the level of cell-type specificity of the eQTLs we detected by comparing 

microglia, monocytes and IPSDMac using a three-way empirical Bayesian hierarchical 

model (Online Methods). Here, numbers of eQTLs were computed by summing over model 

posterior probabilities and are therefore not expected to be identical to those from our linear 

regression analysis. We discovered 855 microglia eQTLs of which 108 were microglia-

specific, 449 were shared across all three cell types, 192 were shared with IPSDMs but not 

monocytes, and 106 were shared between microglia and monocytes (Figure 4b). Our model 

also estimated prior probabilities of shared eQTLs for all possible comparisons. Notably, 

despite a much larger sample size in monocytes, our model estimated a low probability (1%) 

of shared eQTLs between microglia and monocytes, with a much higher prior (32%) for 

shared eQTLs between microglia and IPSDMac, and 7% of eQTLs shared between all three 

cell types (Figure 4c).

We then tested for colocalization of microglia eQTLs with risk loci from 146 genome wide 

association studies (GWAS), of which 25 were broadly neurological, including cognitive 

developmental measures such as intelligence, neuropsychiatric disorders with adolescent/

young adult onset, and neurodegenerative diseases (Online Methods). We discovered 245 

unique gene-trait combinations with the posterior probability of a single shared causal 

variant between a microglia eQTL and a GWAS locus (PP4) greater than 0.5 for 84 different 

traits and 129 unique genes (excluding HLA genes). The number of colocalised genes for 

each trait most likely reflects the statistical power of the study. For example, we detected 13 

colocalisations with neutrophil percentage, which also has a sample size of 349,861. We did, 

however, observe an excess of colocalised microglial eQTLs for certain traits, including 

Alzheimer’s disease (AD), Parkinson’s disease (PD) and inflammatory bowel disease (IBD), 

likely reflecting the known involvement of microglia or macrophages in each of these 
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disease’s pathology (Figure 4d). We also discovered eQTLs that were absent from other 

tissues, that colocaised with a wide range of GWAS traits. For example, we discovered an 

eQTL for DAG1, which produces a protein that is involved in the dystrophin-glycoprotein 

complex with associations with fed-up feelings, intelligence related traits and autoimmune 

diseases (Figure 4e; Extended Data Figure 4b). Interestingly, this eQTL is detected in both 

microglia and IPSDMac from this study, but absent from all other cell types and tissues 

(Extended Data Figure 4c). We also detected 22 gene-trait combinations that colocalised in 

10 or more cell types and tissues, an example of which is ERAP2 eQTL colocalised with 

Crohn’s disease in all 51 cell types and tissues (Figure 4e; Extended Data Figure 4b-c).

Fine-mapping primary microglia eQTLs using an in-vitro model

Given the involvement of microglia in neurodegenerative disease, we next selected 

Alzheimer’s disease (AD) to undertake a detailed analysis of colocalisation of microglia 

eQTLs with GWAS loci. Using different AD GWAS23–27, we found between 2-11 AD risk 

loci with PP4 greater than 0.5 with an eQTL in primary microglia (Figure 4e). These 

included well-known AD loci, such as BIN1, and less well-studied AD associations, for 

example EPHA1-AS1. We repeated our analysis using microglia eQTLs mapped by 

RASQUAL, a method that boosts power to detect eQTLs using allele specific expression 

(Supplementary Table 5). This analysis detected additional colocalisations at other well-

known AD GWAS loci, such as CD33 (Extended Data Figure 5a). Here, analysis of splicing 

patterns revealed a splice QTL at exon 2 (Extended Data Figure 5b), consistent with 

previous studies28. One explanation for this result is that the allele-specific signal captured 

by RASQUAL is more sensitive to the changes in splice pattern. However, we discovered 

that the test statistics produced by RASQUAL may be inflated by additional overdispersion 

in our microglia data set (Figure 4a).

The challenges of studying primary microglia make the use of IPSDMac an attractive 

alternative. We therefore next asked whether any of the 11 primary microglia eQTLs that 

colocalised with an AD risk association could also be detected as an IPSDMac eQTL. We 

identified three AD association signals (BIN1, the EPHA1/EPHA1-AS locus and PTK2B) 

that colocalised with an eQTL both in primary microglia and in IPSDMac eQTLs (Extended 

Data Figure 4c). At the EPHA1/EPHA1-AS locus, we found an eQTL for the EPHA1-AS1 

noncoding RNA that colocalised with the AD risk association, but no equivalent signal for 

the EPHA1 protein coding gene in most tissues (Extended Data Figure 5c-d). We have 

previously reported that an eQTL for the gene PTK2B colocalised with an AD risk 

association on chromosome 829. When we compared this with primary microglia we found a 

difference in the direction of effect between primary microglia and IPSDMac (Extended 

Data Figure 5e).

Finally, our analysis revealed that the AD association signal at BIN1 was highly cell type 

specific, found in primary microglia and IPSDMac, but no other cell types or tissues (Figure 

5a). To fine-map causal variants at BIN1, we generated ATAC-seq data from 5 primary 

microglia and 89 IPSDMac. We found that the lead SNP of this association signal, 

rs6733839C>T, was located in a region of open chromatin in both microglia and IPSDMac. 

rs6733839C>T was also associated with a significant change in chromatin accessibility in 
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IPSDMac (a chromatin accessibility QTL, caQTL) (Figure 5b, P<6.1x10-10). This caQTL 

also colocalised (PP4=0.996) with the AD association signal (Figure 5c-f), strongly 

suggesting that the causal variant driving the AD risk association directly or indirectly alters 

chromatin openness in this region. Analysis of the sequence context of this variant revealed 

that the AD risk allele at rs6733839C>T created a predicted high-affinity binding site for the 

MEF2C, a transcription factor with established roles in hippocampal learning and memory 

(PMID: 18599438) (Extended Data Figure 5f). A recent study has examined chromatin 

interactions between the BIN1 promoter and nearby AD risk variants30. Our results suggest 

that rs6733839C>T increases AD risk by increasing the binding of MEF2C, in turn, 

increasing the expression of BIN1. Although BIN1 and MEF2C are broadly expressed in 

many tissues, co-expression of both genes was found only in primary microglia and 

IPSDMac (Extended Data Figure 5g). Taken together, our results show that one of the 

largest common variant associations with AD outside of APOE can be studied using a 

scalable and relatively straightforward IPS based macrophage model.

