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Abstract: Prion diseases, including Creutzfeldt–Jakob disease, are mediated by transmissible pro-
teinaceous pathogens. Pathological changes indicative of neuro-degeneration have been observed in
the brains of affected patients. Simultaneously, microglial activation, along with the upregulation of
pro-inflammatory cytokines, including IL-1 or TNF-α, have also been observed in brain tissue of these
patients. Consequently, pro-inflammatory cytokines are thought to be involved in the pathogenesis
of these diseases. Accelerated prion infections have been seen in interleukin-10 knockout mice, and
type 1 interferons have been found to be protective against these diseases. Since interleukin-10 and
type 1 interferons are key mediators of the antiviral THαβ immunological pathway, protective host
immunity against prion diseases may be regulated via THαβ immunity. Currently no effective treat-
ment strategies exist for prion disease; however, drugs that target the regulation of IL-10, IFN-alpha,
or IFN-β, and consequently modulate the THαβ immunological pathway, may prove to be effective
therapeutic options.

Keywords: prion; immunity; interleukin-10; type 1 interferons; microglia

1. Introduction

Prion diseases, a debilitating example of which is Creutzfeldt–Jakob disease (CJD),
are caused by transmissible proteinaceous pathogens. Patients with prion disease show
degenerative changes in the brain and nervous tissues that are progressive and eventually
fatal. Currently, no effective medications exist for the treatment of these detrimental
diseases, and the pathogenesis and immunological responses associated with prion diseases
remain unclear. This review discusses the host immunological pathways that attempt to
limit prion diseases.

Prions are essentially defined by the protein-only hypothesis, which states that these
pathogens comprise only proteins and lack any genetically inherited nucleic acid mate-
rial. Their discovery led to the abandonment of the scientific dogma that only DNA- or
RNA-containing organisms could be transmitted in infectious diseases. This was further
established by the discovery of only proteinaceous content, and the lack of either DNA or
RNA, from scrapie-infected mouse and hamster brains. Additionally, this proteinaceous
content was found to be transmissible and infectious. Prions consist of scrapie prion protein
(PrPsc), which is a conformer of cellular prion protein (PrPc). PrPsc aggregates recruit PrPc,
which results in template-mediated misfolding to cause conformational change of PrPc to
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PrPsc. The pivotal research that led to the discovery of these pathogens earned Dr. Prusiner
the Nobel Prize for Physiology and Medicine in 1997 [1–3].

Pathological findings in prion diseases usually manifest as spongiform formations
within nervous tissues. These pathogenic proteins infect the central nervous system (CNS)
tissues and, subsequently, induce PrPc to transform and acquire their structure, thereby
enabling their transmission within CNS tissue. The prion transmission cycle, involving
PrPc that are anchored in the cellular membranes of neuronal tissue, results in neurotox-
icity that is characterized by typical pathological spongiform changes in infected brain
tissue. The host immunological pathways involved in prion diseases are unclear, and
neuro-immunological phenomena may play crucial roles in the pathophysiology of prion
infections. Consequently, immune modulation may be exploited as a therapeutic strategy
for the treatment of these diseases. This review aims to discuss the clinical presentation, im-
mune pathogenesis, and possible therapeutic strategies for the treatment of prion diseases [4].

