
Application of multi-trait Bayesian decision theory for
parental genomic selection
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Abstract

In all breeding programs, the decision about which individuals to select and intermate to form the next selection cycle is crucial. The im-
provement of genetic stocks requires considering multiple traits simultaneously, given that economic value and net genetic merits depend
on many traits; therefore, with the advance of computational and statistical tools and genomic selection (GS), researchers are focusing on
multi-trait selection. Selection of the best individuals is difficult, especially in traits that are antagonistically correlated, where improvement
in one trait might imply a reduction in other(s). There are approaches that facilitate multi-trait selection, and recently a Bayesian decision
theory (BDT) has been proposed. Parental selection using BDT has the potential to be effective in multi-trait selection given that it summa-
rizes all relevant quantitative genetic concepts such as heritability, response to selection and the structure of dependence between traits
(correlation). In this study, we applied BDT to provide a treatment for the complexity of multi-trait parental selection using three multivari-
ate loss functions (LF), Kullback–Leibler (KL), Energy Score, and Multivariate Asymmetric Loss (MALF), to select the best-performing parents
for the next breeding cycle in two extensive real wheat data sets. Results show that the high ranking lines in genomic estimated breeding
value (GEBV) for certain traits did not always have low values for the posterior expected loss (PEL). For both data sets, the KL LF gave similar
importance to all traits including grain yield. In contrast, the Energy Score and MALF gave a better performance in three of four traits that
were different than grain yield. The BDT approach should help breeders to decide based not only on the GEBV per se of the parent to be
selected, but also on the level of uncertainty according to the Bayesian paradigm.
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Introduction
Genetic improvement of plants and animals is based on selecting

and intermating the best performing parents to form the next im-

proved population. The selection of which candidates to advance

to the next breeding cycle is based on the breeding value (BV) and

net genetic merits of multiple traits, and decisions are made

based on their performance in crop fields and greenhouses. In ge-

nomic selection (GS), the genomic estimated breeding value

(GEBV) of unobserved candidates is predicted using only geno-

typic information and a statistical model trained with phenotypic

and genotypic data of individuals in the training population

(Meuwissen et al., 2001).
The main decision in breeding is how to select the parents

that maximize the response to selection (R) expressed as the dif-

ference between the mean of the offspring of the selected individ-

uals (l2), and the mean of the original population (l1)

(R ¼ l2 � l1). This decision can be achieved by different methods.

The conventional strategy for selecting the best parents in a sin-

gle trait is selection by truncation, which consists of ranking in

descending or ascending order based on GEBV (depending on the
desired direction of selection) and selecting some fraction of
the top lines. With current genomic information, the optimum
contribution theory (OCT) is a method for selecting the parental
candidates with the aim of increasing the genetic gain by opti-
mizing the genetic contribution of each individual to the next
generation for a given rate of inbreeding (Henryon et al. 2014;
Woolliams et al. 2015). Under the OCT method, the selection of
candidates is based on high genetic merit, and on the relationship
among the candidates for selection. In general, the main question
is how to balance high genetic gains in the next generation while
maintaining genetic diversity (Kinghorn 2011; Cowling et al. 2019).
Akdemir and Sánchez (2016) optimized genomic mating between
parents under GS by applying a method that uses a function that
combines measures of inbreeding as part of the objective func-
tion being minimized for a single trait. Furthermore, Han et al.
(2017) selected the donor parents for the introgression of alleles
to recipient individuals by proposing an optimized algorithm.
Bulmer (1980) and Gianola and Fernando (1986) showed that, for
a single trait, the conditional expectation of each candidate for
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selection maximizes the mean of true genotypic values and mini-
mizes a squared loss function.

Decisions made during GS are based solely on the GEBV of the
candidates for selection. Genomic approaches (1) estimate
the GEBV through a statistical model and information about the
unobserved (genotyped) individuals (candidate population) using
the phenotypic and genotypic data of their parents, (2) rank the
lines based on GEBV, and (3) select the top-ranking lines.
Recently, Villar-Hernández et al. (2018) proposed a method based
on Bayesian decision theory (BDT) for selecting the best candi-
dates (in a single trait or in multi-trait) that maximize R; results
were obtained by simulating a breeding program. For a single
trait, and assuming the candidates have the same amount of in-
formation and are identically distributed, R could be expressed in
terms of the selection differential ðS ¼ lS � l1, the difference be-
tween the mean of the selected individuals, lS, and the mean of
the original population, l1) multiplied by the heritability ðh2Þ.
Thus, R¼h2S, and when h2 ! 1; R!S (maximum expected re-
sponse to selection, minimum expected loss in the decision of
which candidates to select based on our breeding goals), whereas
when h2 ! 0, R� S (minimum expected response to selection,
maximum expected loss). The BDT methodology proposed by
Villar-Hernández et al. (2018) considers the variance-covariance
matrix between traits and the trait mean while minimizing the
posterior expected distance between the distribution of the off-
spring of the selected individuals (distribution of the candidates)
and the distribution of the selected individuals (distribution of
the selected parents), and therefore maximizing the expected
response to selection (R) given the phenotypic, genotypic and ge-
nomic information at hand. Minimizing the distance between
the distribution of the parental candidates and the progeny
distribution increases the accuracy of selection (assuming equal
selection intensity).

Multiple trait selection is a concern addressed by animal and
plant breeding in the past (Smith 1936; Hazel 1943; Henderson
and Quass 1976) and also in the era of GS (Sun et al. 2017;
Montesinos-López et al. 2019; Neyhart et al. 2019; Lenz et al. 2020).
Multi-trait selection models are promising because they have the
potential to increase the accuracy of GEBV (given that they use
information about genetically correlated traits), especially in the
presence of low heritability traits (Jia and Jannink 2012; Guo et al.
2014; Ward et al. 2019). Also, the improvement of genetic stocks
requires considering multiple traits simultaneously because eco-
nomic value and net genetic merits depend on all traits (Falconer
and Mackay 1996).

The selection of multi-traits can be facilitated by ranking lines
based on a single number; for example, genomic selection indices
(SI) score lines based on a weighted average of GEBV, and then se-
lect those lines with high scores (Cerón-Rojas and Crossa 2020).
The approach of Villar-Hernández et al. (2018) ranks the lines
based on the posterior expected loss (PEL, a single number) given
our breeding goals, in terms of the mean and the genetic
variance-covariance matrix. Thus, those candidates whose distri-
butions are closer to the theoretical parental distribution will
have the lowest expected loss value (high R), and the decision
should be to advance those lines given that they reach the de-
sired mean and keep the genetic variance as much as possible
(high h2).