Discussion

Here we present the first population-level study of human primary microglia. By sampling 

cells from living donors, we defined transcriptional signatures of in vivo microglial 

activation, avoiding artefacts from postmortem index and in vitro cell culture. We identified 

multiple microglial populations and showed how these populations are shaped by pathology 

and other life history factors. In particular, we identify two populations of microglia that 

reflect different in vivo acute activation states. We also created the first eQTL map in 

primary human microglia, identified high confidence causal genes and variants underlying 

risk loci for a range of neurological traits and identified a subset that replicated in a scalable 

IPS model system. Among other findings, our study revealed that the well-known AD risk 

locus near the BIN1 gene on chromosome 2 is likely to be driven by a microglia-specific 

eQTL and suggested that antagonism of BIN1 in microglia would be therapeutically 

beneficial in AD.

Our results underscore the variability between microglia from different individuals and 

clinical pathologies. One implication of the variation we observed between different patient 

pathologies is that the full spectrum of microglial function, in particular following trauma, is 

not well captured by small studies of a single patient population. The most obvious example 

of this are the populations of activated microglia we identified that account for less than 5% 

of cells in non-trauma patients.

Our analysis also provides a picture of the function of microglia following severe injury, 

producing cell populations that exhibit a mixture of a proinflammatory and chemotactic 

phenotypes. Notably, although animal models of acute brain injury suggest rapid expansion 

of microglia following trauma31, we only observed one population we identified had a 

proliferative phenotype, and both showed downregulation of CSF1R.

In contrast to previous reports8, we found relatively subtle effects of age on the expression of 

individual genes in microglia, with the modest changes we did detect consistent with 

increased inflammatory senescence in microglia over lifespan. However, our single cell data 
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also revealed an increase in the influx of putatively infiltrating cells into the brain with 

increasing age. One explanation is that this phenomenon reflects decreasing blood-brain 

barrier integrity with age. Differences in microglia expression between males and females 

were relatively small, although we did observe increased complement activity in females, 

perhaps suggesting a role for complement pathways in the higher incidence of AD in 

women.

Our eQTL analysis revealed a number of candidate risk genes for a range of traits, with 

function in microglia. This was most obvious for neurodegenerative diseases such as 

Alzheimer’s and Parkinson’s disease and included well-known risk genes, such as BIN1. At 

BIN1, we demonstrated how our microglia eQTL map can be used as a reference to establish 

the validity of different model systems to study the subtle effects of common disease risk 

variants. At this locus, our study provides evidence that IPSDMac are a suitable model 

system to explore the role of a putative causal variant, rs6733839C>T, its effects on BIN1 

expression, and role in AD risk. More generally, although more complicated protocols for 

IPS-microglia differentiation exist32, our results highlight that IPSDMac may be sufficient in 

specific cases. Equally importantly, our results highlight where IPSDMac may not be 

suitable, for example at the PTK2B locus. Finally, we note that we observe some variability 

in colocalisation results between different AD GWAS studies. This is likely to reflect 

differences in power, but also some variation in methodology, for example the use of GWAS 

by proxy approaches versus direct phenotyping.

An obvious extension of our approach will be to map microglia population-specific genetic 

effects, for example to detect eQTLs that manifest only in activated microglia. This analysis 

was not possible here, due to the low number of individuals with 1 or more cells in different 

populations. In particular, the activated populations C and D are composed of 1,209 and 210 

cells from 62 and 23 patients respectively. We anticipate that future studies with larger 

sample sizes will be sufficiently powered to detect such effects.

In summary, we have generated a population-scale map of gene expression in primary 

human microglia, across a diverse set of clinical pathologies. We demonstrate the human 

microglial response to an acute insult of the brain parenchyma. Our study provides a 

systematic exploration of microglia diversity, defines a reference data set of microglial 

expression and provides a foundation for robust future functional studies of 

neurodegenerative disease mechanisms using IPSC-based models.

Methods

Tissue sampling

Human brain tissue was obtained with informed consent under protocol REC 16/LO/2168 

approved by the NHS Health Research Authority. Adult brain tissue biopsies were taken 

from the site of neurosurgery resection for the original clinical indication. Samples were 

collected into five main categories: a “control” group who had cortical microglia sampled at 

the beginning of a surgical corridor when the distance to the clinical pathology exceeded 4 

cm. This group was utilised to identify any iatrogenic factors influencing the transcriptomics 

of human microglia. Additionally, samples were obtained from the cortex of patients with 

Young et al. Page 8

Nat Genet. Author manuscript; available in PMC 2021 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



hydrocephalus, brain tumours, patients who had sustained a spontaneous haemorrhage and a 

traumatic brain injury. Paired venous blood was sampled. Tissue was transferred to 

Hibernate A low fluorescence (HALF) supplemented with 1x SOS (Cell Guidance Systems), 

2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA (Sigma), insulin (4 g/ml, 

Sigma), pyruvate (220 g/ml, Gibco) and DNase 1 Type IV (40 g/ml, Sigma) on ice and 

transported to a CL2 laboratory.

