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Abstract

In vivo calcium imaging through microendoscopic lenses enables imaging of neuronal popu-

lations deep within the brains of freely moving animals. Previously, a constrained matrix fac-

torization approach (CNMF-E) has been suggested to extract single-neuronal activity from

microendoscopic data. However, this approach relies on offline batch processing of the

entire video data and is demanding both in terms of computing and memory requirements.

These drawbacks prevent its applicability to the analysis of large datasets and closed-loop

experimental settings. Here we address both issues by introducing two different online

algorithms for extracting neuronal activity from streaming microendoscopic data. Our first

algorithm, ONACID-E, presents an online adaptation of the CNMF-E algorithm, which dra-

matically reduces its memory and computation requirements. Our second algorithm pro-

poses a convolution-based background model for microendoscopic data that enables even

faster (real time) processing. Our approach is modular and can be combined with existing

online motion artifact correction and activity deconvolution methods to provide a highly scal-

able pipeline for microendoscopic data analysis. We apply our algorithms on four previously

published typical experimental datasets and show that they yield similar high-quality results

as the popular offline approach, but outperform it with regard to computing time and memory

requirements. They can be used instead of CNMF-E to process pre-recorded data with

boosted speeds and dramatically reduced memory requirements. Further, they newly

enable online analysis of live-streaming data even on a laptop.

Author summary

Calcium imaging methods enable researchers to measure the activity of genetically-tar-

geted large-scale neuronal subpopulations. Whereas previous methods required the speci-

men to be stable, e.g. anesthetized or head-fixed, new brain imaging techniques using

microendoscopic lenses and miniaturized microscopes have enabled deep brain imaging

in freely moving mice. However, the very large background fluctuations, the inevitable

movements and distortions of imaging field, and the extensive spatial overlaps of fluores-

cent signals complicate the goal of efficiently extracting accurate estimates of neural
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activity from the observed video data. Further, current activity extraction methods are

computationally expensive due to the complex background model and are typically

applied to imaging data long after the experiment is complete. Moreover, in some scenar-

ios it is necessary to perform experiments in real-time and closed-loop—analyzing data

on-the-fly to guide the next experimental steps or to control feedback –, and this calls for

new methods for accurate real-time processing. Here we address both issues by adapting a

popular extraction method to operate online and extend it to utilize GPU hardware that

enables real time processing. Our algorithms yield similar high-quality results as the origi-

nal offline approach, but outperform it with regard to computing time and memory

requirements. Our results enable faster and scalable analysis, and open the door to new

closed-loop experiments in deep brain areas and on freely-moving preparations. Our

algorithms can be used for newly enabled real-time analysis of streaming data, as well as

swapped in directly to replace the computationally costly offline approach.

Introduction

In vivo calcium imaging of activities from large neural populations at single cell resolution has

become a widely used technique among experimental neuroscientists. Recent advances in opti-

cal imaging technology using a 1-photon-based miniscope and a microendoscopic lens have

enabled in vivo calcium imaging studies of neural activities in freely behaving animals [1–4].

However, this data typically displays large, highly structured background fluctuations due to

fluorescence contributions from neurons outside the focal plane, arising from the large inte-

gration volume of one photon microscopy. To obtain a robust approach for extracting single-

neuronal signals from microendoscopic data the constrained nonnegative matrix factorization

(CNMF, [5]) approach has been extended to leverage a more accurate and flexible spatio-tem-

poral background model, able to capture the properties of the strong background signal

(CNMF-E, [6]). This prevalent algorithm (see [7] for an alternative proposal) has been widely

used to study neural circuits in cortical and subcortical brain areas, e.g. prefrontal cortex (PFC,

[8]) and hippocampus [2, 9], as well as previously inaccessible deep brain areas, such as stria-

tum [10, 11], amygdala [12], substantia nigra pars compacta (SNc) [13], nucleus accumbens

[14], dorsolateral septum [15], parabrachial nucleus [16], and other brain regions.

A concomitant feature of the refined background model in CNMF-E is its high computa-

tional and memory cost. Although the data can be processed by splitting and processing the

FOV in smaller patches to exploit a time/memory tradeoff [17], this strategy requires signifi-

cant time resources and does not scale to longer recordings. Further, CNMF-E is applied to

imaging data after the experiment is complete. However, in many cases we would prefer to run

closed-loop experiments—analyzing data on-the-fly to guide the next experimental steps or to

control feedback [18–20]—and this requires new methods for accurate real-time processing.

Online (and real time) analysis of calcium imaging data has been proposed with the OnA-

CID algorithm [21]. The algorithm combines the online NMF algorithm of [22], the CNMF

source extraction algorithm of [5], and the near-online deconvolution algorithm of [23], to

provide an automated pipeline that can discover and track the activity of hundreds of cells in

real time, albeit only for 2-photon or light-sheet imaging data.

In this paper, we present two algorithms for the online analysis of microendoscopic 1-pho-

ton calcium imaging data streams. Our first algorithm (ONACID-E), extends [21] by incorpo-

rating the background model and neuron detection method of CNMF-E [6] and adapting

them to an online setup. Our second approach proposes a lower dimensional background
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model by introducing parameter sharing through a convolutional structure and combines it

with the online 2-photon processing of [21]. In either approach, every frame is processed in

four sequential steps: i) The frame is registered against the previous background-corrected

denoised frame to correct for motion artifacts. ii) The fluorescence activity of the already

detected sources is tracked. iii) Newly appearing neurons and processes are detected and

incorporated to the set of existing sources. iv) The fluorescence trace of each source is denoised

and deconvolved to provide an estimate of the underlying spiking activity.

Our resulting framework is highly scalable with minimal memory requirements, as it pro-

cesses the data in streaming mode (one frame at a time), while keeping in memory a set of low

dimensional sufficient statistics and a small minibatch of the most recent data frames. More-

over, it results in faster processing that can reach real time speeds for common experimental

scenarios. We apply our framework to typical mouse in vivo microendoscopic 1p datasets; our

algorithm can find and track hundreds of neurons faster than real-time, and outperforms the

CNMF-E algorithm of [6] with regard to computing time and memory requirements while

maintaining the same high quality of the results. We also provide a Python implementation of

our methods as part of the CaImAn package [17].

Methods

This section is organized as follows. The first subsection briefly reviews the modeling assump-

tions of CNMF-E for microendoscope data. In the second subsection, we derive an online

method to fit this model, thus enabling the processing of 1-photon endoscopic data streams

(ONACID-E). In the third subsection, we modify the background modeling assumptions to

introduce a convolutional structure and describe how to utilize this to derive an alternative

fast online algorithm. Finally, we describe how motion correction, which is typically done as

preprocessing step, can be performed online, and stream processing allows us to employ a very

simple yet effective motion correction scheme. Throughout we use the common convention to

denote vectors and matrices with boldface lowercase and uppercase letters respectively. We

use i, j for general indexing. Where it helps the exposition, we use a different lowercase letter

as index and the corresponding uppercase letter as its upper bound, e.g. t 2 {1, . . ., T} as time

index where T is the total number of frames observed, and n 2 {1, . . ., N} as neuron index

where N is the total number of neurons.

CNMF for microendoscopic data (CNMF-E)

The recorded video data can be represented by a matrix Y 2 Rd�T
þ

, where d is the number of

imaged pixels and T is the number of frames observed. Following [5], we model Y as

Y ¼ AC þ Bþ E; ð1Þ

where A 2 Rd�N
þ

is a spatial matrix that encodes the location and shape of each neuron (spatial

footprint), C 2 RN�T
þ

is a temporal matrix that characterizes the fluorescence of each neuron

over time, matrix B represents background fluctuations and E is additive Gaussian noise with

mean zero and diagonal covariance.

The CNMF framework of [5] incorporates further constraints beyond non-negativity. Each

spatial footprint an is constrained to be spatially localized and hence sparse. Similarly, the tem-

poral components cn are highly structured, as they represent the cells’ fluorescence responses

to typically sparse, nonnegative trains of action potentials. Following [23, 24], we model the
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calcium dynamics of each neuron cn with a stable autoregressive process of order P,

cnðtÞ ¼
XP

p¼1

gpcnðt � pÞ þ snðtÞ; ð2Þ

where sn(t)�0 is the number of spikes that neuron n fired at the t-th frame, and γp, p = 1, . . ., P
correspond to the discrete time constants of the dynamics that depend on the kinematic prop-

erties of the used indicator.

For the case of microendoscopic data we refer the reader to [6] for a very detailed exposi-

tion of the model. The background B is modeled as sum of constant baselines Bc and fluctuat-

ing activity Bf [6]

B ¼ �b1>
T|{z}

Bc

þWðY � AC � �b1>
T
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bf

;
ð3Þ

where 1T denotes a vector of T ones and the constant baselines are �b ¼ 1

T ðY � ACÞ1T . The

model for Bf exploits that background sources (largely due to blurred out-of-focus fluores-

cence) are empirically much coarser spatially than the average neuron soma size. Thus we

model Bf at one pixel as a linear combination of the background fluorescence in pixels which

are chosen to be nearby but not nearest neighbors, Bf�WBf. W is an appropriate sparse

weight matrix, where Wij is constrained to Wij = 0 if dist(xi, xj) =2 [l, l + 1[, thus we model the

background at one pixel as a linear combination of the background fluorescence in pixels

which are chosen to be on a ring with radius l [6]. Typically, l is chosen to be *1.5× the radius

of an average neuron, to exclude contributions that might be affected from the activity of an

underlying neuron.