As described in Villar-Hernández et al. (2018), the LF is the ve-
hicle to go from the action space (candidate lines) to the resulting
space (selected lines) given a Bayesian action (an action that
guarantees a minimum PEL given our preferences). Of the three
multivariate LFs used by Villar-Hernández et al. (2018), the

Kullback–Leibler (KL) LF is easier to understand. We can compute
the KL distance between two multivariate normal distributions,
one of them truncated in a t-dimensional vector yc (reflecting the
breeder’s preference for high or low phenotypic values, yc of a
length equal to the number of traits). The KL metric implies that
the distance between both distributions decreases when the phe-
notypic (P) and genotypic variance-covariance (G) matrices tend
to explain the same amount of variation between traits, i.e.,
GP�1 ¼ I (a quantity similar to narrow-sense heritability in a
single-trait setting). Depending on the trait, the KL metric
employs the divergence criterion, which induces less penalty for
those lines that have more density (probability) to the right of
censoring values (yc) (increasing BVs) or more density to the left
of censoring values (yc) (decreasing BVs).

Similar interpretations of other LFs, Energy Score and MALF
can be found in Villar-Hernández et al. (2018). The three LFs were
derived and described based on univariate and multi-trait herita-
bility, the response to selection, and the selection differential.

The advantage of the Villar-Hernández et al. (2018) method is
that while minimizing the LF, the response to selection is maxi-
mized, considering uncertainty throughout the full posterior pre-
dictive distributions, and not only based on punctual estimates.
Although Villar-Hernández et al. (2018) presented simulated and
real data, they did not present extensive practical applications.
Therefore, based on the previous considerations, the main objec-
tive of this research is to show the practical details when apply-
ing the BDT in a real GS prediction based on quantitative genetic
concepts in breeding decisions. We used two extensive datasets
(multi-traits from 766 and 320 wheat lines) in which we applied
10% selection intensity (a value commonly used in GS-assisted
breeding) according to the minimum PEL criterion.

Materials and methods
Experimental datasets
Dataset 1 (Elite wheat lines)
This dataset comprises information of 766 wheat lines at the
Norman E. Borlaug Experiment Station (Ciudad Obregon, Sonora,
Mexico). The traits are DTHD (days to heading), DTMT (days to
maturity), Height (plant height), and GY (grain yield). The correla-
tions between traits are: 0.84 for DTHD and DTMT, 0.01 for DTHD
and GY, 0.2 for DTHD and Height, -0.06 for DTMT and GY, 0.14 for
DTMT and Height, and 0.24 for GY and Height (Table 1A).
Genotypic information is available in the form of the Genomic
Relationship Matrix Gð766 � 766Þ (obtained from centered and stan-
dardized marker data). Both phenotypic and genomic data
were previously used in Montesinos-López et al. (2019) and
can be found in https://data.cimmyt.org/data set.xhtml?
persistentId¼hdl : 11529/10548141.

Dataset 2 (Wheat biofortification)
The data comprise 320 spring wheat lines evaluated in 2014 at
the Norman E. Borlaug Experiment Station (Ciudad Obregon,
Sonora, Mexico). Four traits were measured in each line: GY
(grain yield), TKW (thousand-kernel weight), GZnC (zinc concen-
tration in the grain) and GFeC (iron concentration in the grain).
All traits were positively correlated: 0.204 between GY and TKW,
0.16 for TKW and GFeC, 0.26 for GZnC and GFeC, 0.014 for GY and
GznC, 0.017 for TKW and GZnC, and 0.04 for GY and GFeC
(Table 1B). The genomic information is composed of 24,497 cen-
tered and scaled DaRT markers from which we calculated the
Genomic Relationship Matrix G, as described in the previous
dataset. A full description of phenotypic and genotypic
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information was given in Velu et al. (2016), and both datasets can
be found at the link below.

Data and software availability
The two datasets used in this study and the codes for running the
proposed models can be found at the following link http://hdl.
handle.net/11529/10548420.

Direction of improvement in the datasets
In Dataset 1, selection of lines with low GEBVs for DTHD, DTMT,
and Plant Height is required; thus, improvement focuses on the
decreasing direction (–) of the trait. In contrast, for trait GY, prog-
ress lies in the increasing direction (þ), i.e., breeders want those
lines with high GEBVs for GY. In Dataset 2, improvement of all
traits under consideration lies in the positive (increasing) direc-
tion, i.e., lines with high GEBVs.

Loss function as a mechanism for parental
selection
In general, the LF should reflect the distance/divergence of two
probability distributions. The expected distance (loss of informa-
tion) will be minimal if the two distributions approach each
other, and the distance will be zero if both distributions are iden-
tical. Therefore, we can measure how close the distribution of the
candidates is to the truncated parental distribution.

Univariate KL loss function
We first describe the single-trait case based on the idea of trunca-
tion selection. Let yc be a scalar. Lines with EBV above yc are the
selected ones. The population from which we select the best lines
is the base population (with some mean l1 and some variance
r2). For most quantitative traits, normal distribution is assumed
for the base population, i.e., Y � Nðl1; r

2Þ; then the selected lines
(parents in the following generation) formally follow a truncated
distribution, i.e., Ys � NT l1; r

2; a ¼ yc; b ¼ 1
� �

using the formal
definition of a truncated distribution, but for simplicity, hereinaf-
ter we will denote Ys � NT l1; r

2; yc
� �

. Note that truncated normal
distribution is a function of three parameters: (l1; r

2; yc) and the

mean of BVs after truncation occurs is lS ¼ l1 þ r /ððyc�l1Þ=rÞ
1�Uððyc�l1Þ=rÞ

� �
,

where / and U denote the probability density function and the
distribution function of standard normal density, respectively.
Also, note that this occurs within the same generation.

After crossing the selected lines, there is an offspring popula-
tion that has some distribution with mean (l2) hopefully greater
than the mean of the base population (l2 > l1) and with some
variance (we expect that it will be approximately equal to the var-
iance of the base population in order to maintain the genetic di-
versity). We assume that the offspring population is also
approximately normal, i.e., Yo � Nðl2; r

2Þ. Then, using this idea,
we can construct a metric that quantifies the distance between
the distribution of the truncated (parental) population and the
distribution of the offspring (candidates for selection) population,
such that the candidates that guarantee maximum genetic prog-
ress are those that guarantee minimum distance between the
two distributions; this occurs between generations. With this idea
in mind, we can construct any metric, for example, based on the
Kullback Leibler (KL) loss function or any other divergence func-
tion. It is important to note that KL distance can be calculated
whatever the distribution of the parents and the candidates is.
When normality is assumed, KL has an analytical expression,
and otherwise can be approximated with numerical or simula-
tion methods.

