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ABSTRACT

Motivation: Y-chromosome short tandem repeats (Y-STRs) are
widely used for population studies, forensic purposes and,
potentially, the study of disease, therefore knowledge of their
mutation rate is valuable. Here we show a novel method for
estimation of site-specific Y-STR mutation rates from partial
phylogenetic information, via the maximum likelihood framework.
Results: Given Y-STR data classified into haplogroups, we de-scribe
the likelihood of observed data, and develop optimization strategies
for deriving maximum likelihood estimates of mutation rates. We
apply our method to Y-STR data from two recent papers. We show
that our estimates are comparable, often more accurate than those
obtained in familial studies, although our data sample is much
smaller, and was not collected specifically for our study. Furthermore,
we obtain mutation rate estimates for DYS388, DYS426, DYS457,
three STRs for which there were no mutation rate measures until
now.
Contact: saharon@post.tau.ac.il

1 INTRODUCTION
Microsatellites or Short Tandem Repeats (STRs) are repetitive
stretches of DNA made of short sequence motifs (2–6 bp), repeating
a variable number of times. STRs are very common in eukaryotic
genomes, and are highly mutable, with changes in repeat count
occurring with much higher mutation rates compared to other
polymorphisms [as high as 2×10−3 in Y-chromosome STRs
(Y-STR) as estimated by Heyer et al. (1997)], leading to allelic
polymorphism. These properties have made them an efficient tool
for identification in forensics and paternity tests (Hammer and
Redd, 2006; Kayser and Sajantila, 2001) as well as for studying
demographic history and population structure, especially Y-STRs
(Contu et al., 2008). This is because most of the Y-chromosome
does not undergo recombination, hence population polymorphism
originates only from mutations, and individuals can be placed
on a common phylogenetic tree, whose branches are marked by
mutations. Besides their use in forensics and demographic studies,
some autosomal microsatellites are also known to be involved
in disease: expansion of specific microsatellites beyond a certain
threshold has been known to cause diseases such as Fragile X
syndrome, myotonic dystrophy and Huntington’s disease (Ashley
and Warren, 1995; Rubinsztein, 1999). Microsatellites are also
known to hypermutate in some cancers (Thibodeau et al., 1993).

In order to understand microsatellites mutation mechanisms,
reliable rate estimates for STRs, in general, and Y-STR, specifically,
have long been considered of scientific interest. Different approaches
have been utilized for the estimation of Y-STR mutation rates, some
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of which use direct counting such as counting mutation events in
deep routed pedigrees with known history (Heyer et al., 1997), or
in father–son pairs (Ge et al., 2009; Kayser et al., 2000), and also
in sperm (Holtkemper et al., 2001). Other methods try to estimate
the mutation rates indirectly; for example, Zhivotovsky et al., 2004,
use the diversity of Y-STRs in modern-day population samples with
documented population founding or population splitting events in
the last 1000 years (Gypsies and Pacific Islanders). They use TD, an
estimator for a population divergence time based on inter- and intra-
population variance of STR repeat number (Zhivotovsky, 2001), to
estimate the average STR mutation rates. For the eight Y-STRs they
consider they get an estimate of 6.9×10−4 ±5.9×10−4 mutations
per generation.

All of the different approaches observed significant variation
in the mutation rates of different STRs. See for example the
comparable mean and standard error for mutation rates as estimated
by Zhivotovsky et al. (2004). However, there is a roughly 3-fold gap
between the rates estimated from geneologies and those estimated
from historical or phylogenetic data (Zhivotovsky et al., 2004,
2006). This has generated extensive attention in the literature, with
some explanations offered by Zhivotovsky et al. (2006), but in our
view it largely remains unresolved.