Fitting the CNMF-E model

We first recap the offline approach for fitting the CNMF-E model [6], and then show how it

can be adapted to an online setup.

Offline. The estimation of all model variables can be formulated as a single optimization

problem

minimize
A;C;B

kY � AC � Bk2

F subject to constraints: ð4Þ

The CNMF-E algorithm of [6] divides the nonconvex problem (4) into three simpler sub-

problems that are solved iteratively: Estimating A given estimates Ĉ and B̂, estimating C given

Â and B̂, and estimating B given Â and Ĉ.

A and C are estimated using a modified version of “fast hierarchical alternating least

squares” [25] that includes sparsity and localization constraints [26]. The update of A consists

of block-coordinate decent steps iterating over neurons n,

ApðnÞ;n  ApðnÞ;n þ
ððY � B̂ÞĈ>ÞpðnÞ;n � ðAĈĈ

>ÞpðnÞ;n

ðĈĈ>Þnn

$ %

þ

; ð5Þ

where p(n) specifies the pixel indices where A:, n can take non-zero values, i.e. where neuron n
is located. For computational efficiency the sufficient statistics L ¼ ðY � B̂ÞĈ> and M ¼ ĈĈ>

are computed only once initially and cached to be reused when iterating few times over neu-

rons n 2 {1, . . ., N}.
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Similarly, the block-coordinate decent steps for updating C are

Cn;:  Cn;: þ
ðÂ>ðY � B̂ÞÞn;: � ðÂ

>ÂCÞn;:
ðÂ>ÂÞnn

; ð6Þ

with sufficient statistics Â>ðY � B̂Þ and Â>Â computed only once initially. C should not

merely be constrained to non-negative values but follow the dynamics of the calcium indicator,

thus to further denoise and deconvolve the neural activity from the dynamics of the indicator

the OASIS algorithm [23] is used. OASIS solves a modified LASSO problem

minimize
c;s

1

2
kc � yk2

þ lksk
1

subject to st ¼ ct �
XP

p¼1

gpct� p � smin or st ¼ 0; ð7Þ

where y denotes a noisy neural calcium trace obtained as result of Eq (6). The ℓ1 penalty on s
or the minimal spike size smin can be used to enforce sparsity of the neural activity.

The spatiotemporal background is estimated from the linear regression problem

minimize
W

kX � WXk2

F subject to W ij ¼ 0 if distðxi; xjÞ =2 ½l; l þ 1½; ð8Þ

where X ¼ Y � ÂĈ � �b1>T and �b ¼ 1

T ðY � ÂĈÞ1T . The solution is given by the normal equa-

tions for each pixel i,

W i;rlðiÞ
¼ ðXX>Þi;rlðiÞðXX

>Þ
� 1

rlðiÞ;rlðiÞ
; ð9Þ

where rl(i) = {j|dist(xi, xj)2[l, l + 1[} specifies the pixel indices where Wi,: can take non-zero val-

ues. Given the optimized W, the whole background signal is B ¼WX þ �b1>T . More informa-

tion can be found in [6].

Online. The offline framework presented above can be adapted to a data streaming setup,

using the same model assumptions. Instead of running CNMF-E afresh on the entire data seen

so far up to time t, Y[:, 1: t], the previous estimates A, C, B obtained on the data up to time

t − 1, Y[:, 1: t − 1], are updated using the newly recorded frame yt, eliminating the need to load

the entire data Y in memory and avoiding repetitive computations. One complicating factor is

that during online processing some neurons may become active for the first time, thus we

need a method to detect those new components and append them to the spatial and temporal

matrices A and C. In essence, we need to appropriately modify the online algorithm for analyz-

ing 2-photon calcium imaging data (OnACID, [21]) to the case of microendoscopic 1-photon

data which requires a more refined background model.

Using Eq (1), the observed fluorescence at time t can be written as

yt ¼ Act þ bt þ εt: ð10Þ

The (non-deconvolved) activity of all neurons at time t, ct, is obtained by iteratively evaluat-

ing Eq (6) given raw frame data yt, spatial footprints A, and background parameters W; �b. The

activity is further denoised and deconvolved by running OASIS [23], which is not only a very

fast algorithm, but crucially progresses through each time series sequentially from beginning

to end and is thus directly applicable to stream processing. Using the expression of bt (the t-th

column of B) from Eq (3), the background term in Eq (6) evaluates to A>bt ¼ A>Wyt �

A>WAct � A>W�b þ A>�b and for computational efficiency the terms A>W, A>WA and

A>ðW�b � �bÞ are maintained in memory and updated incrementally, cf. S1 Appendix. Warm

starts are exploited by initializing ct with the value at the previous frame ct−1, since the calcium

traces C are continuous and typically change slowly. Moreover, the temporal traces of
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components that do not spatially overlap with each other can be updated simultaneously in

vector form; we use a simple greedy scheme to partition the components into spatially non-

overlapping groups [21].

The spatial footprints A are obtained by iteratively evaluating Eq (5) and can be estimated

efficiently as in [22] by only keeping in memory the sufficient statistics

Lt ¼
t � 1

t
Lt� 1 þ

1

t
ðyt � btÞc

>

t ; Mt ¼
t � 1

t
Mt� 1 þ

1

t
ctc
>

t : ð11Þ

Since neurons’ shapes are not expected to change at a fast timescale, updating A is actually

not required at every timepoint; in practice we update every 200 time steps, again warm started

at the value from the previous iteration, cf. Alg 1. Additionally, the sufficient statistics Lt, Mt

are only needed for updating the estimates of A so they can be updated only when required

(using computationally efficient matrix products). Further, only a sparse subset of the elements

of matrix L needs to be updated, because Eq (5) does not access all elements of L, but only ele-

ments p(n) for each column n of L (i.e. only pixel indices p(n) where neuron n is located).

Hence, we speed up the algorithm by updating only those few entries of L, cf. S1 Appendix.

To update the background components W; �b, we keep track of the constant baselines �b and

the sufficient statistics χ = XX> that is needed to compute W using Eq (9)

�bt  
t � 1

t
�bt� 1 þ

1

t
ðyt � ActÞ; χt ¼

t � 1

t
χt� 1 þ

1

t
xtx

>

t ; ð12Þ

where xt ¼ yt � Act �
�bt . As is the case with the spatial footprints, updating the background is

actually not required at every timepoint and in practice we update every 200 time steps, cf. Alg

1 and S1 Appendix. Processing pixel i according to Eq (9) (see also S1 Appendix) accesses only

vector χi;rlðiÞ
and sub-matrix χrlðiÞ;rlðiÞ

. Some elements of χ are not part of any sub-matrix or vec-

tor for any i and thus are never accessed. In practice we therefore update and store only these

vectors and sub-matrices for computational and memory efficiency. Because the background

has no high spatial frequency components, it can be spatially decimated to further speed up

processing [23] without compromising the quality of the results. E.g. downscaling by a factor

of 2 reduces the number of pixels by a factor of 4 and the number of elements in W and χ by a

factor of 16. Less and smaller least squares problems (Eq 9) need to be solved, which drastically

reduces processing time and memory consumption.

Note that updating the background components and all the spatial footprints at a given

frame results in a computational bottleneck for that specific frame. While on average, this

effect is minimal (cf. Results section) a temporary slowdown can have an adverse effect on a

real-time closed loop setup. This restriction can be lifted by holding the background model

fixed and updating the spatial footprints in a distributed manner across all frames. As

described later, using a lower dimensional background model can achieve that and enable fast

real time processing with balanced workload across all frames.

To initialize our algorithm we use the CNMF-E algorithm on a short initial batch of data of

length Tb, (e.g., Tb = 200). The sufficient statistics are initialized from the components that the

offline algorithm finds according to Eqs (11) and (12).