Univariate KL, as presented below in Equations 1a–1c, appears
when we calculate and simplify the expectation of the log ratio
between the theoretical parental distribution and the candidate
distribution with respect to the base distribution:

DKL FYo ; FYsð Þ ¼
ð1
yc

log
NT l1; r

2; yc
� �

N l2; r2
� � NT l1; r

2; yc

� �
dy (1a)

¼ log
1

Pr y > ycð Þ
þ 1

2
S� Rð Þ2

r2 � i2

( )
(1b)

¼ log
1

Pr y > ycð Þ
þ 1

2
i2ðh2ðh2 � 2ÞÞ
� �

: (1c)

In the previous equations, the divergence measured is be-
tween FYo and FYs , where FYo denotes the distribution function
of Yo (random variable representing the phenotypic values of
the offspring/candidate with mean l2) and FYs represents
the distribution function of Ys (random variable denoting the
phenotypes of selected lines obtained based on truncation se-
lection with mean ls). Thus, S ¼ lS � l1 is the selection differen-
tial, R ¼ l2 � l1 is the selection response, and the standardized
selection differential i ¼ S=r is the selection intensity. The sec-
ond term on the right-hand side of Equation 1b implies that
when R approaches S (while the selection intensity stays the
same), the divergence between the truncated distribution and
the candidate’s distribution decreases and the genetic gain
increases. That is, DKL FYo ; FYsð Þ depends on the intensity of se-
lection (which is assumed fixed) and is a decreasing function of
h2 (1c).

Note that the KL distance is not specific to normal distribution
and can be applied to any pair of distributions. Appendix 1
(Figures A1 and A2) shows a step-by-step explanation of a
Bayesian decision approach using the KL distance metric to mea-
sure the distance between any pair of distributions (candidate
distribution and truncated distribution).

Multivariate KL loss function
The idea of truncation selection can be extended to multi-traits
where the base population, the parental individuals, and the off-
spring population follow multivariate distributions. The parental
distribution is a truncated distribution in a vector yc (of a length
equal to the number of traits). Assuming multivariate normal

Table 1 Phenotypic correlations between the four traits in
Dataset 1 [days to heading (DTHD), days to maturity (DTMT,
grain yield (GY) and plant height (Height)] and between the four
traits in Data set 2 [grain yield (GY), thousand-kernel weight
(TKW), Zn content in the grain (GZnC) and Fe content in the grain
(GFeC)]

(A) Data set 1

DTHD DTMT GY Height

DTHD 1.00 0.84 0.01 0.20
DTMT — 1.00 -0.06 0.14
GY — — 1.00 0.24
Height — — — 1.00

(B) Data set 2

GY TKW GZnC GFeC

GY 1.00 0.204 0.014 0.04
TKW — 1.00 0.017 0.16
GZnC — — 1.00 0.26
GFeC — — — 1.00
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distributions and using the KL distance, the formulation of the

multivariate KL LF is expressed in Equation 2a. The Multivariate

Truncated Normal (TMVN) distribution has mean vector l1, phe-

notypic variance-covariance matrix P; and truncation vector yc.

The Multivariate Normal (MVN) distribution has a mean vector

l2 and the same P as the base population. After simplification, KL

reduces to (2 b):

DKL FYo ; FYsð Þ ¼
ð1

yc

log
TMVNðl1; P; ycÞ

MVNðl2; PÞ TMVN l1; P; ycÞdy
�

(2a)

¼ �log zð Þ þ 1
2

S
0

I� GP�1ð Þ
0

P�1 I� GP�1ð Þ�P�1
h i

S: (2b)

Upon inspecting Equation 2b, when phenotypic (P) and geno-

typic variance-covariance (G) matrices tend to explain the same

amount of variation and similar association between traits, then

ðI� GP�1Þ ! 0, i.e., the distance between the truncated distribu-

tion and the candidate/offspring distribution tends to decrease.

The product matrix GP�1 ¼ h2 is equivalent to multi-trait herita-

bility (the ratio of the genetic variance in the numerator and the

phenotypic variance in the denominator); thus, when GP�1 ¼ I,
the heritability of the traits approaches 1; then R ¼ S and the

mean of the offspring/candidate distribution is equal to the mean

of the truncated distribution, l2 ¼ ls. The multivariate KL LF con-

tains the term –log zð Þ; which indicates that the joint probability of

multivariate BVs that is > yc has less penalty. As already men-

tioned for the single trait, the KL distance is not specific to nor-

mal distribution.

Another two multi-trait loss functions: MALF and Energy
Score
We can use other metrics, not only the KL. Two simple and easy

to implement LFs are the Energy Score and the Multivariate

Asymmetric Loss Function (MALF). Both measures are generaliza-

tions of the single-trait selection fully discussed in Villar-

Hernández et al. (2018). Brief theoretical descriptions of the

Energy Score and MALF are given in Appendix 2.

Fitting the multi-trait mixed model and
evaluating the posterior expected loss function
To conduct selection through the Bayesian decision framework

within genomic-enabled prediction of multiple traits, three steps

are required: Step1: training a regression model using available

phenotypic multivariate data and genotypic records (training

population); Step 2: approximate posterior predictive distribu-

tions of each candidate assuming the same sampling model as in

step 1; Step 3: approximate the PEL for each candidate so that we

can identify the lines with minimum PEL that fulfill the desired

selection intensity.
In our case, the multiple trait regression model used in step 1

was the following:

y1
y2
y3
y4

0
BB@

1
CCA ¼

1nl1
1nl2
1nl3
1nl4

0
BB@

1
CCAþ

Z1 0 0 0
0 Z2 0 0
0 0 Z3 0
0 0 0 Z4

0
BB@

1
CCA

g1
g2
g3
g4

0
BB@

1
CCAþ

�1

�2

�3

�4

0
BB@

1
CCA; (3)

where ðy1; y2; y3; y4Þ0 is the vector (or vectors) of phenotypic values

for traits 1,2,3 and 4, respectively, l1; l2; l3 and l4 are the means

for each trait, ðg1; g2; g3; g4Þ0 is the vector of genomic values of

each line for the four traits, Z1;Z2;Z3 and Z4 are the correspond-

ing design matrices for random effects, and ð�1; �2; �3; �4Þ0 is the

vector of random residuals for all traits. Assuming that
ðg1; g2; g3; g4Þ0 � MVNð0; Rg � GÞ, where

Rg ¼

r2
g1

rg12 rg13 rg14

rg21 r2
g2

rg23 rg24

rg31 rg32 r2
g3

rg34

rg41 rg42 rg43 r2
g4

0
BBBB@

1
CCCCA

is the variance-covariance matrix of genomic values for the four
traits, and ð�1; �2; �3; �4Þ0 � MVNð0;R� IÞ with In�n being the iden-
tity matrix, and

R ¼

r2
e1

0 0 0
0 r2

e2
0 0

0 0 r2
e3

0
0 0 0 r2

e4

0
BBB@

1
CCCA

the residual variance-covariance matrix. The model in (3) was fit-
ted using the MTM R package (de los Campos and Grüneberg
2016, that is available at GitHub: https://github.com/QuantGen/
MTM) and R programming language version 3.6.1 (R
Development Core Team 2019). The diagonal matrix R assumes a
null residual covariance matrix among environments that is sel-
dom used in plant breeding and animal breeding to avoid an im-
portant increase in computing time.