2. Sporadic Human Prion Disease
2.1. Sporadic Creutzfeldt–Jakob Disease (sCJD)

The clinical features of CJD include rapid, progressive dementia accompanied by
ataxia, myoclonus, visual abnormalities, and other manifestations of nervous system dys-
function including typical periodic sharp wave complexes in electroencephalography (EEG).
Neuropathological observations include abnormal prion protein aggregation, spongiform
changes, neuronal loss, and gliosis. Despite these common characteristics, the disease has
been known to display great phenotypic variability ever since it was first described [5].
Regarding the combination of the methionine (M) valine (V) polymorphism at codon 129
and the prion PrPsc confirmation type (type 1 or type 2), sporadic CJD can be classified
into subtypes, including VV1, VV2, MM1, MM2, MV1, and MV2. The VV2 subtype of
this disease involves the subcortical structures, including the nucleus of the brain stem,
and presents as early ataxia and late dementia. The manifestations of the MV2 subtype,
which has clear cerebellar involvement are similar to those of VV2, with early ataxia that
gradually progresses to dementia over time. The MM2 subtype is characterized by well-
defined spongy changes in the thalamus and lower olives, and manifests as sleeplessness,
agitated behavior, ataxia, and cognitive alterations. Dementia is a manifestation of both
MM2 and VV1 subtypes. The MM2 subtype is associated with pathological changes in
all cortical layers, while the VV1 subtype is characterized by abnormalities of the cortical
area and striatum. Although these categorizations are useful, they do not fully represent
the broad spectrum of these illnesses, and as many as 35% of patients present with a
mixed phenotype [6].

The most common symptom is cognitive dysfunction, followed by cerebellar, consti-
tutional, and behavioral changes in approximately 25% of cases [7]. About one-third of
patients with sporadic Creutzfeldt–Jakob Disease show prodromal signs, including asthe-
nia, headache, malaise, vertigo, changes in sleep or eating patterns, and weight loss [7,8].
Approximately one-fifth of patients initially present with behavioral changes, which de-
velop later in about 50% of patients during the course of the disease. Higher cortical
dysfunctions including aphasia, apraxia, negligence, and acalculia, among others, are early
disease indicators in about 5% of patients [7]. Vision or oculomotor impairment occurs early
in approximately 10% of cases, and develop during the course of the disease in approxi-
mately 35% of cases. Additionally, about 7% of patients with sporadic Jakob–Creutzfeldt
disease present with sensory symptoms [7]. Creutzfeldt–Jakob disease mimics several other
neurological or psychiatric diseases, which often results in incorrect diagnoses [9].

2.2. Sporadic Fatal Insomnia

Sporadic fatal insomnia (FI) is a rapidly progressive neurodegenerative disease charac-
terized by progressive insomnia that is followed by dysautonomia, stupor, and death [10].
The clinical manifestations include sleep abnormalities, psychiatric disorders, gait prob-
lems, and mobility disturbances. Pathological findings are observed in the thalamus and
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lower olives [11], with elevation of type 2 PrPsc commonly identified in patients with MM
homozygosity [10,12].

2.3. Variably Protease-Sensitive Prionopathy

Patients with MM homozygosity demonstrate significant Parkinsonism and my-
oclonus, with no psychiatric or cognitive involvement. In contrast, patients with VM
and VV genotypes have significantly higher levels of psychiatric dysfunction and demen-
tia than those without Parkinsonism and myoclonus. Approximately half of all patients
with the three polymorphisms have been observed to have ataxia. CSF 14-3-3 protein,
EEG, and MRI examinations are generally not useful for diagnosis [13]. Spongiform and
glio-changes are observed diffusely in the cerebral cortex, basal ganglia, thalamus, and
cerebellum [14,15].

3. Genetic Human Prion Diseases
3.1. Familial Creutzfeldt–Jakob Disease

Most patients with genetic prion disorders have unknown family history. Familial
Jakob–Creutzfeldt disorder generally presents as rapidly progressive dementia and ataxia
accompanied by motor abnormalities. Disease onset is observed between 30 and 60 years
of age. Many cases of familial Creutzfeldt–Jakob disease are caused by the E200K variant,
and are typically characterized by rapidly progressive dementia, myoclonus, and ataxia.
MRI typically reveals symmetric striatal T2w/DWI hyper-intensities, usually with reduced
cortical ribboning [16]. EEG patterns may vary in the family of variants responsible for
Creutzfeldt–Jakob disease; however, a late periodic sharp wave complex is typical. CSF
markers, including 14-3-3 protein, NSE, and t-tau, may be elevated, albeit with a lower
frequency than that observed in sporadic Creutzfeldt–Jakob disease. A previous study
has reported that real-time quaking-induced conversion (RT-QuIC) from CSF has a higher
sensitivity than 14-3-3 protein or t-tau for the diagnosis of familial Jakob–Creutzfeldt [17].