Dissociation of brain tissue

Brain tissue was mechanically digested in fresh ice-cold HALF supplemented with 1x SOS 

(Cell Guidance Systems), 2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA 

(Sigma), insulin (4 g/ml, Sigma), pyruvate (220 g/ml, Gibco) and DNase 1 Type IV (40 

g/ml, Sigma). The prepared mix was spun in HBSS+ (Life Technologies) at 300 g for 5 mins 

and supernatant discarded. The digested tissue was rigorously triturated at 4°C and filtered 

through a 70 m nylon cell strainer (Falcon) to remove large cell debris and undigested tissue. 

Filtrate was spun in a 22% Percoll (Sigma) gradient with DMEM F12 (Sigma) and spun at 

800 g for 20 mins. Supernatant was discarded and the pellet was re-suspended in ice cold 

supplemented HALF.

Fluorescence-activated cell sorting

For single cell smart sequencing, human microglia were using fluorescence-activated cell 

sorting. The isolated cell suspension was incubated with conjugated PE anti-human CD11b 

antibody (BioLegend) for 20 mins at 4°C. Cells were washed twice in ice cold supplemented 

HALF and stained with Helix NP viability marker. Cell sorting was performed on BD 

AriaIII cell sorter (Becton, Dickinson and Company, Franklin Lakes, New Jersey, US) at the 

University of Cambridge Cell Phenotyping Hub at Cambridge University Hospital, 

Cambridge, UK.

Magnetic-activated cell sorting

To avoid sustained stress on microglia as a result of prolonged sorting times for bulk 

sequencing magnetic-activated cell sorting was performed on these cells. An isolated cell 

suspension of cells were incubated with anti-CD11b conjugated magnetic beads (1:50, 

Miltenyi, 130-049-601) for 15 mins at 4°C. Cells were washed twice with supplemented 

HALF and passed through an MS column (Miltenyi, 130-042-201). Each sample was 

washed three times in the column and then extracted. Samples were added to a 1.5 ml 

Eppendorf to which 350 μl of RNAlater (Qiagen) was added, samples were stored at −80°C 

prior to sequencing.

Immunohistochemistry

Tissue was fixed with 4% PFA at 4°C for 48 hours overnight and subsequently submerged in 

30% sucrose w/v in PBS for cryoprotection at 4°C until it settled down to bottom (~48-

hours). Cryoprotected brain was then embedded in cryomold filled with OCT. Brain is then 

frozen in isopentane and stored at −80°C. 12 μm sections were obtained using a cryostat. 

Tissue sections were air-dried and stored at −80°C. For antigen-retrieval the slides were 

submerged in preheated citrate buffer pH 6.0 (Sigma) in a water bath at 95°C for 15 min. 
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The slides were washed three times with PBS (5min, RT) and blocked in 0.3% PBST with 

10% NDS for 1h at RT. Primary antibodies; Iba-1 (1:1000, Wako, 019-19741), Iba-1(1:300, 

abcam, ab5076), C3 (1:200 abcam, ab97462), CCL4 (1:50, r&d systems, MAB271), 

CD63(1:300, abcam, ab59479) and BIN-1 (1:500, abcam, ab182562) were diluted in 0.1% 

PBST with 5%NDS and incubated overnight at 4°C. The slides were washed 3 times for 

10min with PBS. Next, secondary antibodies in blocking solution were applied at a 

concentration of 1:500 for 2h at RT. Slides were washed 3 times with PBS for 10 min each, 

whereby the first wash contained Hoechst 33342 nuclear stain (2 μg/ml,). The slides were 

mounted with coverslips using FluoSave (CalBiochem). Image acquisition was performed 

using a Leica-SP5 microscope (Leica) and LAS software (Leica). Further image processing 

and analysis was performed using the ImageJ software package.

Single-molecule fluorescent in situ hybridization

Human tissue smFISH was performed using the RNAScope LS Multiplex Assay (Advanced 

Cell Diagnostics (ACD)). Before staining, slides were directly transferred from −80°C into 

pre-chilled 4% PFA (methanol-free) in PBS for 45-min and then submerged in boiling ER1 

buffer (Advanced Cell Diagnostics, Bio-Techne) for 15-min. After the antigen-retrieval, 

slides were serially dehydrated through 50%, 70%, 100%, and 100% ethanol for 5 minutes 

each. Tissue sections were then processed using a Leica BOND RX to automate staining 

with the RNAScope Multiplex Fluorescent Reagent Kit v2 Assay and RNAScope 4-plex 

Ancillary Kit for Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics, Bio-

Techne) following the manufacturers’ instructions. Automated processing included heat-

induced epitope retrieval at 95°C for 10 minutes in ER2 buffer and digestion with Protease 

III for 10 minutes. Tyramide signal amplification with 1:300 Opal 520, Opal 570, and Opal 

650 (Akoya Biosciences) was used to develop three probe channels. Nuclei staining was 

performed with 1:50,000 DAPI (Life Technologies Ltd). Stained sections were imaged with 

a Perkin Elmer Opera Phenix High-Content Screening System, in confocal mode with 1 μm 

z-step size, using a 20x water-immersion objective (NA 0.16, 298.99 nm/pixel). Channels: 

DAPI (Excitation 375 nm; Emission 435-480 nm), Opal 520 (Ex. 488 nm; Em. 500-550 

nm), Opal 570 (Ex. 561 nm; Em. 570-630 nm), Opal 650 (Ex. 640 nm; Em. 650-760 nm).

Blood preparation

DNA extraction was performed from the venous blood. 10 ml of whole blood was washed 

with 1% phosphate buffered saline (PBS) and layered on pancoll human (PAN biotech) and 

spun at 500 g for 25 mins. The white cell component was extracted and transferred to a 

1.5ml Eppendorf and stored as a frozen pellet at −80C prior to sequencing.