After fitting the model given in Equation 3, we used outputs
from the MTM R package to estimate the full posterior distribu-
tions of the model’s parameters using 10,000 MCMC (Markov
Chain Monte Carlo) samples after discarding the 30,000 samples
as burn-in and thinning at lag 5. We then approximated the pos-
terior predictive distribution of each line considered as a candi-
date, using multivariate normal distribution as the sampling
model. Finally, the LF is inserted in Equation 4 in order to approx-
imate the PEL of each candidate

L
�

o ¼
ð

yo2Y

ð
h2H

L FYo ; hÞf yojh; x
0

oÞp hjy;XÞ@hdyo;
���

(4)

where p hjy;XÞ
�

represent the joint posterior distributions of the
model’s parameters after fitting the model in step 1 (model in
Equation 3), and f yojh; x

0
oÞ

�
denotes the multivariate normal dis-

tribution (the sampling model), L FYo ; hÞ
�

is the used LF (KL or
Energy Score or MALF), and Lo is the PEL. Then, for each candi-
date o, Equation 4 has to be evaluated. Integrals cannot be evalu-
ated analytically; instead we used approximation iterating at
each realization of MCMC chains; then the integrals are reduced
to summations and averaged over the total number of MCMC
chains (for breeders and geneticists who are not familiar with
MCMC theory and Bayesian statistics, we attached all the source
codes used in this study). It is important to recall that both the re-
gression model in (3) and the LF used, can be replaced with any
multiple trait model and any LF, i.e., the Bayesian decision ap-
proach is a general formulation. Here, we used three LFs that we
think have a genetic sense.

It is important to note that the MTM R Package does not return
posterior distributions of the model’s parameters (which are
needed to approximate the posterior predictive distribution) as
MCMC objects, but internally it does. Therefore, we downloaded
the source code and modified a couple of lines to save them. In
http://hdl.handle.net/11529/10548420 the modified source code
is added to all the datasets for reproducibility of the results pre-
sented in this paper.

4 | G3, 2021, Vol. 11, No. 2

https://github.com/QuantGen/MTM
https://github.com/QuantGen/MTM
http://hdl.handle.net/11529/10548420


In this study, we used information on 767 lines in Dataset 1
and the 320 records in Dataset 2 to train the regression model;
the aim was to select the best 10% of lines (76 lines selected from
Dataset 1 and 32 lines selected from Dataset 2) with minimum
PEL; thus, the entire set of lines were considered as candidates.

As previously mentioned, we need a threshold vector for the
BDT approach in multi-trait selection. Thus, to analyze Dataset
1, we fixed yc ¼ 76q0:1 ; 116q0:1 ; 97q0:1 ; 7q0:9

� �0
for traits DTHD(–),

DTMT(–), Height(–) and GY(þ), respectively. These values are
lower than the simple averages 79.9 (DTHD), 120 (DTMT) and 103
(Height), given that improvement of these traits is in the decreas-
ing direction. For trait GY, improvement is in the increasing direc-
tion, as 7 is greater than the average of phenotypic values of GY
(6.3). Sub-indexes q0:1 and q0:9 denote 0.1 and 0.9 empirical quan-
tiles of observed phenotypic values of the corresponding traits.

For Dataset 2, the desired direction for all traits is in the in-
creasing direction, so we chose yc ¼ ð6; 38; 31; 43Þ0 for traits
GY(þ), TKW(þ), GZnC(þ), and GFeC(þ), respectively. Each value
in yc is greater than the simple average of the traits, 5.3 (GY), 33.1
(TKW), 28.1 (GZnC) and 38.6 (GFeC), and in all traits corresponds
to 0.9 empirical quantile of observed phenotypic values. Note
that the Bayesian decision formulation requires censoring on the
right side of the parental distribution to reflect that improvement
is in the positive direction, but in cases where the improvement is
in the decreasing direction, we need a truncation on the left side
of the distribution. A practical approach is to change the sign
(multiplying by �1) of the GEBVs when evaluating the LF. This ap-
proach was used for traits DTHD(–), DTMT(–) and Height(–) in
Dataset 1.

Results
Dataset 1
Figure 1 displays pair-wise plots of the GEBVs for the four traits in
Dataset 1 obtained under the KL LF. Figure 1A plots traits
DTHD(–) and DTMT(–), given that improvement is in the decreas-
ing direction for both traits, and the 76 selected lines (red dots)
are concentrated at low values of GEBVs for both traits; the phe-
notypic correlation between DTHD and DTMT is high: 0.84
(Table 1). Similar results are observed in Figure 1C for DTHD(–)
and Height(–) and in Figure 1E for the pair of traits DTMT(þ) and
Height(–) with correlations of 0.20 and 0.14, respectively.
Figure 1E depicts GEBVs of DTHD(–) and GY(þ), where the red
dots are concentrated in the top left quadrant of the picture,
given that we need to increase the phenotypic values of GY and,
at the same time, decrease the value of DTHD. The same is
shown in Figure 1D for the pair of traits DTMT(–) and GY(þ), and
finally, in Figure 1F, for GY(þ) and Height(–), the selected lines are
concentrated in the right bottom quadrant and have high GEBVs
of GY and small values of Height. Phenotypic correlations of GY
with the other traits were negligible, except with plant height
(0.24) (Table 1). These lines are the best according to the KL loss,
which considers improvement in all traits, in either the increas-
ing or decreasing direction. Similar plots were obtained using the
Energy Score (Figure A3, Appendix 3) MALF LFs (Figure A4,
Appendix 3), both of them with similar interpretations.

Table 2 shows the values of the best five lines and the worst
lines ranked based on the value of the three LFs, KL, Energy Score
and MALF, for Dataset 1. Table 2 also shows, for each trait and
for each of the five top ranking wheat lines and the worst five
lines, the GEBVs and the PEL under each LF. Values of PEL were
standardized to range from 0 (minimum loss) to 1 (maximum
loss). The values inside () represent the rank of each line in the

top 5 lines and in the worst 5 lines. Note that line 141 was ranked
at the top (minimum PEL) for the three LFs. The reason for this is
that it has low values of DTHD(–), DTMT(–) and Height(–), and al-
though it does not have the maximum value of GY(þ), it has a rel-
ative high GEBV (6.57 ton/ha for trait GY); thus it is reasonable
that it is ranked first. Wheat line 635 with the highest GEBV of 6.8
tons/ha for GY(þ) ranked five based on the KL LF; this is because
the GEBVs for the other traits were not so low; the other four top
lines (141, 232, 210, and 334) based on KL criteria had the lowest
values for the other three traits DTHD, DTMT and Height; these
lines gave slightly lower grain yield (6.6, 6.5, 6.6, and 6.7 tons/ha)
than the line ranked five (635) based on KL criteria.

The other two LFs, Energy Score and MALF, except for line 141,
selected another set of wheat lines in the top five, with lower val-
ues of the traits than the wheat lines selected by the KL LF.
Regarding grain yield (þ), the top lines selected under Energy
Score and MALF had lower grain yield than those selected by the
KL criterion; however, the Energy Score and MALF criteria se-
lected lines with lower values for traits DTHD(–), DTMT(–), and
Height(–) than the KL criteria. As for the worst five lines, both cri-
teria selected similar lines. Although only line (141) was selected
under all LF criteria, in the 76 lines selected to be parents of the
next generation for Dataset 1, KL vs Energy Score selected 30.26%
of the same lines, KL vs MALF selected 31.58% of the same lines,
and Energy Score vs MALF selected 92.11% of the same lines. Of
the five worst lines based on PEL, we can see that they have high
values for traits DTHD, DTMT and Height, but it was difficult to
find lines with low values for trait GY.