3.2. Gerstmann–Straussler–Scheinker Syndrome

This disorder has near-total penetration and is characterized by tremors, cerebellar
ataxia, speech, and swallowing dysfunction, pyramidal signs, Parkinsonism, sensory
dysesthesia, and cognitive symptoms. Disease onset may occur any time between 20 and
80 years of age, and the duration can vary from a few months to more than 10 years.
The spectrum of onset, duration, and clinical manifestations may be narrower for specific
variants. Codon 129 polymorphisms may also contribute to disease manifestation, with
individuals who are homozygous for the MM genotype manifesting earlier onset of the
disorder than those with an MV genotype at the same locus. This is also the case for the
Pro102Leu mutation. In contrast, carriers of apolipoprotein E variants present with late
onset of symptoms [18,19].

Gerstmann–Sträussler–Scheinker syndrome is a gradually progressive ataxic or mo-
toric (e.g., Parkinsonian) disease with late-onset dementia. Approximately 10 PRNP vari-
ants are known to be associated with this syndrome, including P102L, P105L, P105T, A117V,
Q145X, F198S, Q217R, and several OPRI [5]. The median age of onset is often 50–60 years of
age, and ranges between 20 and 70 years of age, although with large variability commonly
seen, even within families.

3.3. Familial Fatal Insomnia

Patients with this disorder initially report hypersomnia due to mood and psychiatric
changes, which are related to abnormal nocturnal sleep patterns in the early stages of the
disorder [20,21]. Onset usually occurs at the end of the fourth decade, and subjects typically
experience a severely progressive inability to sleep for a couple of months, followed by
dysautonomia, including hyperhidrosis, tachycardia, and hyperpyrexia. Cognitive and
motor manifestations usually manifest later on in the disease. In more progressed cases,
polysomnography demonstrates a reduction in typical sleep transients, total sleep time,
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realization of dreams, and disorganization of sleep cycles [22], finally leading to protracted
periods of stupor. Autonomic dysfunction with hypertension, fever, palpitation on move-
ment and gait disorders have also been observed [23], along with an increase in total
metabolic demand with cachexia. Although MRI results are non-specific and show diffuse
atrophy, positron emission tomography (PET) imaging reveals significant and moderate
hypo-metabolism in the thalamus and corpus callosum, respectively [24]. Neuronal loss
and glio-changes are prominently seen in the anterior ventral and mediodorsal thalamic nu-
clei, as well as in the inferior olives. CSF 14-3-3 protein has low-sensitivity for the diagnosis
of this syndrome, and spongiform changes are known to occur very late during disease
progression [25]. Even though a genetic test is essential for the definitive diagnosis of this
disease, various schemes have been proposed to aid disease confirmation. As suggested by
Krasnianski [26], these algorithms focus on clinical manifestations and polysomnography
results. However, the diagnosis can be complicated by the absence of a family history due
to the low-sensitivity of available confirmatory tests and atypical clinical signs. In brief,
patients with this disease do not meet the classical criteria for Creutzfeldt–Jakob disease
(CJD), and consequently prion disease is often not suspected.

3.4. Other PRNP Mutations

Truncating variants lead to diseases that have very unusual clinicopathological pre-
sentations, as dementia progresses over time, and is often similar to Alzheimer’s disease,
frontotemporal dementia, and other neurodegenerative diseases with amyloid prion an-
giopathy and tauopathy [27].

4. Acquired Human Prion Diseases
4.1. Kuru

Spongiform encephalopathy has a typical duration of one year and is characterized by
progressive ataxia, dysarthria, dysphagia, tremors, and motor dysfunction. Patients with
dementia have fewer cognitive symptoms as compared to those with other prion diseases.
This disease was caused by ritualistic endocannibalism, and women and children were
more likely to be affected since they were also more likely to consume brain tissue [28].