SNP genotyping

Genomic DNA was extracted from blood using the QIAamp DNA mini and blood mini kit 

(Qiagen, 51104). 200 ng of gDNA was used for input for the SNP array (Infinium 

Omni2.5-8 v1.4 Kit) and genotyping was performed according to the manufacturer’s 

instructions. We discarded 3 samples that showed the genotyping call rate below 95% (see 

Supplementary Table 6 for details). We used the 1000 Genomes Phase III integrated variant 

set (Data availability) as the reference haplotype data and performed whole genome 

imputation by using the Beagle software (version 4.0; https://faculty.washington.edu/
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browning/beagle/b4_0.html). We converted the genome coordinate from GRCh37 to 

GRCh38 using CrossMap (version 0.5.2; http://crossmap.sourceforge.net/).

iPS cell culture and macrophage differentiation

We cultured 133 iPS cell lines from HipSci14. iPS cell culture and macrophage 

differentiation was carried as previously described29 with some minor modifications (see 

Supplementary Note for details).

Single cell RNA-seq of primary microglia

Single primary microglia cells were processed as previously described15, but with some 

minor modifications to the Nextera library making process: 0.5 ng of cDNA was used as 

input for the tagmentation process with all Nextera (Illumina, FC-121-1030) reagent 

volumes scaled down 100-fold. Tagmentation was quenched with 0.2 % sodium dodecyl 

sulphate. Libraries were amplified with KAPA HiFi (Kapa Biosystems, KK2601) with 

indexing primers ordered from Integrated DNA Technologies.

Low-input bulk RNA-seq and ATAC-seq library preparation for primary microglia and iPS-
derived macrophages

For RNA-seq samples, between 0.3 ng and 10 ng of bulk total RNA from primary microglia 

cells or iPS-derived macrophage cells was used as input for a modified Smart-seq2 library 

preparation15 (see Supplementary Note for detailed protocol). ATAC-seq library preparation 

was performed as previously described29. Pools of 96 libraries were sequenced over 8 lanes 

or 24 lanes of a HiSeq SBS v4 for RNA-seq and ATAC-seq preparations, respectively, 

collecting 75 bp paired-end reads.

Bulk RNA-seq data of other myeloid cells and brain tissues

We downloaded fastq files of the bulk RNA-seq of 6 primary microglias (pMICs) and 9 iPS 

cell derived microglia (iMICs)32, 10 monocyte derived macrophages (MDMs) and iPS cell 

derived macrophages (IPSDMac)33, 10 iMICs, 8 MDMs and 4 pMICs34, 45 pMICs17, 9 

iMICs and 3 pMICs35, 18 IPSDMac and 9 MDMs36, and 3 pMICs16. See Supplementary 

Table 7 for details of cell types and sample sizes. For brain tissues, we downloaded the count 

table of RNA-seq data for all tissues from GTEx (V7; Data availability) and extracted 1,671 

brain samples. We also downloaded fastq files of the BLUEPRINT monocyte37 RNA-seq 

data from EGA (Data availability) and processed the same as our sample.

Sequencing data preprocessing

All sequence data sets were aligned to human genome assembly GRCh38. We performed 

adapter trimming of Tn5 transposon and PCR primer sequences for our RNA-seq (both 

single-cell and bulk) and ATAC-seq data using skewer38 (version 0.1.127; https://

github.com/relipmoc/skewer) before alignment. Both Smart-seq2 and bulk RNA-seq data 

were aligned using STAR39 (version 2.5.3a; https://github.com/alexdobin/STAR/releases) 

using ENSEMBL human gene assembly 90 as the reference transcriptome. All other RNA-

seq data were also aligned as same as our RNA-seq data without adapter trimming. 

Following alignment, we used featureCounts40 (version 1.5.3; http://
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subread.sourceforge.net/) to count fragments for each annotated gene. The ATAC-seq data 

were aligned using bwa41 (version 0.7.4; https://sourceforge.net/projects/bio-bwa/files/). We 

performed peak calling as described in42 by pooling all five samples.

Smart-seq2 scRNA-seq quality control with other public data sets

In total we sequenced 26,496 cells, of which 9,538 cells passed the quality control criteria: 

the minimum number of sequenced fragments (>10,000 autosomal fragments), the minimum 

number of expressed genes (>500 autosomal genes), mitochondrial fragment percentage 

(<20%) and the library complexity (percentage of autosomal fragment counts for the top 100 

highly expressed genes <30%). We also performed demuxlet43 to remove doublets from two 

different patients with different genetic background. We then performed cell type clustering 

with other primary single cell RNA-seq of 68k PBMCs18 and GTEx brain tissues 

characterised by DroNc-seq19 (Data availability). The count data from two studies were 

joined by gene IDs and converted into CPM (count per million) along with our primary 

microglia read count data. We fit the latent factor linear mixed model in which the three 

different studies were treated as a random effect (see Supplementary Note Section 1 for 

details). We obtained the 12 latent factors which were subsequently used for UMAP 

clustering. We extracted 8,662 microglia cells in the UMAP plot (Figure 1d) for downstream 

analysis, which were distinct from other circulating blood cell types (such as NK T cells, 

Monocytes and B cells). To ensure our batch correction approach was valid, we also 

compared with the three established batch correction methods: Harmony45, Seurat V346 

and MNN correct47. Our model returned a reasonable clustering of cells that was 

comparable to that from Seurat V3 (Extended Data Figure 1d-h). It was not possible to 

compare the performance of our method when fitting donor and plate as batch effects, 

because these existing methods do not scale to large numbers of batches (129 donors and 67 

plates).

Characterisation of infiltrating cells

We used the lme4 package implemented in R to fit the generalised linear mixed model for 

infiltrating cell status (microglia/non-microglia) as a binary outcome. We used all possible 

clinical confounders (patient, pathology, brain region, brain hemisphere, ethnicity and sex) 

and technical confounders (the number of expressed genes for each cell, 384 plate on which 

each cell undergone library preparation and sequencing, the number of mapped fragments, 

96 well plate position where each cell was sorted, ERCC% among all mapped fragments and 

mitochondrial RNA fragment percentage among all mapped fragments) as random effects 

and the patients’ age as the fixed effect to investigate the statistical significance of age effect.