Table A1 (Appendix 3) shows the posterior variance of each
line in the five best and the five worst lines for each LF applied to
Dataset 1. Regarding the variances of the posterior predictive dis-
tribution of the top five lines, they were not very different for the
four traits for all LFs. Of the top five lines based on KL only, two
had the highest posterior variance (210 and 635); the line with the
highest GEBV for trait GY (6.8 tons/ha) (635) (ranked 5 based on
KL) had intermediate variance for the four traits.

In summary, for Dataset 1, the KL LF gave similar importance
to all traits. In contrast, the Energy Score and MALF gave better
performance in three of four traits (DTHD, DTMT and Height)
leaving the GY trait as less important. In terms of the posterior
variance, these differences were negligible. The LF approach
should help breeders to decide based not only on the GEBV values
per se of the parent to be selected, but also on the level of uncer-
tainty according to the Bayesian paradigm.

Dataset 2
The phenotypic correlations among traits for Dataset 2 are
shown in Table 1. Figure 2 displays a pair-wise plot for every com-
bination of the posterior mean of the GEBV of the four traits. In
this scenario, we are interested in increasing genetic gain in the
positive direction for all traits. Therefore, the points representing
selected individuals are in the top-right corner of the pair-wise
plots for correlated traits. Those lines represented by red dots
should be the ones breeders select to make crosses and move to
the next improvement cycle, thereby assuring simultaneous in-
crease in genetic gains (response to selection) in the four traits.
Similar plots were obtained using the Energy Score (Figure A5,
Appendix 3) and MALF LFs (Figure A6, Appendix 3), both of them
with similar interpretation as in the KL LF.

The multi-trait values of the top five lines and the worst five
lines ranked based on the three LFs, KL, Energy Score and MALF,
for wheat Dataset 2 are shown in Table 3. In this case, wheat line
177 had the highest GEBV (5.97 tons/ha) for GY and was ranked in
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1st place by KL LF; the other four top lines based on KL criteria
also had high values of GEBV for TKW, GZnC and GFeC traits; the
means of traits GY, TKW, GZnC and GFeC were 5.4, 33.2, 28.1 and
38.7, respectively, and all GEBVs for all traits had values greater
than the mean. The other two LFs, Energy Score and MALF, se-
lected different sets of wheat lines than those identified by KL;

they also had lower values for GY (and higher for the other traits)
than those wheat lines selected by the KL LF. As already men-
tioned, regarding grain yield, the top lines selected under Energy
Score and MALF had lower grain yield than those selected by the
KL criteria (lower than 5.5 tons/ha). However, the Energy Score
and MALF criteria selected lines with higher values for traits

Figure 2 Pair-wise plots of GEBVs for traits in Dataset 2 using KL loss function. In (A) GY and TKW; (B) GY and GZnC; (C) GY and GFeC; (D) TKW and
GZnC; (E) TKW and GFeC; (F) GZnC and GFeC. The desired improvement for all traits is in the increasing direction, i.e., we wish to increase the GEBVs of
all four traits. Red dots represent 10% of the selected lines with minimum PEL.

Figure 1 Pair-wise plots of GEBVs for traits in Dataset 1 using KL loss function. In (A) DTHD(–) and DTMT(–); (B) DTHD(–) and GY(þ); (C) DTHD (�) and
Height (�); (D) DTMT(–) and GY(þ); (E) DTMT(þ) and Height(–); (F) GY(þ) and Height(–). The desired direction of improvement is illustrated as (þ) ¼
increasing direction of the trait, and (–) ¼ decreasing direction of the trait. Red dots represent 10% of the selected lines with minimum PEL.
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GZnC and GFeC than the KL criteria. Only line 64 was selected for
all LFs in this dataset in the top 5 best; KL ranked it as 4, but
Energy Score and MALF ranked it as 1. Similarities in selected
lines are depicted in Figure 2, A–F, Figures A5, A–F (Appendix 3)
and Figures A6, A–F (Appendix 3) for all LFs for the 32 lines se-
lected to be parents of the next generation, and are confirmed by
the percentage of lines selected; thus, KL vs Energy Score selected
85.5% of the same lines, KL vs MALF 86.8%, and Energy Score vs
MALF 96%. Regarding the five worst lines, all LFs identified the
same lines, all of them with GEBVs less than the mean.

Table A2 (Appendix 3), shows, for each trait, the variance of
the posterior predictive distribution of the best 5 and the worst 5
wheat lines based on their respective LFs, and their ranking based
on PEL. Regarding the variances of the posterior predictive distri-
bution of the top five lines, they were not very different for the
four traits based on KL criteria. Of the top five lines based on KL
only, two had the highest posterior variance (177 and 201) for
trait GY; line 202 had the highest posterior variance for trait
GZnC (10.53) and line 64 had high genetic variance for trait GFeC.

In summary, for this dataset, results show that on average the
LFs performed similarly, in terms of the posterior mean and the
posterior variance of the selected individuals.

Discussion
The main objective of this study was to present practical exam-
ples of how the GS via LF concepts and BDT of Villar-Hernández
et al. (2018) can be used in candidate selection on two extensive
datasets from which we wish to identify the 10% best performing
individuals according to LF criteria, and advance them to the
next generation of random mating. Based on this, we believe that
the proposed multi-trait decision theory gives a clear interpreta-
tion of quantitative genetic and plant breeding methods because
it selects the lines that maximize the response to selection of
multi-traits by minimizing the LF (which, in turn, is a function of
the heritability, selection differential and multi-trait phenotypic
and genotypic covariance matrices).

To perform GS selection using a decision theory approach, the
following steps are required: (1) training a multi-trait mixed

regression model with genomic and phenotypic data, (2) approxi-
mating the posterior predictive distribution of each parental can-
didate using genomic information and the trained model, (3)
calculating the PEL via MCMC approximation, and (4) selecting
the best lines with minimum PEL according to the desired selec-
tion intensity.

The central part of the decision theory approach is the concept
of an LF reflecting the breeder’s preferences for the best perform-
ing parental candidates for selection. By minimizing the PEL, we
maximize the genetic progress in all traits considered (maximiza-
tion of the net genetic merit of individual lines), understanding
that genetic progress is a compromise between increasing/de-
creasing (depending on the desired direction of improvement) BV
(or GEBV) for all traits in successive selection cycles with the low-
est possible loss of genetic diversity.