In this article, we propose a new approach for estimating Y-STR
mutation rates. As opposed to previous approaches, which require
extensive collection of data specifically for this purpose (father–son
pairs, genealogies, populations with documented history, etc.), our
approach takes advantage of data collected in population genetic
studies. There is a long list of such studies which make use of
Y-STR data (Contu et al., 2008; Hammer et al., 2009; Quintana-
Murci et al., 2010), and they often also sequence a collection
of unique event polymorphism markers, usually single nucleotide
polymorphisms (SNPs), which place each sample in a well-defined
region of the human Y-chromosome phylogenetic tree, referred to as
a haplogroup (Hg). We show below how this partial knowledge of
the phylogenetic relationship between samples affects the likelihood
of the observed Y-STR lengths, and demonstrate how the resulting
optimization problems can be solved to obtain maximum likelihood
(ML) estimates of Y-STR mutation rates. In the simplest cases, the
resulting ML estimation problem is generalized linear model (GLM),
with a non-standard complementary log–log (CLL) link function.
This has been previously demonstrated and applied on mitochondrial
DNA (mtDNA) data by Rosset et al. (2008). However, as we show,
in Y-STR data we can extract more detailed information from the
data. We formulate and solve the resulting ML maximization as
general convex optimization problems.

We apply our approach to a combined dataset of haplogroup-
associated Y-STR data from two recent papers (Hammer et al., 2009;
Quintana-Murci et al., 2010), comprising in total 3780 samples
in 66 haplogroups. We then compare our estimates to the ones
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published in the Y-Chromosome Haplotype Reference Database,
YHRD (Willuweit and Roewer, 2007). The YHRD estimates are
based on simple counting of mutations in very large numbers of
meioses on known geneologies (between 10 000 and 25 000 meioses
for each Y-STR) and are based on genealogical data collected
specifically for this purpose. We demonstrate that our estimates
are comparable to those derived from genealogical data, but more
reliable (as reflected by having tighter confidence intervals). We are
also able to obtain estimates for Y-STRs not contained in YHRD.
Our approach can easily be applied to much larger datasets by
augmenting our current study with additional datasets collected from
the population genetics literature, with no proactive data collection
effort required.

2 METHODS

2.1 Y-STR data
Our data comes from two recent population genetics studies. The first
(Hammer et al., 2009) is a study of the Y-chromosome landscape of Jewish
Cohanim, compared to the general Jewish population and to gentiles within
the Middle East and other regions. The authors genotyped 75 SNPs on the
Y-chromosomes of 3674 individuals. This classified them into 64 unique
Y-chromosome Hgs, according to the accepted nomenclature. They also
genotyped 12 Y-STRs in all individuals: DYS19, DYS385a, DYS385b,
DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393,
DYS426 and DYS439. An additional two Y-STRs (DYS438, DYS457) were
genotyped in most individuals.

The second study (Quintana-Murci et al., 2010) deals with a very different
population: the Colored people of South Africa, who are an intriguing
genetic mixture of African, European and Southeast Asian ancestries. In
this article, the authors used SNPs to divide the 228 males sampled into
21 Hgs, and they typed 14 Y-STRs on 226 of them: DYS19, DYS385a,
DYS385b, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392,
DYS393, DYS426, DYS437, DYS438 and DYS439.

We use the combined dataset from both studies for our analyses, where
we rely on the Hg inference by the authors of these two papers, and use the
Y-STR data they generated as input to our method. We removed DYS385a
and DYS385b from the analysis, since their values cannot be uniquely
determined, and replaced DYS389II by DYS389B = DYS389II-DYS389I,
as is typically done (Goff and Athey, 2006; Mohyuddin et al., 2001). Our
pre-processing of the data further included merging the datasets, specifically
combining data for the 10 Hgs that appeared in both datasets; removing Hgs
which had less than two samples in the combined dataset; removing samples
which had less than 11 Y-STRs observed.

After this process, we were left with data on 66 Hgs, with a varying
number of observations on each Y-STR, as detailed in Table 1.