Variance component analysis

A linear mixed model of log(CPM+1) values across genome-wide genes (whose CPM>0 for 

10% of total cells) was used to estimate the transcriptional variation. The 13 different factors 

(Patient, the number of expressed genes per cell, pathology, plate ID, ERCC percentage, the 

number of expressed genes in each cell, 96 well plate position, age of patient, mitochondria 

RNA percentage, brain region, brain hemisphere, ethnicity and sex) were fitted as random 

effects with independent variance parameters ϕk 2. The variance explained by the factor k 
was measured by the intraclass correlation ϕk 2/(1+ϕk 2, where the other 12 factors were 
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fixed constant. The standard error of the intraclass correlation was computed by the delta 

method with the standard error of the variance parameter estimator. See Supplementary Note 

Section 1.1 for details.

Detection of microglia populations

We used the linear mixed model to estimate the latent factors with the 13 known 

confounding factors (see Supplementary Note Section 1.2 for details). We used 15 first latent 

factors to cluster cells into populations. We utilised the Shared Nearest Neighbour 

Clustering implemented in Seurat (version 3.0.2) with resolution parameter of 0.2 to identify 

the four microglia populations.

Marker gene enrichment analysis for microglia in different studies

We downloaded the differentially expressed genes from20 found in the three different 

comparisons (1) no-pathology vs Alzheimer’s disease pathology (2) no-pathology and early 

stage of Alzheimer’s disease pathology (3) early vs late Alzheimer’s disease pathology. We 

also downloaded the marker genes for the 14 different clusters found in the comparison 

between healthy and glioma-associated microglia21. We performed the Fisher exact test on 

the 2-by-2 table of the marker genes for one of our microglia populations (A-D) and one of 

the three comparisons for Alzheimer’s disease microglia or one of 14 different clusters for 

the glioma associated microglia data. Fisher exact P-values were adjusted by Bejamini-

Hochberg method.

Differential expression analysis of clinical factors

We utilised the same linear mixed model we employed for the variance component analysis 

to adjust for 13 known confounding effects and the effect of four cell population (see above) 

as a random effect in differential expression analysis. We fit the model on gene-by-gene 

basis using the estimated variance parameters {ϕk
2} to test each factor k explaining a 

significant amount of transcription variation. If the focal factor k is numerical (e.g., age of 

patients), the Bayes factor of effect size was computed by comparing the full model and the 

reduced model without the factor k. If the focal factor k is a categorical variable with l levels 

(e.g., pathology with 5 levels), we partitioned the levels into any of two groups. There are 

2l-1 contrasts which were tested against the null model (removing the focal factor k in the 

model) to compute Bayes factors. Then, those Bayes factors were used for fitting a finite 

mixture model to compute the posterior probability as well as the local true sign rate (ltsr) 
(see Supplementary Note Section 1.3 for more details). We used g:Profiler 2 implemented in 

R (version 2.0.1.5) to perform which pathways are enriched for differentially expressed 

genes for each contrast. We used genes whose ltsr is greater than 0.5 to perform the analysis 

(both upregulated and downregulated genes separately).

We also repeated the same analysis using the bulk RNA-seq data. We only used a part of 

bulk samples from patients with genotype data to estimate ethnicity (N=102). We 

normalised the raw count data into CPM (counts per million) and then log transformed. The 

linear mixed model with 9 technical and biological factors (pathology, the number of genes 

expressed, the number of total fragments, sequencing batch, dominant hemisphere, sex, 
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brain region, ethnicity and age) was used to adjust confounding effects between factors. The 

effect size and its significance (ltsr value) of differential expression for each gene were 

computed as described above (see also Supplementary Note for more details).

Expression QTL mapping using linear regression and RASQUAL

We used simple linear regression to map eQTLs. The fragment counts were GC corrected as 

described before22, normalised into TPM (transcripts per million) and then log transformed 

(log of TPM+1). 25 principal components (PCs) were calculated and regressed out from the 

normalised expression levels. The 25 PCs were determined by comparing the eigenvalues 

between original and permuted count tables. If a real eigenvalue in descending order was 

greater than that from permuted data at the same rank, we used the corresponding PC as the 

covariates. We note that patient pathology was well captured by PCs of gene expression: 

including patient pathology as an additional covariate in our model did not improve power to 

detect eQTLs (575 eQTLs detected at FDR 5% with pathology in the model, vs 585 

without). For each gene, we applied Benjamini-Hochberg (BH) FDR correction across all 

variants tested in the cis-regulatory region to obtain the minimum Q-value. Then, the 

minimum Q-values across all genes are adjusted again by BH FDR method to compute the 

genome-wide FDR. We also mapped eQTLs using RASQUAL (version 0.1; https://

github.com/natsuhiko/rasqual) with the raw count data and the same 25 PCs used in linear 

regression as the covariates. We used --no-posterior-update option to keep the posterior 

genotype dosage identical to the prior genotype dosage, that allowed us to stabilise the 

convergence of model fitting. We picked up the minimum BH Q-value for each gene to 

perform the multiple testing correction genome-wide. We performed a permutation test once 

for each gene and constructed the empirical null distribution to which the real Q-values were 

compared to calibrate the FDR threshold22. Colocalisation analysis with GWAS traits was 

performed using the COLOC47 implemented on R.