Algorithm 1 ONACID-E

Require: Data matrix Y, initial estimates A;C;S; W ; �b, current number of
components N, current time step t0, rest of parameters.
1: X ¼ Y½:;1 : t0� � AC � �b1>t0
2: Rbuf = (X − WX)[:, t0 − lb + 1: t0] ⊳ Initialize residual buffer
3: χ = XX> ⊳ Initialize sufficient statistics
4: L = Y[:, 1: t0]C>/t0
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5: M = CC>/t0

6: G ¼ DETERMINEGROUPS}ðA;NÞ ⊳ [21]
7: t = t0

8: while there is more data do
9: t  t + 1
10: yt  ALIGNFRAME(yt, Act−1) ⊳ Alg S6
11: ct  UPDATETRACES}ðA;ct� 1;yt;W ; �b;GÞ ⊳ Alg S1
12: C, S  OASIS(C, γ, smin, λ) ⊳ [23]
13: �b  t� 1

t
�b þ 1

t ðyt � ActÞ

14: A;C;N;G;R
buf
 DETECTNEWCOMPONENTS}ðA;C;W ; �b;N;G;R

buf
;ytÞ ⊳ Alg S5

15: if mod ðt � t0;TpÞ ¼ 0 then ⊳ Update χ, L, M, W, A every Tp
time steps
16: χ;L;M  UPDATESUFFSTATISTICS}ðY ½:;t � Tpþ1:t�;C½:;t � Tpþ1:t�;W ; �b;A;χ;L;MÞ

⊳ Alg S2
17: W  UPDATEBACKGROUND(χ) ⊳ Alg S4
18: A  UPDATESHAPES(L, M, A) ⊳ Alg S3
19: return A;C;S;W ; �b

Detecting new components. The approach explained above enables tracking the activity

of a fixed number of sources, and will ignore neurons that become active later in the experi-

ment. Following [21], we approach the problem by introducing a buffer Rbuf that contains the

last lb instances of the residual signal rt = yt − Act − bt ðRbuf ¼ ½rt� lbþ1; . . . rt�Þ, where lb is a rea-

sonably small number, e.g., lb = 100. From this buffer we compute a summary image (as

detailed later we actually update the summary image instead of computing it afresh) and then

search for the local maxima of the image to determine new candidate neurons.

One option for the summary image e is to proceed along the lines of [5], i.e. to perform spa-

tial smoothing with a Gaussian kernel with radius similar to the expected neuron radius, and

then calculate the energy for each pixel i, e½i� ¼ 1

lb

P
t filt ðRbuf ½i; t�Þ

2
, where filt() refers to the

smoothing operation. Another option is to follow [6] and calculate the peak-to-noise ratio

(PNR),

ipnr½i� ¼
maxtRbuf ½i; t�

si
; ð13Þ

as well as the local cross-correlation image,

icorr½i� ¼
1

jN ðiÞj

X

j2N ðiÞ
corrðRbuf ½i; :�;Rbuf ½j; :�Þ; ð14Þ

where N ðiÞ specifies the neighboring pixels of pixel i and the function corr() refers to Pearson

correlation. Their pixel-wise product e = ipnr� icorr is used as summary image. We use the lat-

ter throughout the Results section, if not explicitly stated otherwise. New candidate compo-

nents anew, and cnew are estimated by performing a local rank-1 NMF of the residual matrix

restricted to a fixed neighborhood around the point of maximal variance, or maximal product

of PNR and cross-correlation, respectively.

To limit false positives, the candidate component is screened for quality. Similarly to [21],

to prevent noise overfitting, the shape anew must be significantly correlated (e.g., θsp * 0.5) to

the residual buffer averaged over time and restricted to the spatial extent of anew. Moreover, if

anew significantly overlaps with any of the existing components, then its temporal component

cnew must not be highly correlated with the corresponding temporal components; otherwise

we reject it as a possible duplicate of an existing component. Further, for a candidate compo-

nent to correspond to an active neuron its trace must exhibit dynamics reminiscent of the

PLOS COMPUTATIONAL BIOLOGY Online analysis of microendoscopic calcium imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008565 January 28, 2021 7 / 32

https://doi.org/10.1371/journal.pcbi.1008565


calcium indicator’s transient. As criterion for this we require the SNR of trace cnew to be above

a certain threshold θSNR. We tuned the spatial and temporal thresholds for each considered

dataset. Once a new component is accepted, A, C are augmented with anew and cnew respec-

tively, the quantities A>W, A>WA and A>ðW�b � �bÞ are updated via augmentation, and the

sufficient statistics are updated as follows:

Lt ¼ Lt;
1

t
ðYbuf � BbufÞc>new

� �

; Mt ¼
1

t

tMt Cbufc>new

cnewC
>

buf kcnewk
2

2

4

3

5; ð15Þ

where Ybuf ;Cbuf ;Bbuf ¼
�b1>lb þWðYbuf � ACbuf �

�b1>lb Þ denote the matrices Y, C, B, restricted

to the last lb frames that the buffer stores. This process is repeated until all candidates have

been screened, at which point the next frame is read and processed. The process is summarized

in Alg S5.

Updating the summary image. For computational efficiency we avoid repeated computa-

tions and perform incremental updates of the summary image instead of computing it afresh.

If the variance image is used, it is updated according to e eþ 1

lb
ð filt ðrtÞ

2
� filt ðrt� lb

Þ
2
Þ

when the next frame is processed. When a new component with footprint a is added the resid-

ual changes at the component’s location and we update the variance image accordingly locally

only for pixels i where the smoothed component is positive (filt(a)[i] > 0) according to

e½i�  1

lb

P
t filt ðRbuf ½i; t�Þ

2
.

Next we consider the case that the product of cross-correlation image and PNR image is

used as summary image. We keep track of the first and second order statistics

mi ¼
1

lb

X

t
Rbuf ½i; t� and nij ¼

1

lb

X

t

Rbuf ½i; t�Rbuf ½j; t�; ð16Þ

the latter only for pixels j 2 fig [N ðiÞ. These statistics are updated according to

μ  μþ 1
lb
ðrt � rt� lb

Þ ð17Þ

nij  nij þ
1
lb
ðrtr

>

t � rt� lb
r>t� lb
Þij ð18Þ

when the next frame is processed. The cross-correlation values are computed from these statis-

tics as

corrðRbuf ½i; :�;Rbuf ½j; :�Þ ¼
nij � mimj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnii � m

2
i Þðnjj � m

2
j Þ

q ;
ð19Þ

and the correlation image is obtained according to Eq (14). For computing the PNR image we

use the noise level σi estimated on the small initial batch for the denominator in Eq (13) and

keep track of the maximum image imax max(imax, rt) for the nominator. When a new com-

ponent with footprint a and time series ~c is added we set imax[i] to zeros if ai> 0. The statistics
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for the cross-correlation are updated as

mi  mi �
1

lb

X

t
~ctai ð20Þ

nij  nij þ
1

lb

X

t
ð~c2

t aiaj � Rbuf ½j; t�~ctai � Rbuf ½i; t�~ctajÞ: ð21Þ

The whole online procedure of ONACID-E is described in Algorithm 1; S1 Appendix

includes pseudocode description of the referenced routines.

Background modeling using convolutional neural networks

The background model used in the CNMF-E algorithm (Eq 8) assumes that the value of the

background signal at a given point in space is given by a linear combination of the background

values from the points in a ring centered around that pixel with width 1 and radius l, where l is

larger than the radius of the typical neuron in the dataset by a small factor (e.g. 1.5) plus a pixel

dependent scalar [6]. While powerful in practice, this model does not assume any dependence

between the linear combination weights of all the different pixels, and results in a model with a

very large number of parameters to be estimated. Ignoring pixels near the boundary, each row

of the matrix W which represents the linear combination weights will have approximately

[2πl] non-zero entries (where [�] denotes the integer part), giving a total number of d([2πl]
+ 1) parameters to be estimated. While this estimation can be done efficiently in parallel as dis-

cussed above, and the overall number of parameters can be reduced through spatial downsam-

pling, we expect that the overall number of degrees of freedom in such a model is much lower.

The reason is that the ring model of CNMF-E aims to capture aspects of the point spread func-

tion (PSF) which is largely invariant with respect to the location within the local environment

of each neuron.

To test this hypothesis we used a very simple convolutional neural network (CNN) with

ring shaped kernels to capture the background structure. The intuition behind the convolution

is straightforward: if all the rows of the W matrix had the same non-zero entries (but centered

around different points) then the application of W would correspond to a simple spatial con-

volution with the common “ring” as the filter. In our case this model is not expressive enough

to adequately fit the background, in particular it fails to capture pixel dependent brightness dif-

ferences, and by assuming shift invariance it fails to capture that the PSF can vary when com-

pared across the full FOV. Therefore we investigated parametrizing the background model

with a slightly more complex model, which we refer to as “Ring-CNN”.

Let fθ : Rd
7!Rd

be a function that models the autoregressive nature of the background. In

the CNMF-E case this simply corresponds to fθðy � AcÞ ¼Wðy � Ac � �bÞ þ �b, cf. Eq (3). In

the linear model we parametrize the function as

fθðyÞ ¼
XK

k¼1

wk � ðhk � yÞ þ �b; ð22Þ

where �b;wk 2 R
d; k ¼ 1; . . . ;K, and�, � refer to pointwise multiplication and spatial convo-

lution, respectively (with slight abuse of notation we assume that y has been reshaped back to

2d image to perform the convolution and the result of the convolution is again vectorized).