Table 1. Sample numbers and sources for various Y-STRs in our data

STR name Samples Source

DYS19, DYS388, DYS389I,
DYS389B, DYS390, DYS391,
DYS392, DYS393, DYS426,
DYS439

3780 Hammer et al.
(2009) and
Quintana-Murci
et al. (2010)

DYS437 226 Qunitana-Murci
et al. (2010)

DYS438 2766 Both papers
DYS457 2834 Both papers

2.2 Statistical estimation approach
Denote by T the phylogenetic tree containing all 3780 samples. We do not
have the full tree structure, but rather a haplogroup view of that tree, that
is, the samples are grouped into haplogroups or paragroups, here referred to
as Hgs. These Hgs represent terminal subtrees of the full tree T , but we are
not given their internal structure (Fig. 1). For each sample we are given the
number of subunit repeats of all, or part of the 13 STRs mentioned bellow.
We assume that:

(1) The haplogroup classification of all sequences is known and correct.
This implies that the Hgs represent disjoint subtrees, and the method
for mapping samples to these Hgs is accurate. Both assumptions are
in fact very reasonably for our data, since the Y chromosome tree is
very confidently mapped, and the classification is based on multiple
slowly mutating SNPs (The Y Chromosome Consortium, 2002).

(2) Mutation rates of the different STRs are independent. For our
estimation methodology, we need not assume anything about the
‘distribution’ of the rates.

(3) Every STR i (i=1,...,13) has a fixed Poisson rate, λi, with which the
mutations occur. The λi is the same in all Hgs.

Let t(T ) be the total time of all branches of our phylogenetic tree T ,
then, according to our assumptions , the number of mutations on this tree in
STR i in total time t(T ) is distributed Poisson(λi t(T )). In the same manner
let T1,...,TK represent the K Hg terminal subtrees of T , whose total time
length of all the branches, t1,...,tk and inner structure are not known. Thus,
mik , the number of mutations of STR i, in Hg k, is distributed Poisson(λi tk).
If we had the internal structure of each subtree k (of Hg k), then we could
directly count mik , and hence formulate the total log-likelihood of the data
and estimate the parameters, using Poisson regression, through the usual ML
framework. However, as aforementioned, we do not, so we do not observe
the mik’s, but only observe the state (number of subunit repeats) of STR i in
all samples (leaves) of Hg k.

Here we go about this problem using an extension of a method proposed
by Rosset et al. (2008) for SNP rate estimation in mtDNA. Briefly, given
all states of STR i, in the leaves of Hg k, if the STR state is not identical in
all leaves, we know for certain that mik >0, i.e. STR i has mutated at least
once somewhere on the phylogenetic tree describing haplgroup k samples.
If all of the samples in Hg k have the same number of subunits in STR i, we
can conclude with almost absolute confidence that this site has not mutated
anywhere on the Hg’s phylogenetic tree, i.e. mik =0. To demonstrate that
our approach can properly capture whether a mutation did occur in a specific
site, consider a simple phylogenetic tree like the one in Figure 2, where
we assume a mutation from red triangle to black circle has occurred on
the top-right branch. The shapes at the bottom describe the states of the
leaves (observed samples), if no other mutations have occurred at this site.
Now assume we want all the leaves of the tree to have the same number of
subunits (all triangles or all circles) at this STR. This would clearly require
that either the mutation reverted back from circle to triangle on a cut of
the subtree below the original mutation (such as both branches marked with
**) or the same exact mutation (triangle to circle) simultaneously happened
on a set of branches completing a cut of the full tree (such as the branch
marked with X). If none of these highly unlikely events (requiring multiple

BA

Fig. 1. (A) The full phylogenetic tree, including the internal Hg phylogenies,
which we assume we do not observe. (B) Schematic of the Hg view of a
phylogenetic tree.
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Fig. 2. Demonstration of our reasoning that we know whether any mutations
have occurred in a specific STR. A mutation from red triangle to black circle
has occurred on the top right branch. The shapes at the bottom describe the
states of the leaves (observed samples). In order for such a mutation to go
unnoticed all the leaves at the bottom should have the same state (all circle,
or all triangle). Therefore, either both branches marked ‘**’ changed back,
or the same exact mutation happened also at the branch marked X. Both
events are highly unlikely.