Bayesian hierarchical model

We extended a standard Bayesian hierarchical model48 to jointly map eQTLs in three 

different cell types. We employed the association Bayes factor at each variant for each gene 

to compute the regional Bayes factors (RBFs) in a cis region of 1Mb centred at transcription 

start site (TSS) under 15 different hypotheses. Those RBFs were used in a hierarchical 

model to estimate prior probabilities that eQTLs are colocalised between any two of the 

three cell types as well as shared among three cell types. It can provide posterior probability 

that a gene is an eQTL for each cell type. See Supplementary Note Section 2 for more 

details.
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Extended Data

Extended Data Fig. 1. Overview of bulk and single cell RNA-seq data.
UMAP of bulk RNA-seq for myeloid cells. The “Primary microglia” cluster contains 

samples collected in this study (pink dots) and previous studies (purple dots) (information on 

the source of previous study data can be found in Supplementary Table 7). “Cultured 

primary and IPS-derived cells”, includes IPS-derived macrophages and microglia (blue 

dots), cultured primary microglia and monocyte derived macrophages (orange dots). 
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“Monocytes” (green dots) denotes primary monocytes obtained from the BLUEPRINT 

project. b. Feature plots of three microglia marker genes (P2RY12, CX3CR1 and 

TMEM119) using the same UMAP coordinates as Figure. 1d. c. Age versus percentage of 

infiltrating cells. Red line shows the logistic regression line, the red transparent band shows 

the 95% confidence interval estimated using a generalised linear mixed model for the binary 

outcome (Materials and Methods). d. UMAP plot identical to Figure 1d. e. UMAP plot from 

the first 12 principal components computed from the same input data for the linear mixed 

model without any batch correction. f. UMAP of the same 12 PCs where the batch effect 

was corrected by using Harmony45. g. UMAP of batch corrected data using the canonical 

correlation analysis method implemented in Seurat V3 46 with a default setting. We 

computed the 12 PCs from the integrated data for UMAP plot. h. UMAP of batch corrected 

data using MNN correct47. Note that points were coloured according to the cell types (same 

as Figure 1d): glutamatergic neurons from the PFC (exPFC); pyramidal neurons from the 

hip CA region (exCA); GABAergic interneurons (GABA); granule neurons from the hip 

dentate gyrus region (exDG); astrocytes (ASC); oligodendrocytes (ODC); oligodendrocyte 

precursor cells (OPC); neuronal stem cells (NSC); endothelial cells (END); dendritic cell 

(DC); B cell (B); hematopoietic progenitor cell (CD34+); NK T cell (NK).
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Extended Data Fig. 2. Microglia marker gene comparisons and validations.
a. Marker gene enrichment analysis with Alzheimer’s disease associated microglia20 and 

glioma associated microglia21. There are three different comparisons for Alzheimer’s 

disease associated microglia and 14 different populations for glioma associated microglia. 

Heatmap shows odds ratios and Benjamini-Hochberg (BH) Q-values of the Fisher exact tests 

between our marker genes and differentially expressed genes in other studies. b. 

Differentially expressed genes between microglia from different patient pathologies using 

single cell RNA-seq data. Heatmap shows averaged, normalised expression level (defined as 
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the posterior mean of pathology random effect term, see Materials and Methods) of 

differentially expressed genes at local true sign rate (ltsr) greater than 0.9 ((Urbut et al. 

2019); see Materials and Methods for details). Heatmap is divided into groups based on all 

possible pairwise groupings of the four cell populations, ordered by most transcriptionally 

distinct, such that the most different grouping, trauma versus all non-trauma, appears at the 

top. c. Differential expression of candidate marker genes for immunohistochemistry in fresh 

frozen patient tissue samples. d. Immunohistochemistry panel of each pathology to validate 

expression of a differentially expressed gene at the protein level; hydrocephalus (C3), 

tumour (CCL4), haemorrhage (CD63) and trauma (BIN-1) compared to control. Iba-1 (red) 

and protein of interest (green). e. RNAScope image of differentially expressed gene panel 

for cluster C; HAMP (yellow) and RAC2 (purple) with C1QC (green) used to identify 

microglia. f. RNAScope image of differentially expressed gene panel for cluster D; KLF 

(yellow) and CCL20 (purple). Scale bar 10μM.

Extended Data Fig. 3. Differential expression analysis with bulk RNA-seq data.
a. Variance components analysis of log CPM values for the bulk RNA-seq data (N=102) 

with biological and technical factors using the linear mixed model (Online methods). b. 

Heatmap shows the effect size of age for each gene (each row) estimated by the linear mixed 

model (Online methods). The genes with LTSR>0.9 in single-cell data are shown. c. PADI2 

normalised expression in bulk RNA-seq data against patients’ age. d. P2RY12 expression in 

bulk RNA-seq data against patients’ age. e. Heatmap shows the average expression of males 

and females for each gene (each row) estimated by the linear mixed model (Online 

methods). The genes with LTSR>0.9 in single-cell data are shown. f. C1QA normalised 

expression in bulk RNA-seq data for males (M) and females (F). g. HLA-DQB1 normalised 

expression in bulk RNA-seq data for males (M) and females (F). h. Heatmap shows the 

average expression for 5 different brain regions estimated by the linear mixed model (Online 

Young et al. Page 18

Nat Genet. Author manuscript; available in PMC 2021 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



methods). The genes differentially expressed between a combination of Occipital and 

Cerebellum and the 3 other regions (LTSR>0.9) in single-cell data are shown.

Extended Data Fig. 4. Colocalisation of eQTLs with various GWAS traits.
a. eQTL effect size comparison for 502 eQTL genes at FDR 5% (linear regression) whose 

gene body contains at least one feature SNP with sufficient coverage (greater than 5% of 

average coverage across coding regions). The x-axis shows the eQTL effect size (beta) 

estimated from linear regression and the y-axis shows the eQTL effect size (pi value) from 
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RASQUAL using only allele-specific count data. The red line shows the least square line 

crossing (0, 0.5). Note that, x=0 is the null hypothesis for linear regression and y=0.5 is the 

null hypothesis for RASQUAL. b. Examples of colocalised eQTLs in microglia. 