Finally, hk, k = 1, . . ., K is a ring shaped convolutional kernel which takes non-zero values only

at a specified annulus around its center. Note that this corresponds to parametrizing directly
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W as

W ¼
XK

k¼1

wk �Hk; ð23Þ

where Hk 2 R
d�d is the matrix induced by the convolutional kernel hk. Constructing the sparse

matrix W explicitly (and efficiently using diagonal storage) can speed up evaluation of the

background when a GPU is not available. Intuitively this model corresponds to using a pixel

dependent linear combination of K ring basis functions, and results in a total K(d + [2πl]) + d
parameters to be estimated. Compared to the d([2πl] + 1) number of parameters for the

CNMF-E model, this can result in a significant reduction when K< [2πl].
Note that decoupling the number of different “rings” from the total number of pixels,

enables the consideration of wider “rings” that integrate over a larger area of the FOV and can

potentially provide more accurate estimates, without a dramatic increase on the number of

parameters to be learned. For example, a “ring” with inner radius l and width w would require

approximately [πw(2l + w − 1)] parameters and the total number of parameters would be K
([πw(2l + w − 1)] + d) as opposed to d([πw(2l + w − 1)] + 1) for the standard CNMF-E model.

Unsupervised training on the raw data. To estimate the autoregressive background

model in the CNMF-E algorithm, we want to operate on the data after the spatiotemporal

activity of all detected neurons has been removed (Eq 8). For the CNN model this would trans-

late into the optimization problem

θ̂ ¼ arg min
θ

LðY � AC; fθðY � ACÞÞ; ð24Þ

where Lð�; �Þ : Rd�T
� Rd�T

7!Rþ is an appropriate loss function (e.g. the Frobenius norm).

For the CNMF-E algorithm, operating on Y − AC is necessary because each “ring” has its

own independent weights whose estimation can be biased from the activity of nearby neurons.

In the CNN case however, the background model assumes a significant amount of weight shar-

ing between the different “rings” which makes the estimation more robust to the underlying

neural activity. Therefore we can estimate the background model by solving directly

θ̂ ¼ arg min
θ

LðY; fθðYÞÞ; ð25Þ

for an appropriately choosen loss function L meaning that the solution of Eq (25) should sat-

isfy fθ̂ðYÞ � Y � AC. Because Y � AC � fθ̂ðY � ACÞ ¼ fθ̂ðYÞ � fθ̂ðACÞ, the underlying

assumption is that fθ̂ðACÞ can be neglected. While the autoregressive model can capture the

background well, i.e. Y � AC � fθ̂ðY � ACÞ, this is not the case for the neural activity, because

the fluorescence AC at each pixel due to neural activity can not be reconstructed well using the

unrelated fluorescence traces on the ring around that pixel fθ̂ðACÞ, i.e. AC≉ fθ̂ðACÞ indepen-

dent of θ̂. This particularly holds during training of the CNN where not just one but hundreds

of frames are reconstructed, ruling out overfitting. Thus including the neural activity AC in

the objective, Eq (25) instead of Eq (24), hardly affects the optimal parameters θ̂. Furthermore,

since AC is nonnegative we seek to under-approximate Y with the background fθ(Y). To

encode that in the objective function we can consider a quantile loss function [27] that
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penalizes over-approximation more than under-approximation:

lqðx; yÞ ¼

( qðx � yÞ; x � y

ð1 � qÞðy � xÞ; x < y
; ð26Þ

For some q 2 (0, 1] and take LðX;YÞ ¼ 2
P

i;jlqðXij;Y ijÞ. For example, for q = 0.5 Eq (26)

corresponds to the L1 norm of the difference, and to promote the under-approximation prop-

erty we use q< 0.5. Since the models are differentiable and the objective function is additive,

Eq (25) can be optimized in an online mode using stochastic gradient descent.

Online processing.

Algorithm 2 Online processing with a Ring-CNN background model
Require: Data matrix Y, number of initial timesteps Tinit, rest of
parameters.
1: X = MOTIONCORRECT(Y[:, 1 : Tinit]) ⊳ [28]
2: θ̂  arg minθ LðX; fθðXÞÞ ⊳ Estimate ring CNN (25)
3: X  X � f θ̂ðXÞ ⊳ Filter Background
4: A, C, S, b, f, = INITIALIZEONLINE2P(X) ⊳ Initialize online algorithm
[17]
5: t = Tinit
6: while there is more data do
7: t  t + 1
8: yt  ALIGNFRAME(yt, bt−1 + Act−1) ⊳ Alg S6
9: xt ¼ yt � f θ̂ ðyt � Act� 1Þ ⊳ Remove background from current frame
10: [ct; ft]  UPDATETRACES2P(A, [ct−1; ft−1], xt, b, f) ⊳ [21, Alg S3]
11: C, S  OASIS(C, γ, smin, λ) ⊳ [23]
12: A, C, N, Rbuf DETECTNEWCOMPONENTS2P(A, C, Rbuf, xt) ⊳ [21, Alg S4]
13: [A, b]  UPDATESHAPES2P(L, M, [A, b]) ⊳ [21, Alg S5]
14: if mod (t − Tinit, Tp) = 0 then ⊳ Update L, M every Tp
time steps
15: L, M  UPDATESUFFSTATISTICS2P(Y, C, A, L, M) ⊳ [21]

16: return A;C;S;b;f; θ̂
In practice, we found that by using rings of increased width (e.g. 5 pixels), training the

model only during the initialization process on a small batch frames, leads to convergence due

to the large amount of weight sharing that reduces the number of parameters. Once the model

has been trained, it can be used to remove the background from the data (after motion correc-

tion). To reduce the effect of active neurons on the inferred background we can approximate

the activity at time t, with the activity at time t − 1, and subtract that from the data frame prior

to computing the background. In other words, we can use the approximation

bt ’ fθ̂ðyt � Act� 1Þ: ð27Þ

Once the background has been removed, online processing can be done using the standard

online algorithm for two-photon data [21]. The process is summarized in Alg 2, where the suf-

fix “2P” has been added to some routines to indicate their differences compared to the routines

used in ONACID-E that are slightly more complicated due to their additional background

treatment step. Note that although the focus of this paper is on online processing, the ring-

CNN background model can also be used to derive an offline algorithm for microendoscopic

1p data.

Online motion correction

Similarly to [21], online motion correction can be achieved by using the previously denoised

frame bt−1 + Act−1 to derive a template for registering yt. In practice, we observed that this
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registration process is more robust to drift introduced by corrupt frames when an average

of the past M denoised frames is used as a template, with M* 50. As proposed in [17], passing

both the template and the frame through a high pass spatial filter can suppress the strong back-

ground signal present in microendoscopic 1-photon data, and lead to more accurate computa-

tion of the alignment transformation. Rigid or piecewise rigid translations can be estimated as

described in [28]. The inferred transformation is then applied to original frame yt. The process

is summarized in Alg S6.

Analysis details

The detection of components in CNMF-E is controlled by thresholds on the minimum peak-

to-noise ratio of seed pixels, Pmin, and on the minimum local correlation of seed pixels, Lmin.

ONACID-E imposes a threshold θsp on the correlation between a component’s spatial footprint

and the data averaged over time, as well as a threshold θSNR on the signal to noise ratio. These

parameters should be adjusted for the considered dataset and are listed in Table 1. Pmin and

Lmin can be adjusted based on inspection of the PNR and cross-correlation summary images

over the initial batch to account for different noise levels between data sets.

To compare the results between two algorithms we registered the components using the

method implemented in CaImAn (with default parameters) and described in [17]. It con-

structs a matrix of pairwise distances between two components and computes an optimal

matching between the components using the Hungarian algorithm to solve the linear assign-

ment problem. Components detected by both algorithms are true positives (TP). Components

additionally detected by the first algorithm are false negatives (FN), and false positives (FP) for

the second. The accuracy of the agreement is measured by the F1-Score, which is defined as

the harmonic mean of the precision and recall, and is in terms of type I and type II errors

given by

F1 ¼
2TP

2TPþ FPþ FN
: ð28Þ

The output of the ring CNN is invariant to rotations of its parameters: Assembling the

(vectorized) kernels into a matrix H≔ [h1, . . ., hK] we obtain new kernels ~H by multiplying

with a rotation matrix R, ~H ¼ HR. Likewise, assembling the weights into a matrix

W≔ [w1, . . ., wK] we obtain new weights ~W ¼WR. The rotation leaves the matrix product

~W ~H> ¼WRðHRÞ> ¼WRR>H> ¼WH> invariant, and thus does not change the output of

the CNN. To obtain convolution kernels that are ordered by ‘importance’ we can perform a

singular value decomposition (SVD) of WH> = USV>, where the singular values in the diago-

nal matrix S are ordered form largest to smallest. We set ~W ¼ USu, ~H> ¼ SvV
>, with diagonal

scaling matrices Su, Sv such that S = Su Sv and depict those in the Results section. Note that the

SVD approach would also allow to post-select the number of convolution kernels K. One

Table 1. Thresholds controlling the detection of components for the analyzed datasets.

Dataset Striatum PFC Hippocampus BNST

Lmin 0.7 0.9 0.9 0.92

Pmin 7 15 15 15

θsp 0.55 0.9 0.85 0.6

θSNR 3.5 2.8 2.8 3.5

https://doi.org/10.1371/journal.pcbi.1008565.t001
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could start with an upper estimate of K, train the CNN, perform SVD of WH>, and only keep

the singular vectors for which the singular value is above some threshold.