‘coordinated’ mutations) occur, all leaves would not have the same state at
this site, given the shown triangle to circle mutation. We can illustrate the low
probability of missing a mutation in our approach, by comparing it to another
probability that of not observing a mutation on a coalescent tree because it
has mutated back on the same link and thus is completely unobservable.
Assuming for simplicity that all polymorphisms are binary, consider for
example the two links marked with **, assume they both have length t. It is
easily seen that the probability that STR i mutated and reverted on either one
of them is 2exp(−2λi t)(λi t)2/2+O((λi t)3). The probability that the triangle
to circle mutation reverted back on both of them simultaneously is similarly
exp(−2λi t)(λi t)2/2+O((λi t)4), i.e. slightly smaller. If we do not assume
both links have the same length, then the first probability is potentially
much bigger than the second. Therefore, under reasonable assumptions, that
reversion back is most likely on binary splits, our total chance of setting
mik =0 when the true value is mik >0, is on the same order of magnitude
as twice the chance that the coalescent tree contains mutations that reverted
back on the same link, which are inherently unobservable (Rosset et al.,
2008).

Thus, while we could not observe the Poisson mutation counts mik , we
observe the binary variables:

bik =
{

1 If mik =0

0 If mik >0
.

These variables are distributed as bik ∼ Bernoulli(exp(−λi tk)). After
formulating the partial log-likelihood [Equation (1)] of the observed data b,
the ML estimation of the parameters is a binomial regression with a CLL link
function. This is therefore a GLM problem (MacCullagh and Nelder, 1991),
and can be solved using the standard GLM framework (Rosset et al., 2008).
Note that we use observed data only on mik , whose distribution depends
only on the total branch length of each Hg subtree rather than on a specific
internal structure. Hence the rate estimates will not depend on the internal
structure as long as the total branch length is the same. We refer to this
estimation procedure as MAL1 (ML estimation with information on at least
one mutation).

� (b,λ,t )=
∑
i,k

[
−λi tkbik +log (1−exp (−λi tk ) ) (1−bik )

]
(1)

However, using this method we do not use all data available, specifically
how many different STR states are present in each haplogroup. Using the

same reasoning as above, if two different states indicate that at least one
mutation occurred, three different states indicate the presence of at least two
mutations, etc. (with the maximal number of STR states per Hg in our data
being 9). Since we assume that the number of mutation events of STR i in
Hg k, mik ∼ Poisson(λi tk), the probabilities in each case can therefore be
written as:

P (mik =0 )=exp (−λi tk )
P (mik >0 )=1−exp (−λi tk )
P (mik >1 )=1−exp (−λi tk )−λi tk exp (−λi tk )
.
.
.

P (mik >n )=1−
n∑

j=0
(λi tk )j exp (−λi tk )/j!

Let yik be the observed number of states of STR i in Hg k. We can formulate
the log-likelihood of the data y:

�(y,λ,t)=
∑
i,k

[
(I{(yik−1)=0} log(P(mik =0))

+
8∑

j=1

I{(yik−1)=j} log(P(mik > j−1))
]
.

(2)

We refer to this estimation procedure as MAL8 (ML estimation with
information on at least eight mutations). This does not fit the GLM
framework, but is a convex function, and therefore has a global maximum,
which can be found using standard optimization tools. Here we used the
Matlab function ‘fmincon’ to find the optimum solution.

MAL1 and MAL8 procedures yield ML estimates of both the Hg tree
lengths tk ; k =1,...,K , and the STR-specific mutation rates λi; i=1,...,I .
However, note that this ML solution is defined only up to a multiplication
of all the λis by a constant and division of all the tks by the same constant.
Thus, to complete the estimation we need to resolve this remaining degree of
freedom. Here we calibrate our rates to the YHRD, setting the sum of STR
rates that are in common equal. The STRs that are missing in the YHRD
were multiplied by the same constant that was used for the calibration of the
others.

2.2.1 Saturation and sub-sampling It so happens that some of the Hgs
in our data are saturated, that is, for some Hg k all the STRs have more
than one state: yik >1∀i. This happens especially for Hgs that contain many
individuals. In this case tk is not estimable in our methodology (that is, the ML
estimate is not finite). In order to reduce the amount of saturation we created
different datasets by sub-sampling 50% of the samples belonging only to the
‘problematic’Hgs, multiple times (n=10). We then applied our methodology
to the different datasets and generated a ‘distribution’ of estimates. Our rate
estimates proved to be very robust and changed very little in the different
sets of data sampled. For each rate parameter, λi, the mean of the distribution
was taken to be our final estimate.