The use of LF methodology raised some natural questions; for
example, how to reflect breeders’ preference for high/low pheno-
typic values, or what the best values of yc (threshold vector) are.
The proposed LF can be studied by incorporating inbreeding and
co-ancestry information, and by extending the LF concept with
non-Gaussian traits (Poisson, Binomial, etc.). The LFs facilitate
the selection of multi-trait scoring in a single metric (a scalar) for
each candidate line to be a parent of the next generation. The se-
lection of multi-traits is important because the net genetic merit
and the economic value usually depend more on some traits
than on others. In general, genomic-enabled prediction multi-
trait models have become more useful than single-trait models
because trait correlation information can be exploited to increase
the prediction accuracy of correlated traits. In fact, multi-trait se-
lection occurs even using a single-trait selection approach; how-
ever, if selection is based on a multi-trait regression model
(parametrized as mixed or not) and the BDT framework, the re-
searcher is selecting the best performing individuals for all the
traits together. The BDT is the ideal approach for correlated
traits.

By formulating the multi-trait selection in GS as a Bayesian
decision problem, all uncertainty/risk components such as un-
certainty in model parameters (mean and variance) and

Table 2 Dataset 1

LINE GEBV Posterior expected loss

DTHD DTMT GY Height KL Energy MALF

Top five lines
141 74.70 114.92 6.57 96.89 0 (1) 0 (1) 0 (1)
232 76.54 117.01 6.54 99.45 0.068 (2) — —
210 77.54 118.80 6.58 98.27 0.072 (3) — —
334 77.46 118.75 6.70 99.86 0.077 (4) — —
635 76.27 116.44 6.78 101.54 0.078 (5) — —
551 73.01 113.53 5.86 99.03 — 0.006 (2) 0.002 (2)
553 73.27 113.38 5.84 99.21 — 0.017 (3) 0.013 (3)
15 74.17 115.05 5.95 98.68 — 0.023 (4) 0.033 (4)
554 73.84 114.25 5.82 99.04 — 0.026 (5) 0.041 (5)
Bottom five lines
547 89.03 127.52 6.21 107.15 0.805 (762) 0.911 (763) 0.929 (764)
753 85.72 125.03 6.16 110.56 0.916 (763) — —
485 87.90 127.46 5.53 105.31 0.959 (764) — —
351 89.98 129.73 5.78 106.36 0.995 (765) 1 (766) 1 (766)
478 88.51 128.33 6.38 106.72 — 0.903 (762) 0.907 (762)
320 89.73 129.61 5.55 104.24 1 (766) 0.943 (764) 0.927 (763)
546 89.54 128.39 6.61 108.45 — 0.98 (765) 0.98 (765)

The five best lines and five worst lines based on posterior expected loss (PEL), under KL, Energy Score and MALF loss functions. Summaries are given for GEBVs for
all traits in Dataset 1. Values of PEL were standardized to vary from 0 (minimum) to 1 (maximum). Values in () represent the rank of the line with respect to each
loss function.
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uncertainty in the effects of molecular markers are simulta-
neously considered in the LF when computing PEL. Furthermore,
the LFs can be interpreted in terms of common concepts for
geneticists such as heritability, and LFs are minimized when heri-
tability increases, as was pointed out by Villar-Hernández et al.
(2018). As a complement, LF concepts and selection through
Bayesian decision is a well-established theory in statistics and its
applications (Berger 1985, Ch4; Dawid 2007; Robert 2007, Ch2).
Bayesian decision is a coherent way of selecting the “best
parents/individuals” to advance in GS because the consequences
of selection cannot be completely anticipated and uncertainty is
contemplated in a unified framework. Expected loss theory
assigns a quantitative loss to each possible decision, and then
selects an action that minimizes the expected value of the result-
ing loss. This idea has proven to be a widely applicable descrip-
tion of rational behavior (Parmigiani and Inoue 2009).

In this study, we conducted a selection of parental individuals
using the LF approach in two extensive real wheat datasets com-
prising four traits. In the first dataset (Dataset 1), the genetic
progress of three of four traits was in the decreasing direction,
and in one trait the progress needed to increase; however, corre-
lations between traits were positive but low, except for two traits.
In the second dataset (Dataset 2), the progress needed was in the
increasing direction and correlations between traits were, in gen-
eral, negligible. Results from both datasets indicate that all LFs
performed similarly, although in Dataset 1 there was a minor ad-
vantage of Energy Score and MALF functions over the KL (Energy
Score and MALF performed better than KL loss in three of four
traits, but sacrificed one trait: GY). This small difference in favor
of Energy Score and MALF may be explained by the fact that in
Dataset 1 there are traits whose improvement directions are in
the positive and negative sense, or that positive and negative cor-
relations between traits are present. These cases were not pre-
sent in Dataset 2. In terms of posterior variance, the three LFs
performed similarly in both datasets, i.e., sometimes LFs selected
lines with high posterior variance, but other times they selected
lines with low/medium posterior variance, but on average, per-
centual differences were insignificant. Additionally, it is impor-
tant to note that Energy Score and MALF selected up to 96% of
the same lines. In general, results from both datasets show that

the lines with the highest GY values are not always those that
will give less uncertainty and minimize the LF while maximizing
the response to selection. The reason for this is that LFs weighted
gains in all traits, not only GY; in Dataset 1, the best GY line
ranked 5th under KL criteria and was not selected at all under
Energy and MALF LF criteria. However, in Dataset 1, one line was
selected as the best parent for the three LFs. In Dataset 2, the
best GY line was the one with minimum KL value, but a line that
was ranked 4th based on KL criteria with less GY than the one
that ranked first was in fact selected as the best based on Energy
and MALF criteria.

The use of Mean Squared Error, is in a sense, a quadratic dis-
tance that has its generalization in the LF named Continuous
Ranked Probability Score (CRPS). The Energy Score LF, on the
other hand, is a generalization of the CRPS LF in the multivariate
context. Thus, on this respect the “mean squared error” is indeed
included in the context of this study by means of the “Energy
Score” LF.

Some differences between the multi-trait
Bayesian decision and selection indices
Both the multi-trait BDT and the SI theory are indeed related be-
cause they are based on estimations of P and G. However, differ-
ences can be pointed out. First, the main difficulty when using SI
in plant breeding is determining a vector of economic weights,
whereas when using the Bayesian decision approach, the trun-
cated yc values for the truncated distribution are easy to deter-
mine for increasing or/and decreasing traits. The BDT framework
uses complete posterior distributions of each candidates and not
only punctual estimates as SI does. The SI maximizes the re-
sponse to selection based on the estimation of the coefficients of
the economic weights that maximizes the correlation between
the index and the net genetic merits and thus maximizes the se-
lection response, whereas the BDT employs the divergence be-
tween distributions, which, as already mentioned, induces less
penalty for those lines that have more density to the right of cen-
soring values (yc) or put more density to the left of censoring val-
ues (yc). The three LFs used here, were derived and described
based on univariate and multi-trait heritability, response to se-
lection, and selection differential.