Colocalisation with Parkinson’s disease at KLHL7-AS1 eQTL (left column), colocalisation 

with Fed-up feelings at DAG1 eQTL (middle column) and colocalisation with Crohn’s 

disease at ERAP2 eQTL (right column). The y-axis of each panel shows log10 association 

Bayes factor for the eQTL or the GWAS trait. The colour of each point indicates LD index 

(r2 value) to the lead eQTL variant shown by the purple diamond. c. Heatmap of the 

posterior probability for colocalisation (PP4) between various GWAS traits and cell types/

tissues. Each row corresponds to a specific combination of gene and a GWAS trait. Each 

column corresponds to eQTLs discovered in different cell types and tissues. The first column 

of the heatmap corresponds to microglia eQTLs, the second column corresponds to eQTLs 

in IPS cell derived macrophage (IPSDMac) from this study (Materials and Methods), the 

third column shows eQTLs in primary monocytes from the BLUEPRINT project (Materials 

and Methods) and the remaining 48 tissues are eQTLs from GTEx V7 (Materials and 

Methods). The colour of each grid shows the strength of PP4 (white: PP4=0.0 and red: 

PP4=1.0). Gray indicates that the gene was very weakly or not expressed, and therefore no 

eQTL summary statistics were available.
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Extended Data Fig. 5. Finemapping of microglia eQTLs.
a. Regional association plots at the CD33 locus. b. Coverage plot shows the normalised 

expression level around the CD33 gene stratified by genotype at the putative splice variant 

(rs12459419C>T). The zoom-in panel shows a coverage plot of expression level around the 

second exon (ENST0000262262.4). The coverage shows the first intron expression is 

negatively correlated with the second exon expression, suggesting the expression of non-

coding isoform (ENST00000601785.5) is increased by the alternative allele (T) of the 

splicing QTL. c. Colocalisation between an association with risk for Alzheimer’s disease on 
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chromosome 2 and an eQTL for the noncoding RNA gene EPHA1-AS1 in microglia, GTEx 

tissues and myeloid cell types. The x-axis shows the posterior probability of colocalisation 

(PP4) and y-axis shows the average expression level (log10 TPM) for each tissue or cell 

type. d. Colocalisation between AD risk and expression of the protein-coding EPHA1 gene. 

The x-axis shows the posterior probability of colocalisation (PP4) and y-axis shows the 

average expression level (log10 TPM) for each tissue or cell type. e. Boxplots show the 

relationship between expression at the PTK2B gene and genotype at the lead eQTL variant 

(rs28834970C>T) three myeloid cell types. The y-axis shows normalised expression levels 

(log TPM value). Each dot on the box shows the expression level of a single sample. f. 
Coverage plot shows chromatin accessibility in iPS cell derived macrophages stratified by 

three genotype groups of the lead AD GWAS/BIN1 eQTL variant g. Scatter plot of MEF2C 

(x-axis) and BIN1 (y-axis) expression in GTEx brain tissues and myeloid cell type.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design and overview of the data.
a. Metadata from 141 neurosurgery patients enrolled in this study. Brain region annotation: 

Cerebellum (C); Frontal (F); Occipital (O); Parietal (P); Temporal (T); non-dominant (ND); 

dominant (D). b. Experimental design using Smart-seq2 and bulk RNA-seq with SNP 

genotyping. c. UMAP of bulk RNA-seq from myeloid cells and brain tissue. The “Primary 

microglia” cluster contains samples collected in this study (pink dots) and previous studies 

(purple dots) (information on the source of previous study data can be found in 

Supplementary Table 7). “Cultured primary and IPS-derived cells”, includes IPS-derived 

macrophages and microglia (blue dots), cultured primary microglia and monocyte derived 

macrophages (orange dots). “Monocytes” (green dots) denotes primary monocytes obtained 

from the BLUEPRINT project, and “GTEx brain” denotes all brain tissues from GTEx v7. 

The left cluster of GTEx brain corresponds to cerebellum or cerebellar hemisphere samples 

and the right cluster contains samples from all other brain regions. d. UMAP of single-cell 

RNA-seq data combined with 68K PBMC scRNA-seq18 and whole brain DroNc-seq19. 

Bright red dots represent cells collected in this study. Cell type annotations were obtained 

from: glutamatergic neurons from the PFC (exPFC); pyramidal neurons from the hip CA 

region (exCA); GABAergic interneurons (GABA); granule neurons from the hip dentate 
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gyrus region (exDG); astrocytes (ASC); oligodendrocytes (ODC); oligodendrocyte precursor 

cells (OPC); neuronal stem cells (NSC); endothelial cells (END); dendritic cell (DC); B cell 

(B); hematopoietic progenitor cell (CD34+); NK T cell (NK). e. Proportions of non 

microglia for each patient in our data. Each horizontal bar corresponds to one patient. The 

thickness of each bar is proportional to the number of cells observed for the patient. Patients 

are stratified by pathology.
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Figure 2. Transcriptional heterogeneity in human microglia.
a. UMAP of 8,662 microglia cells after removing putative infiltrating cells. Colors show 4 

clusters defined using Louvain clustering (Materials and Methods). b. Microglial population 

variation between patient pathologies. The four different colours in Figure 2a illustrate 

population compositions for each pathology. Points coloured gray are all other cells. c. 