2.3 Statistical inference
2.3.1 Bias and variance estimation based non-parametric bootstrap In
order to assess how reliable our mutation rate estimates are, we use the Non-
Parametric bootstrap (Efron and Tibshirani, 1993). Namely, we resample
our data (with replacement) over and over again, 750 times, and run our
estimation procedure (subsampling 10 times to get a distribution of estimates
and taking the mean as the estimate λi*b) on each bootstrap sample to get
a distribution of bootstrap estimates. The central assertion of the bootstrap
method is that the relative frequency distribution of these λi*b’s is an estimate
of the sampling distribution of the true λi. Hence, we can use this distribution
to estimate the bias and variance of our estimate, and consequently for
constructing confidence intervals.
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Table 2. MAL1 and MAL8 mutation rate estimates and bootstrap based
estimates of the bias and SD of the rate estimates

STR Rate estimates Bias SD

MAL1 MAL8 MAL1 MAL8 MAL1 MAL8

DYS.19 2.49E-03 3.03E-03 3.67E-04 −1.29E-04 5.09E-04 4.90E-04
DYS.388 8.27E-04 1.02E-03 1.95E-04 −7.65E-05 1.82E-04 1.59E-04
DYS.389a 1.96E-03 2.04E-03 4.40E-04 2.75E-04 3.59E-04 3.22E-04
DYS.389b 2.95E-03 3.18E-03 2.19E-04 6.35E-05 6.14E-04 5.71E-04
DYS.390 2.41E-03 2.80E-03 3.96E-05 −3.05E-04 3.61E-04 3.59E-04
DYS.391 1.50E-03 1.04E-03 −2.52E-04 5.05E-05 1.89E-04 1.66E-04
DYS.392 6.95E-04 7.96E-04 1.34E-04 −1.12E-05 1.16E-04 1.11E-04
DYS.393 1.42E-03 1.77E-03 3.11E-04 −2.62E-05 2.90E-04 2.76E-04
DYS.426 1.07E-04 7.52E-05 1.96E-05 9.34E-06 3.07E-05 3.77E-05
DYS.437 8.92E-04 1.38E-03 6.09E-04 2.34E-04 3.20E-04 2.78E-04
DYS.438 9.81E-04 1.16E-03 2.77E-04 −4.60E-05 2.37E-04 2.31E-04
DYS.439 5.38E-03 3.71E-03 −1.93E-03 −4.21E-05 6.84E-04 6.20E-04
DYS.457 7.16E-04 7.28E-04 2.89E-04 8.15E-05 2.43E-04 2.29E-04

Bold values indicate bias/SD estimates which are lower using MAL8.
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Fig. 3. Rate estimates of MAL1 compared to MAL8. Pearson correlation
coefficient of 0.9162, Spearman 0.9560 (Hollander and Wolfe, 1973).

3 RESULTS

3.1 MAL1 and MAL8 estimated Y-STR mutation rates
In order to obtain estimation of Y-STR mutation rates, we used
previously published datasets comprised of Y-STR lengths of 13
Y-STRs of >3780 individuals, assigned to one of 66 haplogroups
(see Section 2). By using the length distribution of Y-STRs in each
haplogroup, we apply the proposed MAL1 and MAL8 likelihood
maximizations (see Section 2) to obtain uncalibrated mutation rate
and branch length estimates. The estimations were then calibrated
according to the YHRD.

Table 2 gives estimates of the 13 Y-STR mutation rates obtained
using MAL1 and MAL8. Both methods give similar results, (Fig. 3),
however, since the MAL8 method uses more information, we would
expect it to give better results. This is indeed the case as both the
SD and the bias estimated by the bootstrap are smaller for MAL8
compared to MAL1 in 12 out of the 13 STRs. Both the bias and