4.2. Iatrogenic Creutzfeldt–Jakob Disease (iaCJD)

A few cases of Creutzfeldt–Jakob Disease (CJD) contracted the disease post transfusion
with contaminated blood [29]. Contaminations could also be mediated by dura matter
grafts and intracranial surgical devices. The clinical presentation of this disease is similar to
that of sCJD, with typical symptoms including ataxia, rapidly progressing dementia, and
myoclonus. Clinical manifestations related to growth hormone infusion tend to affect the
cerebellum, with significant ataxia and cognitive dysfunction developing later in the course
of the disease [30]. iaCJD is more likely to occur in youth [31], and, as observed for other
prion disorders, codon 129 polymorphisms seem to affect susceptibility to, and incubation
time of, the disease [32].

The clinical phenotype and MRI results for iatrogenic Creutzfeldt–Jakob disease are
associated with dura matter overlap, as seen in sporadic Creutzfeldt–Jakob disease [33].

4.3. Variant Creutzfeldt–Jakob Disease (vCJD)

Manifestations of variant Creutzfeldt–Jakob disease often begin with a psychiatric pro-
drome, at least six months before the onset of neurologic symptoms, which include dyses-
thesia, cognitive dysfunction, cerebellar dysfunction, dystonia, myoclonus, and chorea.
The median age of onset is 27 years (range, 10–70 years) for this disease, earlier than
that of sporadic Creutzfeldt–Jakob disease, while the median disease duration of vCJD is
typically 15 months [34]. Many patients with this disease are homozygous for methionine
at codon 129 in PRNP, which indicates the possible role of codon 129 heterozygosity in
susceptibility [34]. However, the MV129 codon was also seen in patients with variant
Creutzfeldt–Jakob disease. Unlike other prion diseases, the PrPSc in this disease are found
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not only in the central nervous system (CNS) but also in the lymphatic system, possibly
due to acquisition via oral or blood routes [27,34].

vCJD initially manifests as psychiatric symptoms that progress to ataxia, as well as
movement and cognitive dysfunction within a year [34]. EEG findings and CSF 14-3-3 lack
sufficient sensitivity to confirm diagnosis [35], and CSF RT-QuIC is often negative. MRI
signal intensity in the pulvinar area of the thalamus is the most sensitive indicator (pulvinar
sign) of infection, and is seen in as many as 90% of cases [36]. Although a definite diagnosis
requires brain biopsy, abnormal prion proteins can be detected in lymphatic tissue, thus
rendering tonsillar biopsy as the preferred choice of proof of infection [37].

5. Host Immune Reaction against Prion Diseases

The host immune response to intracellular prion infection can have detrimental effects.
These responses may be minimal or pro-inflammatory [38,39], involving several cytokines,
including TNF-alpha, interleukin-1, and interleukin-6 [40–42].

Prions enter the digestive tract following their consumption. However, as they are
resistant to the acidic gastric milieu, only minimal protection against prion infection is
achieved at this stage. Previous studies have demonstrated the ability of prions to pass
through the stomach and enter the intestine, where they accumulate in Peyer’s patches [43].
Notably, the number of Peyer’s patches is positively related to prion infectivity, and, thus,
these structures play a critical role in the pathogenesis of prion disease.

M cells lie scattered among typical enterocytes in the intestine, and facilitate anti-
gen uptake from the intestinal lumen to mediate immunosurveillance. However, certain
pathogens, including prions, hijack these cells to cause infections. Previous studies have
demonstrated efficient transcytosis of prion pathogens via M-cells. Further, an oral chal-
lenge revealed that prion proteins enter M cells in Peyer’s patches to infect hosts, and
that the depletion of M cells in an animal model reduced the rate of infection by prion
pathogens [43,44].

Following passage through the follicle-associated epithelium of the Peyer’s patches,
prions spread via a possible cell-mediated mechanism. Macrophages that engulf prion
proteins may play minor roles in their transmission and spread [45–48]. More importantly,
dendritic cells from gut-associated lymphoid tissue, such as Peyer’s patches, transcytose
these pathogens for antigen presentation to lymphocytes. Prions, in turn, exploit these
mechanisms for intercellular transmissions.