Results

Online analysis of 1p microendoscopic data using ONACID-E

We tested the online CNMF-E implementation of ONACID-E on in vivo microendosopic data

from mouse dorsal striatum, with neurons expressing GCaMP6f. The data was acquired while

the mouse was freely moving in an open field arena. The dataset consisted of 6000 frames at 10

Hz resolution (for further details refer to [6, 29]). We initialized the online algorithm by run-

ning CNMF-E on the first 200 frames.

We illustrate ONACID-E in process in Fig 1. At the beginning of the experiment (Fig 1 left),

only some components are active, as shown in panel A by the correlation image computed

using the spatially filtered data [6], and most of these are detected by the algorithm (N = 218),

while avoiding false positives. As the experiment proceeds more neurons activate and are sub-

sequently detected by ONACID-E (Fig 1 middle, N = 337, and right, N = 554), which also

tracks their activity across time (Fig 1B). See also S1 Video for further illustration.

Comparison of ONACID-E with CNMF-E

In Fig 2 we report the results of the analysis using ONACID-E and compare to the results of

CNMF-E with patches, i.e. the field of view (FOV) is split into smaller overlapping patches that

are processed in parallel and combined at the end [17]. For each algorithm, after the processing

was done, the identified components were merged, and then screened for false positive using

the tests employed in the CaImAn package. Both implementations detect similar components

(Fig 2A) with an F1-score of 0.891 (0.875 if the variance summary image was used to detect

new components). 506 components were found in common by both implementations. 48 and

76 additional components were detected by ONACID-E and CNMF-E respectively. The addi-

tional components are depicted in S1 and S2 Figs respectively, and most of them appear to be

Fig 1. Illustration of the online data analysis process. Snapshots of the online analysis after processing 200 frames

(left), 1000 frames (middle), and 6000 frames (right). (A) Contours of the components (neurons and processes) found

by ONACID-E up to each snapshot point, overlaid over the local cross-correlation image of the spatially filtered data

[6] at that point. (B) Examples of neuron activity traces (marked by corresponding colors in panel A). As the

experiment proceeds, ONACID-E detects newly active neurons and tracks their activity. A video showing the whole

online analysis can be found at S1 Video.

https://doi.org/10.1371/journal.pcbi.1008565.g001
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Fig 2. Comparison of ONACID-E with CNMF-E on data from neurons expressing GCaMP6f recorded in vivo in

mouse dorsal striatum area. (A) Contour plots of all neurons detected by CNMF-E using patches (orange) and

ONACID-E (blue), overlaid over the local cross-correlation image. Colors match the example traces shown in (B),

which illustrate the temporal components of ten example neurons detected by both implementations. The first five

have been detected in the initialization phase, the last five during online processing. The gray shaded area shows the

mini-batch ONACID-E used for the cell’s initialization, thus the area’s right border indicates at what frame the cell was

initialized. The numbers to the upper right of each trace shows the correlation r between ‘offline’ and ‘online 2nd pass’.

https://doi.org/10.1371/journal.pcbi.1008565.g002
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actual cells. Ten example temporal traces are plotted in Fig 2B. The first five are from neurons

that have been detected in the initialization phase, the last five during online processing. Not

every neuron was detected immediately once it became active (blue traces); low activity events

can be too weak to trigger detection as new component, but are accurately captured once the

existence of the neuron has already been established.

Hence, when the data is analyzed after the experiment, e.g. when ONACID-E is used instead

of CNMF-E for the sake of available computing resources (see below), one can perform a sec-

ond online pass over the dataset, initialized with the results of the first pass, to recover the

entire activity traces (red). The median correlation between the temporal traces of neurons

detected by both implementations was 0.852 ± 0.008 (median ± standard error of the median).

We repeated the analysis on in vivo microendosopic data from neurons expressing

GCaMP6s in prefrontal cortex of a freely behaving mouse. This second dataset consisted of

9000 frames at 15 Hz resolution (for further details refer to [6]). Analogous results to Fig 2 are

presented in Fig 3. The F1-score between components detected by ONACID-E and CNMF-E

was 0.899. The median correlation between the temporal traces of neurons detected by both

implementations was 0.847 ± 0.022.

As third analysis we considered data from neurons expressing GCaMP6f recorded in vivo
in mouse ventral hippocampus, cf. Fig 4. This third dataset consisted of 9000 frames at 15 Hz

resolution (for further details refer to [6]). Here the FOV contained few enough neurons to

label them manually, although one should be aware that in general human labelling is not per-

fect with different labelers often differing in their assessment [17]. We detected 23 neurons

manually, whereas CNMF-E and ONACID-E detected 21 of these without any additional false

positives (Fig 4A), yielding a F1-score of 0.955 when comparing either with the manually

labeled components. Testing the quality of the inferred traces is more challenging due to the

unavailability of ground truth data. As approximation to ‘ground truth’ we ran CNMF-E ini-

tialized with the centers of the manual annotation. We show ten example temporal traces in

Fig 4B for CNMF-E, manually seeded CNMF-E and ONACID-E. The cosine similarity a>a�
kakka�k

between the neural shape obtained with manual initialization a� and inferred neural shape a is

reported in Fig 4C. The correlation between the corresponding temporal traces is shown in Fig

4D. Unsurprisingly, the traces obtained with the offline algorithm are more similar to the

‘ground truth’ traces than the traces obtained with the online algorithm, because the ‘ground

truth’ traces were obtained by running the offline CNMF-E algorithm, but with manual

instead of automatic initialization. The median correlation between the temporal traces of neu-

rons detected by CNMF-E and ‘ground truth’ was 0.983 ± 0.005, for ONACID-E it was

0.938 ± 0.020.

We repeated the analysis on data from neurons expressing GCaMP6s recorded in vivo in

mouse bed nucleus of the stria terminalis (BNST). This fourth dataset consisted of 4500 frames

at 10 Hz resolution (for further details refer to [6]). We labeled 139 neurons manually,

CNMF-E detected 126 of those and 16 additional components, ONACID-E detected 126 of the

manually labeled ones and 15 additional components. Analogous results to Fig 4 are presented

in Fig 5. The F1-score between components detected by CNMF-E and ‘ground truth’ was

0.897, for ONACID-E it was 0.904. The median correlation between the temporal traces of neu-

rons detected by CNMF-E and ‘ground truth’ was 0.912 ± 0.017, for ONACID-E it was 0.854

±0.026. A summary of the characteristics and results for each dataset is given in Table 2.

We also performed the comparison on the simulated data from [6], in order to compare

not only the offline and online method with each other but both with underlying ground

truth, see Fig 6. Both implementations detect all components (Fig 6A) with a perfect F1-score

of 1. We again show ten example temporal traces in Fig 6B. The cosine similarity between true
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Fig 3. Comparison of ONACID-E with CNMF-E on data from neurons expressing GCaMP6s recorded in vivo in

mouse prefrontal cortex. (A) Contour plots of all neurons detected by CNMF-E using patches (orange) and

ONACID-E (blue), overlaid over the local cross-correlation image. Colors match the example traces shown in (B),

which illustrate the temporal components of ten example neurons detected by both implementations. The gray shaded

area shows the mini-batch ONACID-E used for the cell’s initialization, thus the area’s right border indicates at what

frame the cell was initialized. The numbers to the upper right of each trace shows the correlation r between ‘offline’

and ‘online 2nd pass’.

https://doi.org/10.1371/journal.pcbi.1008565.g003
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Fig 4. Comparison of ONACID-E with CNMF-E on data from neurons expressing GCaMP6f recorded in vivo in

mouse ventral hippocampus. (A) Contour plots of ground truth neurons (green) as well as all neurons detected by

CNMF-E (orange) and ONACID-E (blue), overlaid over the local cross-correlation image of the background-

subtracted video data, with background estimated using CNMF-E with manual labeling. Colored symbols match the

example traces shown in (B), which illustrate the temporal components of ten example neurons detected by both

implementations. The numbers to the upper right of each trace shows the correlation r between ‘offline’/ ‘online’ and

‘manual’. (C) Histogram of cosine similarities between inferred and true neural shapes. (D) Histogram of correlations

between inferred and true neural fluorescence traces.

https://doi.org/10.1371/journal.pcbi.1008565.g004
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Fig 5. Comparison of ONACID-E with CNMF-E on data from neurons expressing GCaMP6s recorded in vivo in

mouse bed nucleus of the stria terminalis (BNST). (A) Contour plots of ground truth neurons (green) as well as all

neurons detected by CNMF-E (orange) and ONACID-E (blue), overlaid over the local cross-correlation image of the

background-subtracted video data, with background estimated using CNMF-E with manual labeling. Colored symbols

match the example traces shown in (B), which illustrate the temporal components of ten example neurons detected by

both implementations. The numbers to the upper right of each trace shows the correlation r between ‘offline’/ ‘online’

and ‘manual’. (C) Histogram of cosine similarities between inferred and true neural shapes. (D) Histogram of

correlations between inferred and true neural fluorescence traces.

https://doi.org/10.1371/journal.pcbi.1008565.g005
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and inferred neural shape is reported in Fig 6C. While CNMF-E tends to capture the neural

footprints more accurately, the inferred temporal components (that would be used in the

subsequent analysis and are hence more important) are of similar quality, as the correlations

with ground truth reveal (Fig 6D). The median correlation between the temporal traces of neu-

rons detected by CNMF-E and ground truth was 0.9961 ± 0.0002, for ONACID-E it was

0.9932 ± 0.0005.