Table 3. Rate estimates and confidence intervals (CI) of YHRD and MAL8

STR YHRD MAL8 YHRD MAL8

Estimates Estimates CI CI

DYS.19 2.30E-03 3.03E-03 0.0016 0.0032 0.0022 0.0040
DYS.388 – 1.02E-03 – – 0.0007 0.0013
DYS.389I 2.52E-03 2.04E-03 0.0017 0.0035 0.0015 0.0027
DYS.389B 3.64E-03 3.18E-03 0.0027 0.0048 0.0022 0.0044
DYS.390 2.10E-03 2.80E-03 0.0014 0.0030 0.0021 0.0036
DYS.391 2.60E-03 1.04E-03 0.0018 0.0036 0.0008 0.0014
DYS.392 4.12E-04 7.96E-04 0.0002 0.0009 0.0006 0.0011
DYS.393 1.05E-03 1.77E-03 0.0006 0.0018 0.0013 0.0023
DYS.426 – 7.52E-05 – – 0.00003 0.0001
DYS.437 1.23E-03 1.38E-03 0.0006 0.0021 0.0009 0.0020
DYS.438 3.06E-04 1.16E-03 0.0001 0.0009 0.0007 0.0017
DYS.439 5.21E-03 3.71E-03 0.0039 0.0068 0.0026 0.0050
DYS.457 – 7.28E-04 – – 0.0004 0.0012

CIs in bold indicate CIs which are tighter using MAL8.
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Fig. 4. Estimates and CIs of MAL8 (light blue) and YHRD (pink).

SD give a significant P-value of 0.006 using a sign test (Wackerly
et al., 2002), indicating that MAL8 is indeed more accurate. Based
on these observations we proceed using MAL8 for the estimation
and inference of Y-STR rates.

3.2 Inference and MAL8 estimate comparison with the
YHRD estimates

Table 3 and Figure 4 show the rate estimates and confidence intervals
of our method and the YHRD for each of the 13 STRs. Confidence
intervals were calculated using 750 bootstrap samples, as described
in the Section 2. While the rates vary considerably between the
different STRs (ranging from 7×10−5 mutations per meiosis for
DYS426 to about 3×10−3 for DYS19, 439 and 389B), the MAL8
predictions are similar to the YHRD measured rates, the only
exception being DYS391. In seven out of 10 STRs, the confidence
intervals obtained by MAL8 are a tighter than the YHRD confidence
intervals.

i443



[10:36 28/8/2010 Bioinformatics-btq367.tex] Page: i444 i440–i445

O.Ravid-Amir and S.Rosset

8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-3

Typical length of STR

R
at

e 
E

st
im

at
e

Fig. 5. Rate estimates of each STR plotted versus its typical length (mode).

In addition to the 10 STRs with known rates, we obtained
predictions for three more Y-STRs: DYS388, DYS426, DYS457
with mutation rates of 1×10−3± 1.59×10−4, 7.5 ×10−5 ±3.7×
10−5, 7.3×10−4 ±2.29×10−4 mutations per meiosis, respectively.

3.3 STR length and its rate
It has been previously suggested that STR mutation rate increases
with the number of subunits (Calabrese and Sainudiin, 2005).
Figure 5 shows each STR’s mutation rate plotted against its modal
length (the length appearing in the largest number of the samples).As
can be seen there is a positive correlation, measured by Spearman’s
rho of 0.6713, with a significant P-value of 0.012. Thus, the
estimated rates support this assertion.

4 DISCUSSION
In this study we show a new method for estimating Y-STR mutation
rates. This method (MAL8) is based on ML estimation using partial
phylogenetic information. Using data for 10 Y-STRs with previously
estimated mutation rates, MAL8 obtains rates highly similar to the
previously measured rates described in the YHRD (Willuweit and
Roewer, 2007). This is noteworthy, as both the estimation method
and the datasets used are very different.