Table 3 Dataset 2

LINE GEBV Posterior expected loss

GY TKW GZnC GFeC KL Energy MALF

Top five lines
177 5.97 38.52 29.90 40.91 0 (1) — —
202 5.78 36.94 31.11 41.25 0.002 (2) — —
201 5.76 36.57 31.13 40.92 0.018 (3) —
64 5.51 40.08 30.31 42.89 0.034 (4) 0 (1) 0 (1)
178 6.01 37.88 29.20 40.33 0.044 (5) — —
35 5.21 36.18 32.29 44.80 — 0.025 (3) 0.022 (2)
38 5.15 36.61 32.96 42.99 — 0.022 (2) 0.035 (3)
211 5.06 36.73 33.19 42.37 — 0.037 (4) 0.053 (4)
213 5.08 36.89 32.83 42.03 — 0.045 (5) 0.074 (5)
Bottom five lines
232 5.01 29.29 26.67 35.49 0.872 (312) 0.93 (312) 0.95 (312)
234 5.09 29.21 26.42 35.02 0.89 (313) 0.988 (315) 0.996 (314)
233 5.08 28.92 26.44 35.09 0.902 (314) 1 (316) 1 (316)
72 4.74 30.70 25.00 35.70 0.986 (315) 0.935 (313) 0.97 (313)
73 4.79 30.51 24.75 35.51 1 (316) 0.957 (314) 0.996 (315)

The five best lines and five worst lines ranked based on posterior expected loss (PEL), under KL, Energy Score and MALF loss functions. Summaries are given for
GEBVs for all traits in Dataset 2. Values of PEL were standardized to vary from 0 (minimum) to 1 (maximum). Values in () represent the rank of the line with respect
to each loss function.
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Although economic weights are not necessary to implement

selections indices, a relevant question would be how to imple-

ment these economical weight in the proposed LFs. Further re-

search if required for comparing the multivariate LFs proposed in

this study and the selection index theory and practice applied in

breeding. Another comparison of the multivariate LF of the pro-

posed method could be with a relevant methodology based on

multi-objective optimization based approaches as in Akdemir

et al. (2018).

Conclusions
In this research we conducted multi-trait selection of the best

performing individuals using two extensive real wheat datasets

with four traits under selection, through the BDT framework and

LF concept. The main objective was to show a practical applica-

tion and clarify some doubts and omissions in explanations not

covered in the proposal of the authors in a preceding work

(Villar-Hernández et al. 2018) where three LFs were explained as

mechanisms for conducting multi-trait selection: the KL, the

Energy Score, and the MALF. After applying the methodology, we

found that for our datasets, all LFs performed similarly, selecting

a subset of lines that guarantees the greatest genetic progress of

all traits, although for one dataset we found a small advantage of

Energy Score and MALF over the KL loss (i.e., in three of four traits

in Dataset 1, the Energy Score and MALF reported greater gains

than KL). In terms of genetic variance, the three LFs performed

similarly in both datasets, i.e., sometimes LFs selected lines with

high variance, but other times they selected lines with low/me-

dium variance, but on average, the perceptual differences in vari-

ance with respect to the variance of the whole population for the

three LFs were insignificant. Selection using LFs has the potential

to be effective in multi-trait selection in GS given that it summa-

rizes all relevant genetic concepts such as heritability, response

to selection and the structure of dependence between traits (cor-

relation).
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Appendix 1: Single-trait detailed example
This appendix shows how to conduct a Bayesian decision ap-
proach to a case of single-trait selection. We considered only trait
GFeC from Dataset 2, and the Kullback–Leibler distance. The KL
metric can be used to measure the distance between any pair of
distributions, not only normal distributions. In this step-by-step
example, we used the KL metric for two normal distributions. For
a single-trait scenario, the model is written as

yi ¼ l1 þ
Xp

j¼1
xijbj þ �i;

where yi denotes the phenotypic values of trait GFeC for individu-
als i ¼ 1; 2; . . . ; n, l1 is the general mean, xij has the genotypes of
line i in the j-th molecular marker, bj is the associated coefficient
for the j-th predictor, and ei is the residual term. If we assume
that ei � Nð0;r2Þ, then the previous model is equivalent to
yi � Nðl1 þ x0b;r2Þ. Note that x0b ¼

Pp
j¼1 xijbj is the signal given by

the genomic information.
One way to fit the previous model is using Bayesian Ridge

Regression and imposing appropriate prior distributions on the
model’s parameters (h ¼ ½l1; b;r

2�0 with b ¼ ½b1; . . . ; bp�0). Details are
in the BGLR of Pérez-Rodrı́guez and de los Campos (2014). BGLR
applies the Gibbs Sampler Algorithm to approximate full posterior
distributions of each component of h (Casella and George 1992).

After fitting the model and discarding the first 20,000 samples
and thinning at lag 5, we had M ¼ 8000 samples from stationary

distributions of the model’s h parameters. For this example of a
single-trait case, we fixed yc ¼ 40: To obtain full posterior distri-
butions of each of the 316 lines in Dataset 2, we used the same
sampling model, i.e., yi � Nðl1 þ

Pp
j¼1 xijbj;r

2Þ, and approximated
PEL as is described next. Figure A1 graphically shows how we
computed the posterior predictive distribution and the KL loss for
one line at each iteration of the MCMC samples; this process is re-
peated for each line in the candidate set, i.e., for the 316 lines.

After the previous steps, we obtained the PEL for each line, and
ranked the lines from minimum to maximum PEL to identify the
best 32 lines according to the LF criterion. Figure A2A shows the
posterior distributions of the best five lines and the worst five
lines according to the KL loss; some of the distributions of the
lines not in the five best sets and not in the five worst sets are
also displayed. Figure A2B shows on the x-axis the estimated
GEBV, and on the y-axis, the posterior variance of each of the 320
lines in our dataset. After selecting by the LF criterion, the blue
dots represent the individuals that were selected and the orange
dots represent the individuals not selected. As can be observed,
the selected lines have high values of GEBV and posterior vari-
ance values, which is not surprising because the analytical ex-
pression in Equation 1c (article) guarantees that. The procedure
described above is easily extended to the multi-trait scenario,
replacing the univariate sampling model for the multivariate nor-
mal distribution.
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Appendix 2: The Energy Score and MALF loss
functions
The Energy Score is a multivariate loss function that comes from a
well-known univariate loss function called Continuous Ranked
Probability Score (CRPS) that is used in diverse applications
(Hersbach 2000; Gneiting and Raftery 2007). The generalization of
CRPS to multivariate scenarios was addressed by Székely and Rizzo
(2013). For multi-trait GS purposes, the Energy Score is expressed as

ES FYo; lsð Þ ¼ EFkYo � lsk �
1
2

EFkYo � Yo
0k (2.1)

where | � | denote the Euclidean norm, Yo and ls were previously
defined, and Yo’ denotes an independent random vector with the
same distribution as Yo, i.e, FYo .