Follicular dendritic cells, also a type of antigen-presenting cell, play a critical role in
prion transmission [49]. Previous findings have demonstrated that prion proteins can accu-
mulate in follicular dendritic cells [50–58], and mice with depleted follicular dendritic cells
experience fewer intracerebral prion infections. These cells function as primary antigen-
presenting cells that stimulate follicular helper T cells to produce interleukin-21 for B-cell
antibody class switching in response to foreign antigens. Follicular dendritic cells usually
express PrPc, and consequently are primary targets for prions, which hijack them to aid their
own transmission. Additionally, mice treated with the lymphotoxin-β receptor antibodies
that kill follicular dendritic cells avoid prion splenic accumulation and experience slower
prion neuro-invasion [59]. A different study, in which mice were treated with an inhibitor
of the tumor necrosis factor receptor, reported similar observations on the prevention of
prion infection. Additionally, mice lacking lymphotoxin-α and lymphotoxin-β, which
are crucial for follicular dendritic cell functioning, experience fewer prion intraperitoneal
infections [59–61]. These findings support the notion that follicular dendritic cells are vital
for prion infectivity. Further, they play critical roles in the peripheral retention of prion
pathogens within lymphoid tissues, and in the replication of lymphotropic prion strains.
Chronic lymphocytic inflammation with follicular dendritic cell-dominant lymphoid folli-
cles within affected organs enable ectopic prion protein replication, further supporting the
possibility of a key role for these cells in prion pathogenesis.

After accumulation and replication in secondary lymphoid organs, such as follicular
dendritic cells containing lymphoid follicles, prions disperse to the central nervous system.
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Animal models have demonstrated that this dispersal occurs through the autonomic ner-
vous system. Previous studies have revealed that sympathectomy prevents or delays prion
pathogenesis [62–65], and, in contrast, sympathetic hyperinnervation in the secondary
lymphoid organs of transgenic mice facilitates prion pathogenesis and nervous system
invasion. Prion proteins are, therefore, believed to be transmitted via the sympathetic
nerves to the spinal cord and brain.

On reaching the brain, prions progressively aggregate in the CNS causing fatal synap-
tic spongiform encephalopathies, and neuronal losses with neuroinflammation. Prion-
mediated neuroinflammation may vary from aggressive to occasionally minimal. This
process typically involves the activation of astrocytes and microglia, which is a promi-
nent feature in patients with prion diseases [66–71]. Microglia function to clear apoptotic
neurons subsequent to prion accumulation and infection. However, they typically fail
to efficiently degrade the prion pathogens themselves [69]. Microglia is a subtype of
macrophage located in brain tissues. Prion proteins also enable the transformation of
macrophages from M1-type macrophages to M2-type macrophages [72]. Further, cytokines
released by microglia augment the pathogenesis of prion infections.

Prion infections trigger NF-κB activation and the secretion of pro-inflammatory cy-
tokines, including interleukin-1α, interleukin-1β, TNFα, and interleukin-6 [40,45], as has
been observed in patients with prion diseases and in experimental mouse models. Ad-
ditionally, the regulatory cytokine TGFβ is induced in mice after prion infection, which,
in conjunction with interleukin-6, plays a key role in the TH17 immunological pathway.
This indicates the possible induction of TH17 immunity subsequent to prion infection.
Mice with depleted interleukin-1 receptors have also been observed to have significantly
prolonged incubation periods for prion infection. The whole infectious process of prion
pathogen infection is shown in Figure 1.
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6. Protective Immunity against Prion Diseases

The THαβ immune response appears to be the protective host immunological path-
way that targets prion diseases. Previous studies have found that type 1 interferons and
interleukin-10 are protective against prion infections [73,74], and play crucial roles in the
antiviral TGF-β immunological pathway. Interleukin-10 knockout mice have been shown
to have shortened incubation periods for prion infection [75], and type 1 IFN administration
protects animals from the same infection [73]. The key players in THαβ immunity include
NK cells, CD8 T cells, IL-10-producing CD4 T cells, and IgG1 B cells [76]. The effector mech-
anisms of the THαβ immunological pathway are antibody-dependent cellular cytotoxicity
(ADCC) executed by NK cells and MHC I-TCR-mediated cell cytotoxicity implemented via
CD8 T cells [77]. Consequent to these processes, all intracellular protein and nucleic acid
content is degraded via cellular apoptosis, resulting in stoppage of viral infectivity.