Classical mutation rate estimation is based on counting mutations
in father son pairs (or other known geneologies). This requires
both a specialized dataset, and, due to the small rate of mutations,
thousands of samples (YHRD uses 10 000–25 000 meioses for each
STR). The MAL8 method used in this study was applied to a small,
previously published dataset, consisting of only <4000 samples,
which were collected for other uses and not customized for Y-STR
mutation rate estimation in any way. Even on such a small dataset,
the MAL8 method obtained tighter confidence intervals in most
STRs, including DYS437 for which we had significantly fewer
samples than the other Y-STRs (∼230 samples). This emphasizes
an important aspect of our approach, whose performance largely
depends on the level of detail in Hg classification, more than on the
actual number of samples used. Thus, our approach is expected to do
well in the presence of a detailed Hg phylogeny, even with relatively
small sample sizes. Note that an incorrect classification into the

Hgs might cause a contradiction to the assumption of independent
occurrences of mutations, but this is not a real concern, since Hg
classification is done with very high confidence according to SNPs
(Hammer et al., 2009; Karafet et al., 2008; The Y Chromosome
Consortium, 2002). Importantly, the rate estimates depend only
on polymorphisms observed, which in turn depend on the total
branch lengths of each Hg subtree, rather than on a specific internal
structure.

We obtained mutation rate estimates for three STRs for which,
to the best of our knowledge, there is no measured mutation rate:
DYS388, DYS426 and DYS457. The estimated mutation rate of
DYS426 (0.0007) is significantly slower than the other estimates.
Indeed, we observed in this study, as well as others in previous works
(Willuweit and Roewer, 2007), that there is the large difference in
mutation rates between different STRs. This has been suggested
to originate from differences in STR repeat counts (a connection
which we have verified above exists in our data), the length of
the subunit itself, or its nucleotide composition. Obtaining better
statistics on the mutation rates in different STRs may enable to shed
more light on this problem. While currently >400 Y-STRs have
been described (Hanson and Ballantyne, 2006; Kayser et al., 2004),
only <20 Y-STRs have measured rates (Willuweit and Roewer,
2007). Since the dataset used for the MAL8 is publicly available
and continues to grow, obtaining sufficient data for additional STRs
may enable estimation of their mutation rates. In addition, a current
limiting factor for more accurate estimation is the resolution of the
haplogroup classification. Studies with detailed Hg classification
based on unique event polymorphisms like SNPs would be most
useful for generating accurate estimates of Y-STR rates.

A fundamental flaw of all Y-STR mutation rate estimation
approaches, including our own, is the limiting assumption they make
about the nature of Y-STR mutation processes. The mutation count
is assumed to be a symmetric random walk, so that the probability
of change in the repeat count for each STR is fixed, independently
of whether the change is an increase or decrease, and of the current
repeat count. These models are unrealistic as they do not allow a
stationary distribution of repeat counts (Calabrese and Sainudiin,
2005), thus, eventually leading to STR length which is infinite or
zero—both possibilities are obviously unreasonable. Interestingly,
it has been demonstrated that use of such simplistic models is
consistent with a decrease in ‘observed’ mutation rates as distance
between samples increases (Calabrese and Sainudiin, 2005). We
believe that this should be further investigated as a possible factor
in the 3-fold gap between the genealogical and evolutionary rates
(Zhivotovsky et al., 2004).

Hence, we plan future extensions for our modeling approach to
allow for asymmetric rates and length dependencies. Note that this is
much more complex than our current approach, since knowledge of
the total mutation count mik no longer suffices to write the likelihood.
At the very least, this approach requires prior knowledge about
ancestral STR length in every Hg, or, possibly, a way to infer it.

ACKNOWLEDGEMENTS
Special Thanks to Amnon Amir for his helpful ideas throughout this
work.

Funding: European Union (grant MIRG-CT-2007-208019 to O.R.-
A. and S.R., in part); Israeli Science Foundation (grant 1227/09 to
O.R.-A. and S.R., in part).

i444



[10:36 28/8/2010 Bioinformatics-btq367.tex] Page: i445 i440–i445

Estimation of Y-chromosome mutation rates

Conflict of Interest: none declared.

REFERENCES
Ashley,C.T. and Warren,S.T. (1995) Trinucleotide repeat expansion and human disease.

Annu. Rev. Genet., 29, 703–728.
Calabrese,P. and Sainudiin,R. (2005) Models of microsatellite evolution. In Nielsen,R.

(ed.) Statistical Methods in Molecular Evolution. Springer, New York, pp. 290-305.
Contu,D. et al. (2008) Y-Chromosome based evidence for pre-neolithic origin of the

genetically homogeneous but diverse sardinian population: inference for association
scans. PLoS ONE, 3, e1430.