Another multivariate loss function tested in this research is
MALF (Komunjer and Owyang 2012), which is an asymmetric

multivariate loss function. MALF comes from a very commonly

used univariate loss function known in financial and actuarial lit-

erature as LinLin (Linear-Linear) Loss (Berk 2011). The MALF for

multi-trait GS is expressed as

L1 FYo; ls; sÞ ¼ eþ s
0
e:

�
(2.2)

where e ¼ ls � l2ð Þ
0

or, alternatively, expressed as e ¼ S� R ¼
S I� GP�1ð Þ (note that e is a vector of length equal to the number

of traits), s is a vector of length equal to the number of traits that

controls the degree of asymmetry and has support (-1 < s < 1).

The term e ¼ e1 þ e2 þ � � � þ etð Þ ¼
P
jeij, i.e., the L1 � norm,

whereas e ¼ ðe1; e2; . . . ; etÞ0 is the vector of deviations for trait

1; 2; . . . ; t. Note that when ðI� GP�1Þ ! 0, the MALF is minimized,

similar to KL loss.

Figure A1 Computation of the posterior distribution of one line and approximation of the posterior expected loss (PEL) using MCMC samples of the
posterior distribution of the model’s parameters after fitting the model using the Kullback–Leibler (KL) loss function. The number inside ( ) denotes the
iteration of the procedure to approximate the posterior predictive distribution and PEL.

Table A1 Dataset 1

LINE Posterior variance Expected loss

DTHD DTMT GY Height KL Energy MALF

Top five lines
141 32.49 27.70 0.45 23.18 0 (1) 0 (1) 0 (1)
232 32.23 27.55 0.44 23.44 0.068 (2) —- —-
210 33.42 28.81 0.44 23.56 0.072 (3) —- —-
334 32.36 28.11 0.44 22.72 0.077 (4) —- —-
635 33.54 28.93 0.44 23.33 0.078 (5) —- —-
15 32.06 27.79 0.45 23.03 —- 0.023 (4) 0.033 (4)
551 32.71 28.20 0.46 23.54 —- 0.006 (2) 0.002 (2)
553 32.87 27.88 0.45 23.98 —- 0.017 (3) 0.013 (3)
554 32.66 28.05 0.44 23.41 —- 0.026 (5) 0.041 (5)
Bottom five lines
547 32.29 27.74 0.43 23.25 0.805 (762) 0.911 (763) 0.929 (764)
753 32.02 27.58 0.45 23.61 0.916 (763) —- —-
485 33.39 28.87 0.44 23.36 0.959 (764) —- —-
351 32.12 27.49 0.44 23.02 0.995 (765) 1 (766) 1 (766)
320 31.50 27.42 0.44 22.83 1 (766) 0.943 (764) 0.927 (763)
478 32.88 28.13 0.45 23.03 —- 0.903 (762) 0.907 (762)
546 32.56 27.76 0.44 23.37 —- 0.98 (765) 0.98 (765)

Five best lines and five worst lines based on posterior expected loss (PEL), under KL, Energy Score and MALF. Summaries are given for posterior variances. Values of
PEL were standardized to vary from 0 (minimum) to 1 (maximum). Values in () represent the rank of the line with respect to each loss function.
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Figure A2 (A) Posterior distributions of the 5 best and the 5 worst lines and some of the rest of the lines for trait GFeC in Dataset 2. (B) Pair-wise plot of
GEBV and posterior variance for all lines in Dataset 2; the blue dots represent the 32 selected lines according to the minimum posterior expected loss
(PEL) using the Kullback–Leibler distance.

Table A2 Dataset 2

LINE Posterior variance Expected loss

DTHD DTMT GY Height KL Energy MALF

Top five lines
177 0.39 14.82 10.25 12.88 0 (1) — —
202 0.38 15.22 10.53 12.52 0.002 (2) — —
201 0.39 15.32 10.08 12.32 0.018 (3) — —
64 0.38 14.90 10.28 13.05 0.034 (4) 0 (1) 0 (1)
178 0.39 15.52 10.44 13.00 0.044 (5) — —
35 0.39 15.22 10.45 12.69 — 0.025 (3) 0.022 (2)
38 0.38 15.03 10.35 12.75 — 0.022 (2) 0.035 (3)
211 0.37 15.48 10.57 12.81 — 0.037 (4) 0.053 (4)
213 0.39 15.25 10.15 13.05 — 0.045 (5) 0.074 (5)
Bottom five lines
232 0.38 15.70 10.12 13.10 0.872 (312) 0.93 (312) 0.95 (312)
234 0.39 15.24 10.54 12.77 0.89 (313) 0.988 (315) 0.996 (314)
233 0.38 15.11 10.16 12.51 0.902 (314) 1 (316) 1 (316)
72 0.38 15.70 10.23 12.55 0.986 (315) 0.935 (313) 0.97 (313)
73 0.38 15.16 10.33 12.62 1 (316) 0.957 (314) 0.996 (315)

Five best lines and five worst lines based on posterior expected loss (PEL), under KL, Energy Score and MALF. Summaries are given for posterior variances. Values of
PEL were standardized to vary from 0 (minimum) to 1 (maximum). Values in () represent the rank of the line with respect to each loss function.
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Appendix 3

Figure A3 Pair-wise plots of GEBVs for traits in Dataset 1 using Energy Score. In (A) are plotted DTHD (–) and DTMT (–); (B) DTHD (–) and GY (þ); (C)
DTHD (–) and Height (–); (D) DTMT(–) and GY (þ); (E) DTMT (þ) and Height (–); (F) GY(þ) and Height (–). The desired direction of improvement is
illustrated as (þ) ¼ increasing direction of the trait, and (–) ¼ decreasing direction of the trait. Red dots represent 10% of the selected lines with
minimum PEL.

Figure A4 Pair-wise plots of GEBVs for traits in Dataset 1 using MALF. In (A) are plotted DTHD (–) and DTMT (–); (B) DTHD (–) and GY(þ); (C) DTHD (–)
and Height (–); (D) DTMT (–) and GY(þ); (E) DTMT (þ) and Height (–); (F) GY (þ) and Height (–). The desired direction of improvement is illustrated as (þ)
¼ increasing direction of the trait, and (–) ¼ decreasing direction of the trait. Red dots represent 10% of the selected lines with minimum PEL.
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Figure A5 Pair-wise plots of GEBVs for traits in Dataset 2 using Energy Score. In (A) are plotted GY and TKW; (B) GY and GZnC; (C) GY and GFeC; (D)
TKW and GZnC; (E) TKW and GFeC; (F) GZnC and GFeC. The desired improvement for all traits is in the increasing direction, i.e., we wish to increase the
GEBVs of all four traits. Red dots represent 10% of the selected lines with minimum PEL.

Figure A6 Pair-wise plots of GEBVs for traits in Dataset 2 using MALF. In (A) are plotted GY and TKW; (B) GY and GZnC; (C) GY and GFeC; (D) TKW and
GZnC; (E) TKW and GFeC; (F) GZnC and GFeC. The desired improvement for all traits is in the increasing direction, i.e., we wish to increase the GEBVs of
all four traits. Red dots represent 10% of the selected lines with minimum PEL.
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