Computational performance of ONACID-E

We examined the performance of ONACID-E in terms of processing time and memory

requirements for the analyzed dorsal striatum dataset (Fig 2) presented above. For the batch as

well as the online algorithm we used the Python implementations provided by or added to

CaImAn [17], respectively. ONACID-E has very limited memory requirements and can readily

be run on a laptop. Thus, unless otherwise mentioned, the analysis was run on a laptop (Mac-

Book Pro 13”, 2017) with Intel Core i7-7567U CPU at 3.5 GHz (2 cores) and 16 GB of RAM

running macOS Catalina.

The processing time of ONACID-E depends primarily on (i) the computational cost of

tracking the temporal activity of discovered neurons, (ii) the cost of detecting and incorporat-

ing new neurons, and (iii) the cost of periodic updates of spatial footprints and background.

Additionally, there is the one-time cost incurred for initialization. Fig 7A and S3(A) Fig show

the cost of each of these steps for one epoch of processing. Initialization was performed by run-

ning CNMF-E on the first 200 frames, hence the sudden jump at 200 processed frames in Fig

7A. The cost of detecting and incorporating new components remains approximately constant

across time and is dependent on the number of candidate components at each time step. In

this example three candidate components were used per frame. As noted in [17], a higher

number of candidate components can lead to higher recall in shorter datasets at a moderate

additional computational cost (see S4 Fig).

The cost of tracking components can be kept low due to simultaneous vectorized updates,

and increases only mildly over time as more components are found by the algorithm, cf.

Table 2. Dataset characteristics and performance measures.

Dataset Striatum PFC Hippocampus BNST

Size (x × y × t) 256 × 256 × 6000 175 × 184 × 9000 200 × 200 × 9000 199 × 203 × 4500

Rate [Hz] 10 15 15 10

F1-Score CNMF-E 0.891 0.899 0.955 0.897

ONACID-E 0.955 0.904

Correlation CNMF-E 0.852 ± 0.008 0.847 ± 0.022 0.983 ± 0.005 0.912 ± 0.017

ONACID-E 0.938 ± 0.020 0.854 ± 0.026

N CNMF-E 582 171 21 142

ONACID-E 554 185 21 141

% of frames processed in real-time Tracking 100 100 100 100

ONACID-E 84 94 90 92

Ring-CNN 100 100 100 100

Individual entries for CNMF-E and ONACID-E denote comparison to ‘ground truth’ components (F1-Score) and traces (correlation) obtained by manual initialization

of CNMF-E, shared entries denote direct comparison between CNMF-E and ONACID-E. While all methods process the datasets faster than real time on average, only

for Tracking and Ring-CNN is the processing speed for each frame above the acquisition rate, whereas ONACID-E processes a high percentage of individual frames in

real time.

https://doi.org/10.1371/journal.pcbi.1008565.t002
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Fig 6. ONACID-E performs similar to CNMF-E in extracting individual neurons’ activity from simulated data.

(A) Contour plots of ground truth neurons (green) as well as all neurons detected by CNMF-E (orange) and

ONACID-E (blue), overlaid over the local cross-correlation image. Colored symbols match the example traces shown

in (B), which illustrate the temporal components of ten example neurons detected by both implementations. The first

five have been detected in the initialization phase, the last five during online processing. The gray shaded area shows

the mini-batch ONACID-E used for the cell’s initialization, thus the area’s right border indicates at what frame the cell

was initialized. The numbers to the upper right of each trace shows the correlation r between ‘offline’/‘online 2nd pass’

and ground truth. (C) Histogram of cosine similarities between inferred and true neural shapes. (D) Histogram of

correlations between inferred and true neural fluorescence traces.

https://doi.org/10.1371/journal.pcbi.1008565.g006
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Fig 7B and S3(B) Fig. Finally, it is particularly noteworthy that the total processing time was

smaller than the duration of the recording. If imaging was performed at a frame rate that is

higher by some factor x, the cost of tracking would increase by this factor x, whereas the peri-

odic updates of spatial footprints and background would still be performed every few seconds

(20 s in our case). To keep the time spent on detecting new components invariant one can

look for new components every xth frame. Thus the total required time is the sum of a high

constant cost and the time for tracking that increases linearly with frame rate but is low.

Fig 7C shows the memory usage as function of processing time and compares to CNMF-E

with or without splitting the FOV into patches. Sixteen patches of size 96x96 were used and

processed in parallel. Due to the limited resources of the laptop (four threads, 16 GB RAM)

not all, but merely up to four of the total sixteen patches, could be processed simultaneously in

parallel. Fig 7C shows that whereas processing in patches was marginally faster and less mem-

ory consuming than processing the entire FOV, both are clearly outperformed with regard to

computing time and memory requirements by ONACID-E. It required less memory than

the size of the whole data, here 1.5 GB (for single-precision float), and about an order of

Fig 7. Computing resources of ONACID-E. The same dorsal striatum dataset from Fig 2 consisting of 6000 frames

with a 256 × 256 FOV was used. (A) Cumulative processing time, separated by time for initialization (occurred only at

the beginning), motion correction, tracking existing activity, detecting new neurons, and updating spatial footprints as

well as background. (B) Cost of tracking neurons’ activity scales linearly with the number of neurons. (C) Memory

consumption of ONACID-E and CNMF-E. Markers and dashed lines indicate peak memory and overall processing

time. Solid lines in the inset depict memory as function of time, and show that the required memory does not increase

with the number of recorded frames. Offline processing using CNMF-E was performed with or without patches, online

processing using ONACID-E with variance or corr�pnr summary image, cf. Methods. The orange markers show peak

memory and overall processing time when the number of parallel processes is varied (4, 2 and 1), illustrating the time-

memory trade off when processing in patches (more processes can lead to faster processing at the expense of additional

memory requirements). (D) Analogous results as in (C) when using a single cluster node instead of the laptop, which

enabled to process all patches simultaneously. Orange markers show peak memory and overall processing time for 16,

8, 6, 4, 3, 2 and 1 parallel processes.

https://doi.org/10.1371/journal.pcbi.1008565.g007
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magnitude less memory than CNMF-E. These results would be even more pronounced for

longer datasets lasting not just minutes but hours because the memory consumption remains

nearly constant as time progresses and is thus independent of the number of recorded frames.

Fig 7D repeats the analysis of Fig 7C, but using a single node of a linux-based (CentOS)

cluster with Intel Xeon Platinum 8168 CPU at 2.7 GHz (24 cores) and 768 GB of RAM. This

enabled to process all sixteen patches simultaneously in parallel. Processing can be faster using

patches, however, this gain comes at the cost of high memory requirements compared to the

raw data size and necessitates a powerful computing environment. These requirement can be

mitigated at the expense of longer processing times by processing not all patches in parallel, as

the additional orange markers in Fig 7D for 8, 6, 4, 3, 2 and 1 parallel processes show. Online

processing on the cluster node took about the same time as on the laptop. ONACID-E strikes

the best balance between memory consumption and processing time, making it in particular

suitable for processing of long datasets without the need for high performance hardware.

Performance of the ring CNN approach

For comparison purposes we also tried the online analysis of the same dorsal striatum dataset,

using the Ring-CNN background model (Eq 22) with two kernels of width 5 pixels. The model

was trained on the first 500 frames (400 frames for training and 100 for validation) using a

quantile loss function (Eq 26) with q = 0.02, using stochastic gradient descent with the ADAM

optimizer. After initialization every frame was passed through the learned model to remove its

background and was subsequently processed using the OnACID algorithm [17] with a rank-2

background, cf. Alg 2. During this phase, the background model was kept constant with no

additional training, which resulted in faster processing. This was possible because the back-

ground model had already converged to a stable value during initialization because of the

smaller number of parameters needed to be learned due to the large level of weight sharing.

Moreover, the increased width of the filter increased the statistical power of the model making

it less sensitive to outliers, and thus aiding faster convergence. Three epochs were used to pro-

cess the dataset, with the third epoch being used only to track the activity of the existing neu-

rons (and not to detect new components). After the online processing was done, the identified

components were merged, and then screened for false positive using the tests employed in the

CaImAn package [17].

Lacking a “ground truth” benchmark we compared its performance against the CNMF-E

algorithm [6]. The results of the analysis are summarized in Fig 8. The algorithms displayed a

high level of agreement (green contours in Fig 8A) with F1-score 0.848 (precision 0.81 and

recall 0.888 treating the CNMF-E predictions as “ground truth”). While the agreement

between the ring CNN appoach and CNMF-E was lower compared to the agreement between

ONACID-E and CNMF-E, this cannot be readily interpreted as underperformance of the ring

CNN approach. For example, the ring CNN approach identified several components that have

a clear spatial footprint in the correlation image of the spatially filtered data (some examples

are highlighted by the yellow arrows).