Heatmap shows the enrichment (log odds ratio) of microglial populations between 

pathologies d. Heatmap of averaged, normalised expression level (defined as the posterior 

mean of pathology random effect term, see Materials and Methods) of differentially 

expressed genes at local true sign rate (ltsr) greater than 0.9 (see Materials and Methods for 

details). Heatmap is divided into groups based on all possible pairwise groupings of the four 
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cell populations, with the most transcriptionally distinct population at the top. e. Pathway 

enrichment analysis of differentially expressed genes between different microglial 

populations. The x-axis shows the P-value obtained by gProfiler2 with multiple testing 

corrections (Materials and Methods). Bars are coloured according to the combinations of 

clusters in which genes are upregulated. The upregulated cluster IDs are also shown besides 

the bars.
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Figure 3. Single-cell RNA-seq reveals how microglial transcriptional heterogeneity is driven by 
clinical factors.
a. Barplot shows the variance explained by each factor. Bars coloured gray are technical 

factors (N.exp.genes: the number of expressed genes in each cell, which is expected to 

reflect cell health or quality; Plate: cells undergoing library preparation and sequencing 

together on the same 384 well plate; ERCC%: ERCC spike-in percentage among all mapped 

fragments for each cell; N.fragments: the number of fragments for each cell mapped on 

autosomes; 96 well position: the position of a cell on the 96 well plate processed in the 

SmartSeq2 protocol; MT%: percentage of mitochondrial RNA fragments among all mapped 

fragments for each cell) and coloured pink are clinical factors (Pathology; Age of patient; 

Brain region; Brain hemisphere; Sex of patient). Blue bars are partly related to patients’ 

genetic background (Patient and Ethnicity). b. Heatmap showing the strength and direction 

of the age effect for differentially expressed (DE) genes at local true sign rate (ltsr) greater 

than 0.9 (Materials and Methods). The effect size is the posterior mean estimate weighted by 

the empirical prior distribution, where hyperparameters were estimated from the data using a 

linear mixed model (Materials and Methods). c. Pathway enrichment for differentially 

expressed (DE) genes by age. Pathways coloured red are enriched only for DE genes 

upregulated by age, and the pathways coloured blue are enriched for DE genes 

downregulated by age. d-e. Example genes upregulated or downregulated by age. f. 
Heatmap showing the average normalised expression levels for DE genes by sex at ltsr 
greater than 0.9 (Materials and Methods). The effect size is the posterior mean estimate 

weighted by the prior distribution calibrated in the linear mixed model (Materials and 

Methods). g. Pathway enrichment by sex. h. Pathway enrichment for combinations of brain 

regions. The blue bars show pathways upregulated in cerebellum and occipital lobe. The red 

bars show pathways upregulated in frontal, parietal and temporal lobes.
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Figure 4. Mapping and colocalisation of microglia eQTLs with various GWAS traits.
a. The numbers of eQTL genes discovered by two different methods, RASQUAL (left bar) 

or simple linear regression (right bar, LM) in three myeloid cell types at FDR 5% (see 

Online Methods). b. The number of shared eQTLs across three myeloid cell types obtained 

by the three-way Bayesian hierarchical model (Online Methods). The combination of genes 

that are eQTLs (closed dots) or non-eQTLs (open dots) across three different myeloid cell 

types are shown below each bar. A line connecting two dots indicates a shared eQTL 

between different cell types. c. Empirical prior probability of eQTL sharing among three 

different myeloid cell types obtained by the three-way Bayesian hierarchical model (Online 

Methods). The Y-axis shows the proportion of genes genome-wide and the dots connected 

by segment illustrate the shared genetic association. d. Colocalisation of microglia eQTLs 

with 146 GWAS traits. The x-axis shows the number of genes where PP3, the posterior 

probability of the microglia eQTL and GWAS association being driven by two independent 

causal variants, was greater than 0.5. The y-axis is the number of colocalised genes where 

the posterior probability of a single shared causal variant between a microglia eQTL and a 

GWAS locus (PP4) was greater than 0.5. We subdivided and colored GWAS traits as 

follows: purple: neurodegenerative diseases; red: blood cell trait; blue: traits related with 

intelligence; green: autoimmune diseases; yellow: neuropsychiatric diseases; gray: others. 

The line shows a log-normal linear regression fit with gray shaded area indicating the 95% 
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prediction interval of the fit. e. Heatmap of PP4 for neuro-degenerative/psychiatric diseases, 

intelligence related traits and autoimmune diseases showing all genes and GWAS trait with a 

combined PP4 greater than 0.5. Gray cells indicate that the gene-trait combination was not 

tested because the GWAS locus was not significant (lead SNP P>10-6), or there were no 

GWAS summary statistics available for secondary hits (PTK2B and TREML3P).
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Figure 5. Fine-mapping of the BIN1 eQTL / Alzheimer’s disease association.
a. Posterior probability of colocalisation between Alzheimer’s disease27 and the three 

myeloid cells and GTEx eQTLs for the BIN1 gene. The y-axis is based on the AD GWAS 

primary signal of the BIN1 locus and the x-axis is based on the secondary signal at BIN1 

found by the conditional analysis27. b. Sequencing coverage depth of ATAC-seq and RNA-

seq stratified by individuals (top ATAC-seq panel) or the three genotype groups at BIN1 lead 

eQTL SNP (rs6733839C>T) (bottom three panels). The top two panels show data from the 

primary microglia (Materials and Methods) and the bottom two panels were obtained from 

iPS cell derived macrophage (Materials and Methods). The MEF2CA motif overlaps with 

the lead SNP and the alternative allele (T) increases predicted binding affinity. c. Regional 

Manhattan plot around the BIN1 gene. The y-axis shows the statistical significance of AD 

GWAS27 in log10 Bayes factor. d. Regional plot shows the statistical significance of 

microglia eQTL for BIN1 gene in log10 Bayes factor. e. Regional plot shows the statistical 

significance of IPSDMac eQTL for BIN1 gene in log10 Bayes factor. f. Regional plot shows 

the statistical significance of IPSDMac chromatin accessibility QTL (log10 Bayes factor) at 

the chromatin accessibility peak involving the putative causal variant rs6733839C>T. Tissue 

type annotation: Artery Tibial (AT), Esophagus Gastroesophageal Junction (EGJ), Colon 

Sigmoid (CS), Skin Sun Exposed Lower leg (SSELL), Heart Left Ventricle (HLV), Colon 

Transverse (CT), Esophagus Mucosa (EM), Pituitary (PI).
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