Efron,B. and Tibshirani,R.J. (1993) An Introduction to the Bootstrap. Chapman and
Hall, NY.

Ge,J. et al. (2009) Mutation rates at Y chromosome short tandem repeats in Texas
populations. Forensic Sci. Int. Genet., 3, 179–184.

Goff,P. and Athey,T. (2006) Diagnostic Y-STR markers in haplogroup G. J. Genet.
Geneal., 2, 12–17.

Hammer,M. and Redd,A.J. (2006) Forensic applications of Y chromosome STRs and
SNPs. Forensics in Law Enforcement, 133.

Hammer,M. et al. (2009) Extended Y chromosome haplotypes resolve multiple and
unique lineages of the Jewish priesthood. Hum. Genet., 126, 707–717.

Hanson,E.K. and Ballantyne,J. (2006) Comprehensive annotated STR physical map of
the human Y chromosome: Forensic implications. Leg. Med., 8, 110–120.

Heyer,E. et al. (1997) Estimating Y chromosome specific microsatellite mutation
frequencies using deep rooting pedigrees. Hum. Mol.Genet., 6, 799.

Hollander,M. and Wolfe,D. (1973) Nonparametric Statistical Methods. Wiley,
New York.

Holtkemper,U. et al. (2001) Mutation rates at two human Y-chromosomal microsatellite
loci using small pool PCR techniques. Hum. Mol. Genet., 10, 629–633.

Kayser,M. and Sajantila,A. (2001) Mutations at Y-STR loci: implications for paternity
testing and forensic analysis. Forensic Science International, 118, 116–121.

Kayser,M. et al. (2000) Characteristics and frequency of germline mutations at
microsatellite loci from the human Y chromosome, as revealed by direct observation
in father/son pairs. Am. J. Hum. Genet., 66, 1580–1588.

Kayser,M. et al. (2004) A Comprehensive Survey of Human Y-Chromosomal
Microsatellites. Am. J. Hum. Genet., 74, 1183–1197.

MacCullagh,P.J. and Nelder,J.A. (1989) Generalized Linear Models, 2nd edition,
Chapman and Hall, London.

Mohyuddin,A. et al. (2001) Y-chromosomal STR haplotypes in Pakistani populations.
Forensic Sci. Int., 118, 141–146.

Quintana-Murci,L. et al. (2010) Strong maternal khoisan contribution to the south
african coloured population: a case of gender-biased admixture. Am. J. Hum. Genet.,
86, 611–620.

Rosset,S. et al. (2008) Maximum-likelihood estimation of site-specific mutation rates in
human mitochondrial DNA from partial phylogenetic classification. Genetics, 180,
1511.

Rubinsztein,D.C. (1999) Trinucleotide expansion mutations cause diseases which do
not conform to classical Mendelian expectations. In Microsatellites: Evolution and
Applications. Oxford University Press, Oxford, England, pp. 80–97.

The Y Chromosome Consortium (2002) A nomenclature system for the tree of human
y-chromosomal binary haplogroups. Genome Res., 12, 339–348.

Thibodeau,S.N. et al. (1993) Microsatellite instability in cancer of the proximal colon.
Science, 260, 816.

Wackerly,D.D. et al. (2002) Mathematical statistics with applications, 6th Edition,
Pacific Grove, Duxbury, California.

Willuweit,S. and Roewer,L. (2007) Y chromosome haplotype reference database
(YHRD): update. Forensic Sci. Int. Genet., 1, 83–87.

Zhivotovsky,L.A. (2001) Estimating divergence time with the use of microsatellite
genetic distances: impacts of population growth and gene flow. Mol. Biol. Evol.,
18, 700–709.

Zhivotovsky,L.A. et al. (2004) The effective mutation rate at Y chromosome short
tandem repeats, with application to human population-divergence time. Am. J. Hum.
Genet., 74, 50–61.

Zhivotovsky,L.A. et al. (2006) Difference between evolutionarily effective and germ
line mutation rate due to stochastically varying haplogroup size. Mol. Biol. Evol.,
23, 2268.

i445