The computational performance of the ring CNN approach is shown in Fig 8B and 8C. In

addition to a computing cluster node, an NVIDIA Tesla V100 SXM2 32GB GPU was deployed

to estimate the background model and subsequently apply it. Overall initialization on the 500

frames required around 53s, roughly equally split between estimating and applying the back-

ground model, and performing “bare initialization” [17] on the background extracted to find

50 components and initialize the rank-2 background. After that processing was very fast for

every frame (Fig 8B) with no computational bottlenecks (as opposed to ONACID-E where

updating the background can take significant resources). Overall, the first epoch of processing
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Fig 8. Performance of online approach using a ring CNN background model on the dorsal striatum dataset. (A) Contour plots of all

neurons detected by the ring CNN approach and CNMF-E using patches overlaid over the local cross-correlation image. The two

approaches have a high level of similarity (green contours, F1-score 0.845), with several components identified only by one algorithm

(orange contours, CNMF-E only, blue contours, ring CNN only). At least some of the contours identified only by the ring CNN model

appear to correspond to actual neurons (yellow arrows). Processing speed per frame (B) and cumulatively (C) for the ring CNN approach.

Dashed lines indicate 1st, 2nd and 3rd epoch. By reducing the background extraction to a simple, GPU-implementable, filtering operation

and estimating it only during initialization, the ring CNN approach can achieve high processing speeds for every frame (B), and run a

complete epoch on the data faster than ONACID-E (C), cf. Fig 7A. Moreover, it can distribute the computational load evenly amongst all

frames making it useful for real time applications.

https://doi.org/10.1371/journal.pcbi.1008565.g008
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was completed in 210s (Fig 8C), a factor of 2 improvement over ONACID-E (even without

background updating for ONACID-E). A closer comparison between Figs 7A and 8C indicates

that the ring CNN approach is faster than ONACID-E for detecting new components, but

slower during “tracking”. The reason for that, is that “tracking” in the ring CNN approach

includes the background removing step (which requires data transfer to and from the GPU).

However, once this step is done, no additional background treatment is required, which speeds

up the detection step significantly. More importantly, this allowed a distributed update of

shapes amongst all frames (Fig 8B) which kept the processing speed for each frame above the

acquisition rate of 10Hz, thus achieving real time processing. Since the initialization step can

be performed in mini-batches the GPU memory requirements remain limited. After that,

online processing is deployed on a frame by frame basis which keep the memory requirements

at similar levels compared to ONACID-E (S5 Fig).

Fig 9 shows the parameters of the trained ring CNN. As described in the Methods, the out-

put of the network is invariant to rotations of the parameters. We used singular value decom-

position, such that h1, w1 correspond to the left and right singular vectors of the larger singular

value (14.1), and h2, w2 to the singular vectors of the smaller singular value (7.46 × 10−5). The

first convolutional kernel h1 shows the typical ring, and the weights w1 mostly capture pixel

dependent differences in brightness, that are for example due to blood vessels. The second con-

volutional kernel h2 shows deviations from the typical ring, and the weights w2 where those

deviations are applied. The much lower numerical values of h2 and w2 compared to h1 and w1

reveal, that here the point spread function (PSF) was largely invariant over the entire FOV. In

cases where the PSF varies when compared across the full FOV the number of rings K can be

adjusted to the diversity of local environments.

The ring CNN approach introduced a new background model that was inspired by the ring

model of CNMF-E/ONACID-E. It relies on removing the cumbersome background first, fol-

lowed by an algorithm that has already been established for 2-photon data such as CNMF or

OnACID. Similarly, Min1pipe [7] also relies on turning the imaging data into a stack of back-

ground-free frames as the first step, but uses morphological opening to estimate the back-

ground. In order to compare these methods, that use different background models, to

underlying ground truth we considered again the simulated data from [6]. As a simple baseline

we also included spatial high-pass filtering using a second order Butterworth filter with cut-off

frequency of 6 inverse pixels. Fig 10A shows the local cross-correlation image of the data after

removing the background for the four background models. While each method bring out all

neurons that are not, or barely, visible in the raw video data (Fig 3 in [6]), the background

Fig 9. Parameters of the trained ring-CNN for the dorsal striatum dataset. (A) Convolution kernels of the first

layer. (B) Pixel dependent weights of the second layer. The ring in the upper left corner indicates the size of the

convolution kernels.

https://doi.org/10.1371/journal.pcbi.1008565.g009
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model of CNMF-E visually captures the true background best. However, a good background

estimate is just a means to enable extraction of accurate temporal traces that would be used in

the subsequent analysis and are hence most important. To investigate how the background

model influences the latter, we ran CNMF, initialized with the true neural centers, on these

back-ground subtracted data, to obtain the temporal traces and updated spatial footprints. The

cosine similarities between true and inferred neural shapes are reported in Fig 10B, with high

values for the ring model of CNMF-E/ONACID-E, similar ones for Ring-CNN and high-pass

filtering, and lower ones for morphological opening (Min1pipe). The inferred temporal com-

ponents are of similar quality for CNMF-E and Ring-CNN, as the correlations with ground

truth reveal (Fig 10C). The traces obtained with spatial high-pass filtering and morphological

opening rank a close third and distant fourth respectively. The median correlation between

ground truth and the temporal traces of neurons detected was 0.9970 ± 0.0003 for CNMF-E,

0.9942 ± 0.0004 for Ring-CNN, 0.9914 ± 0.0005 for high-pass filtering, and 0.9460 ± 0.0036 for

morphological opening. We repeated the analysis on real data using the dorsal striatum data,

cf. S6 Fig. Due to the lack of ground truth we compared to the results obtained with CNMF-E.

Again, the Ring-CNN outperforms high-pass filtering.

Real time processing

One compelling reason to use online processing, not just for data streams but also for already

recorded data, is that it circumvents the computational demands of offline processing. Even

more impactful is its application to real time processing in closed loop experiments [4], for

example combining imaging with optogenetic manipulation [30], which recently became

technically possible also for 1-photon microendoscopes [31, 32]. Here we describe three

approaches, cf. Fig 11A, for processing microendoscopic data in real time. We again consid-

ered the dorsal striatum data (Fig 2) and processed it using the MacBook Pro laptop.

The first, and arguably simplest, approach, denoted as “Tracking”, is to have a sufficiently

long initialization phase to identify all ROIs. We processed an initial batch of 3000 frames

Fig 10. Comparison of background models on simulated data. (A) Local cross-correlation images of the

background-subtracted video data. (B) Histogram of cosine similarities between inferred and true neural shapes. (C)

Histogram of correlations between inferred and true neural fluorescence traces.

https://doi.org/10.1371/journal.pcbi.1008565.g010

PLOS COMPUTATIONAL BIOLOGY Online analysis of microendoscopic calcium imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008565 January 28, 2021 25 / 32

https://doi.org/10.1371/journal.pcbi.1008565.g010
https://doi.org/10.1371/journal.pcbi.1008565


(5 min) using CNMF-E, though other offline pipelines could likewise be used, to initialize the

online method ONACID-E. Once the initial batch has been processed, the real time experiment

begins, during which each frame has to be read from the camera, corrected for motion arti-

facts, and processed to track each neuron’s activity. The latter entails demixing the fluores-

cence contributions of (potentially overlapping) ROIs and background, as well as denoising/

deconvolving each neuron’s temporal trace. Fig 11B breaks down these times for each frame.

In an actual real time experiment one would read directly from camera, here we report the

time to read the frames from the laptop’s solid-state drive. For further speed ups one could

spatially decimate the identified ROIs and the raw data frames, and still accurately recover

denoised fluorescence traces and deconvolved neural activity [26].

Fig 11. Online processing in real time. (A) Flow-charts for three online processing pipelines. (B-D) Time per frame

for (B) tracking pre-identified ROIs, (C) ONACID-E, and (D) Ring-CNN, separated by time to read the frame, motion

correct it, process it (i.e. demix overlapping components and deconvolve temporal trace), and, where applicable

(ONACID-E and Ring-CNN), detect new neurons, update spatial footprints, and remove background. The upper limit

of the vertical axis was set to twice the average total time per frame. The gray shading indicates the frames that are

processed in real time. (E) Contour plots of all neurons detected by CNMF-E on a sufficiently long initial batch

(Tracking), ONACID-E, and the Ring-CNN approach overlaid over the local cross-correlation image. (F) Histogram of

pairwise cosine similarities of neural shapes for neurons detected using tracking, ONACID-E, and Ring-CNN. (G)

Histogram of pairwise correlations of neural fluorescence traces.

https://doi.org/10.1371/journal.pcbi.1008565.g011
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The second approach, denoted as “ONACID-E”, is to have merely a short initialization

phase (we used 500 frames) followed by online processing using ONACID-E that not only

tracks the activity of already detected ROIs as the first approach does, but includes automatic

detection of new components and updates neural shapes as well as background. The latter

updates are performed every few seconds (20 s in our case). They are however so computation-

ally costly that real time performance is lost for this and some subsequent frames, as visible in

the periodic pattern of the gray shading in Fig 11C. Thus, instead of the usual waiting for the

camera to provide the next image, there are few frames for which the images are acquired

faster than processed. Therefore we use a separate computing process to acquire and add the

images to a FIFO (First-In-First-Out) queue at regular time intervals. The main process reads

the next image from this queue, and waits for it if the queue is empty. Although this approach

is not fully real time, 84% of the 5500 frames that have been processed online have actually

been processed in real time.