Several lines of evidence for the role of THαβ immunity in protection against prion
diseases exist. Interferon regulatory factor 3 (IRF3) knockout mice show accelerated patho-
genesis of prion infections [78]. IRF3, a MyD88-independent Toll-like signaling path-
way mediator, functions downstream of the Toll-like receptor 3 (TLR3). Additionally,
repeated TLR9 stimulation results in the initiation of protective immunity against prion
infections [79–81]. TLR3 and TLR9 function as sensors of viral infection, and are responsible
for initiating the THαβ immunological pathway, thereby potentially providing protective
immunity against prion diseases. Furthermore, interleukin-10 knockout mice are more
susceptible to prion diseases, post intraperitoneal or intracerebral inoculation with prion
pathogens. Since interleukin-10 is the key mediator of THαβ immunity, the pathway is
thought to be protective against prion infections. Type 1 IFN treatment has also been
demonstrated to be protective in mice against prion infections. These molecules are the
first host cytokines produced against viral infections. Moreover, CXCR3 knockout mice
have been shown to accumulate prion pathogens with prolonged incubation periods in a
prion infection challenge. The levels of CXCL9 and CXCL10, the ligands of CXCR3, as well
as the CX3CR1–CX3CL1 axis, are known to change during prion infections [82]. CX3CR3 is
a key chemokine receptor responsible for THαβ immunity, and the CX3CR1–CX3CL1 axis
plays a critical role in antiviral immune responses. Host antiviral immune effects include
the extermination of infected cells via the action of CD8 + T cells or NK cells [83]. Although
intracellular bacterial and protozoan pathogens are killed by macrophages as part of TH1
immunity, intracellular prions digested by macrophages are not completely destroyed.
Macrophages typically destroy intracellular pathogens via the action of lysozymes or the
generation of free radicals subsequent to iNOS activation. This effect is exerted via the
degradation of the bacterial cell wall by lysozymes, and lipid peroxidation of cellular
membranes by free radicals. Proteins, however, are not highly susceptible to attack by
free radicals, and prions in fact activate macrophages, such as microglia, to cause immune
pathogenesis. Induction of antiviral THαβ immunity that results in apoptosis of prion-
infected cells, accompanied by DNA fragmentation and protein degradation via the action
of caspases, is critical in the defense against prion infections. Thus, apoptosis triggered by
CTL or NK cells is the only successful immune response that degrades prion pathogens by
utilizing the protein degradation machinery and consequently preventing further infection
and transmission. Additionally, TH17 immunity plays a minor role in prion infections.
TH17 immunity is known to use pro-inflammatory cytokines, including TNFα and IL-1, to
activate neutrophils that, in turn, digest extracellular bacteria or fungi. Prions, not being
extracellular pathogens, are not destroyed by neutrophils. However, they trigger TH17 im-
munity to mislead the host immune response and consequently prevent prion clearance by
preventing appropriate functioning of THαβ immunity. Collectively, the above-mentioned
findings suggest that host antiviral immunity is largely protective against prion pathogens.
The protective immunity against prion infection is shown in Figure 2.
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7. Conclusions

Although prion infections trigger pro-inflammatory cytokines that facilitate TH17
immunity, antiviral THαβ immunity provides protection against these pathogens. Cur-
rently, there are no effective medications for the treatment of prion infections. However, key
mediators of THαβ immunity, including type 1 interferons, interleukin-10, and TLR3/TLR9
stimulators, can be exploited to initiate the host immune response against prion infections.
This will contribute significantly to the development of strategies for the management of
prion diseases.
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