The third approach, denoted as “Ring-CNN”, is similar to the second in using merely a

short initialization phase (we used 500 frames), but instead of ONACID-E it uses Ring-CNN

and OnACID for online processing. The background removing step involves evaluation of the

CNN. This can be expressed as a sparse matrix multiplication, see Eq (23), which is quickly

evaluated even on a laptop, cf. Fig 11D. Because the real time experiment starts only after the

initial batch has been processed, the CNN can in principle be trained on a laptop as well. How-

ever, usage of a GPU is still advisable for this step in order to reduce the time where the camera

is idle, i.e. the time between recording the last frame of the initial batch and starting the real-

time experiment, which can take about an hour on a laptop, few minutes on a GPU, and even

less than a minute on the high-performance GPU used in the previous subsection. Here we

reused the previously trained CNN and converted it into a sparse matrix. The CNN possibly

generalizes across imaging sessions, but we did not have access to the imaging data of multiple

sessions of the same animal to test this. If retraining is necessary, a GPU is needed in praxis,

but it does not need to be high end. This approach avoids ONACID-E’s complicated interac-

tion between background and neural shapes, which allows a distributed update of the latter

amongst all frames, thus achieving real time performance for each frame.

While all three approaches yield similar results, the first two model the background using

the same ring model of CNMF-E, which as expected yields more similar results for them, com-

pared to the third that employs the Ring-CNN. Fig 11E shows that all three approaches detect

similar components. When comparing to Tracking, the F1-score was 0.892 for ONACID-E

and 0.805 for Ring-CNN. This also holds for the spatial (Fig 11F) and temporal (Fig 11G) simi-

larity measures when performing pairwise comparisons of the three approaches.

Discussion

We presented an online method to process 1-photon microendoscopic video data. Our model-

ing assumptions are the same as in the popular offline method CNMF-E; however, our online

formulation yields a more efficient yet similarly accurate method for the extraction of in vivo

calcium signals. A major bottleneck for processing microendoscopic data has been the amount

of memory required by CNMF-E. Our online approach solves this issue since it reduces the

memory footprint from scaling linearly with the duration of the recording to being constant.

We also provided an additional variant that uses a convolutional based background model that

aims to exploit the location invariant properties of the point spread function. This approach

enables the estimation of a stable background model by using just an initial portion of the

data. As a result, it can lead to faster processing and also be coupled to 2-photon processing

algorithms by using this model to remove the background from each frame as a preprocessing
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step. While the background model is invariant to brightness changes, if the background struc-

ture was to change in a more intricate way owing to drug delivery, optogenetic stimulation, or

other experimental manipulations, the employed 2-photon processing algorithm, e.g. OnA-

CID, can itself include background components that are capable of capturing fluctuations, or

training the CNN could continue based on the incoming data stream.

For detecting centroids of new sources ONACID-E examines a static image. Following [21],

such an image can be obtained by computing the variance across time of the spatially

smoothed residual buffer. As an additional option to obtain a static summary image we added

the computation of peak-to-noise ratio and local cross correlation across time of the residual

buffer, following the proposal of [6]. For efficiency, this computation is performed online

using incremental updates. While both options work very well in practice, different

approaches for detecting neurons in static images or in a short residual buffer could potentially

be employed here, e.g. dictionary learning [33], combinatorial clustering [34] or deep neural

networks [35, 36]. However, these approaches likely come with higher computational cost, and

—having been developed for offline processing—would probably need to be modified for data

streams, and in the case of neural networks be retrained.

Similarly to [21], our current implementation screens the candidate components for quality

using some quantitative measures and thresholds. For 2-photon data [17] suggested to use a

neural net classifier instead for better accuracy. Training a neural network requires labelled

data, which is currently not publicly available for 1-photon microendoscopic video data. Once

labelled ground truth data is available, a neural network could be trained on it and ONACID-E

be readily augmented to use this classifier. Such ground truth data would also enable to thor-

oughly benchmark different source extraction algorithms and their implementations.

Apart from enabling rapid and memory efficient analysis of microendoscopic 1-photon

data, our online pipeline also facilitates closed-loop behavioral experiments that analyze data

on-the-fly to guide the next experimental steps or to control feedback. After recording a short

initial batch of data for about one minute and processing it to initialize the online method, one

can start the closed loop real time processing experiment. Although we did not have access to

perform real time analysis hooked to an actual experiment, we emulated the environment to

the best of our abilities. The current implementation of ONACID-E is already faster than real

time on average. On a per-frame basis the processing speed exceeds the data rate for the major-

ity of frames, and only when the periodic updates of sufficient statistics, shapes, and back-

ground are performed can the speed drop below the data rate. In principle, speed gains could

be obtained by performing these periodic updates, and computations that occur only sporadi-

cally (incorporating a new neuron), in a parallel thread with shared memory. We defer that to

future work. This speed drop below the data rate can be ameliorated by using a larger initiali-

zation batch for ONACID-E. Once enough initial data has been seen and processed, the com-

putationally expensive search for components as well as the spatial footprint and background

updates can be turned off, because all regions of interest have been detected and their shapes

as well as the background converged to stable values. Further, as presented, this compromise

can be avoided altogether by endowing the background with a convolutional structure that

enables faster convergence in the background estimation. This subsequently enables updating

of spatial footprints in a distributed sense, while maintaining faster than real time processing

rates at every frame by keeping the ability to detect and incorporate new components. In sum-

mary, the Ring-CNN model lends itself better to actual real-time processing, whereas ONA-

CID-E closely resembles the popular CNMF-E algorithm and lends itself to situations where

the computing resources are not sufficient to run CNMF-E, or for real-time processing with

sufficiently long initialization phase.
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We provide a Python implementation of our algorithm online within CaImAn, an open-

source library for calcium imaging data analysis (https://github.com/flatironinstitute/

CaImAn) [17]. In order to facilitate the use of the presented algorithms in real time experi-

mental scenarios, we have provided a set of example files and a flexible multi-threaded compu-

tational infrastructure which can be adapted to a variety of experimental settings. We have

embedded online computations in a thread that is executed in parallel, while data can be incre-

mentally added to a First-in-First-Out thread-safe queue. This software engineering design

enables the use of ONACID-E with any type of acquisition systems, ranging from USB camera

acquisition to dedicated high speed cameras with optimized hardware interfaces. The final

user or camera company only needs to implement a small thread which pipes the frames into

the queue.

Supporting information

S1 Appendix. Algorithmic description. Pseudocode for the various steps of the online pro-

cessing pipeline.

(PDF)

S1 Fig. Additional components detected by CNMF-E in the dorsal striatum data from Fig

2.

(TIF)

S2 Fig. Additional components detected by ONACID-E in the dorsal striatum data from

Fig 2.

(TIF)

S3 Fig. Processing time of ONACID-E using the variance summary image. Analogous plots

to Fig 7A and 7B, but using the energy for each pixel of the residual buffer to create the sum-

mary image instead of the Corr�PNR summary image (see Methods).

(TIF)

S4 Fig. Effect of initial batch size and number of considered candidate components.

(A) Detected components for different sizes of the initial batch without adjusting other param-

eters. Components detected in the initial batch are shown as solid contours, those detected

during online processing as dashed contours. (B) Number of detected components for the ini-

tial batch sizes considered in (A). (C) Number of detected components for a varying number

of candidate components.

(TIF)

S5 Fig. Memory usage during real-time processing. Memory and number of neurons as

function of processed frames for (A) Tracking, (B) ONACID-E, and (C) Ring-CNN + OnA-

CID.

(TIF)

S6 Fig. Comparison of background models on the dorsal striatum data from Fig 2.

(A) Local cross-correlation images of the background-subtracted video data. (B) Histogram of

cosine similarities between inferred neural shapes and the ones obtained with CNMF-E.

(C) Histogram of correlations between inferred neural fluorescence traces and the ones

obtained with CNMF-E.

(TIF)

S1 Video. Depiction of ONACID-E. Top left: Raw data and cell contours of all until then iden-

tified components. Top right: Inferred activity (without background). Bottom left: Corr�PNR
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http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008565.s008
https://doi.org/10.1371/journal.pcbi.1008565


summary image (see Methods) and accepted regions for new components (magenta squares).

Bottom right: Reconstructed activity.
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18. Packer AM, Russell LE, Dalgleish HW, Häusser M. Simultaneous all-optical manipulation and recording

of neural circuit activity with cellular resolution in vivo. Nature Methods. 2015; 12(2):140–146. https://

doi.org/10.1038/nmeth.3217 PMID: 25532138

19. Grosenick L, Marshel JH, Deisseroth K. Closed-loop and activity-guided optogenetic control. Neuron.

2015; 86(1):106–139. https://doi.org/10.1016/j.neuron.2015.03.034 PMID: 25856490
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