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Deficiency in the double‑stranded RNA 
binding protein HYPONASTIC LEAVES1 increases 
sensitivity to the endoplasmic reticulum stress 
inducer tunicamycin in Arabidopsis
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Abstract 

Objective:  microRNA (miRNA) is a small non-coding RNA that regulates gene expression by sequence-dependent 
binding to protein-coding mRNA in eukaryotic cells. In plants, miRNA plays important roles in a plethora of physiolog‑
ical processes, including abiotic and biotic stress responses. The present study was conducted to investigate whether 
miRNA-mediated regulation is important for the endoplasmic reticulum (ER) stress response in Arabidopsis.

Results:  We found that hyl1 mutant plants are more sensitive to tunicamycin, an inhibitor of N-linked glycosylation 
that causes ER stress than wild-type plants. Other miRNA-related mutants, se and ago1, exhibited similar sensitivity 
to the wild-type, indicating that the hypersensitive phenotype is attributable to the loss-of-function of HYL1, rather 
than deficiency in general miRNA biogenesis and function. However, the transcriptional response of select ER stress-
responsive genes in hyl1 mutant plants was indistinguishable from that of wild-type plants, suggesting that the loss-
of-function of HYL1 does not affect the ER stress signaling pathways.
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Introduction
microRNA (miRNA) is a non-coding small RNA that 
regulates gene expression in eukaryotic cells. miRNA 
binds to mRNA through nucleotide complementarity 
and mediates mRNA degradation and translation inhibi-
tion. The molecular mechanism of miRNA biogenesis has 
been extensively characterized in both animal and plant 
systems. In plants, miRNA is transcribed as a precursor 
RNA, termed primary miRNA (pri-miRNA) and pro-
cessed by DICER-LIKE1 (DCL1) to generate a miRNA/
miRNA* duplex [1]. One of the strands, miRNA, is incor-
porated into ARGONAUTE1 (AGO1) to form RNA-
induced silencing complex (RISC) to target mRNA to 
mediate mRNA degradation and translation repression 

whereas the other strand, miRNA*, is degraded. A 
number of proteins, such as the double-stranded RNA 
(dsRNA) binding protein HYPONASTIC LEAVES1 
(HYL1) and the zinc finger protein SERRATE (SE), have 
been reported to function in ensuring accurate and effi-
cient miRNA biogenesis [2–4].

In plants, miRNA plays pivotal roles in a plethora of 
physiological processes, including abiotic and biotic 
stress responses and nutrient adaptation [5]. Indeed, a 
number of stress-related miRNAs have been identified in 
various plant species. For instance, Arabidopsis has been 
reported to accumulate miRNAs in response to salinity, 
drought, and cold [6]. Another example is that a salt-tol-
erant and a salt-sensitive line of maize express differential 
miRNA accumulation profiles [7]. miR399, miR395, and 
miR398 have been shown to be important for phosphate, 
sulfate, and copper homeostasis in plants [5].
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The endoplasmic reticulum (ER) is the site of synthe-
sis and maturation of secretory and membrane proteins 
in eukaryotic cells. ER stress occurs when protein folding 
and assembly in the ER is perturbed and unfolded and 
misfolded proteins accumulate in the ER. ER stress trig-
gers a cellular response to maintain homeostasis called 
the ER stress response or the unfolded protein response 
(UPR) [8, 9]. IRE1 is an ER stress sensor widely conserved 
in eukaryotes. IRE1 is a type-I membrane protein and 
harbors the ER luminal sensor domain and the cytosolic 
kinase and ribonuclease domains [10]. In plants, IRE1 
mediates transcriptional activation of genes encoding 
ER chaperones and folding enzymes, including BIND-
ING PROTEIN (BiP), through cytoplasmic splicing of 
bZIP60 mRNA, which produces an active transcription 
factor [11, 12]. IRE1 also mediates degradation of mRNA 
encoding secretory and membrane proteins to reduce the 
load of newly synthesized proteins into the stressed ER 
[13].

Although regulation of gene expression by miRNA 
is involved in a number of stress responses in plants, 
its involvement in the ER stress response has not been 
investigated. The present study was conducted to investi-
gate a possible involvement of miRNA-related proteins in 
the ER stress response in Arabidopsis.

Main text
Methods
Plant materials
We used Arabidopsis thaliana Col-0 as wild-type and 
previously reported mutants in Col-0 background, hyl1-
2 [4], se-1 [14], ago1-46 [15], and ire1ab [11]. HYL1-
YFP/hyl1-2 is hyl1-2 mutant expressing HYL1-YFP fusion 
proteins under HYL1 promoter [16].

Sensitivity assay to ER stress‑inducing agents
The sensitivity assay was carried out as previously 
described [17]. Briefly, Arabidopsis seeds of indicated 
genotypes were surface sterilized and sown on half-
strength Murashige Skoog (MS) medium containing 1% 
sucrose supplemented with indicated concentrations 
of tunicamycin or 0.1% dimethyl sulfoxide (DMSO) as 
a solvent control. Sterilized seeds were grown under 
16 h-light/8 h-dark cycle at 23 °C for 10 days and photo-
graphed. Seedlings with open cotyledons were counted as 
survived. Error bars represent standard errors calculated 
from three biological replicates.

Quantitative reverse transcription‑PCR (qRT‑PCR)
Ten-day-old wild-type and mutant seedlings grown in 
half-strength MS medium containing 1% sucrose were 
treated with 5  μg/mL tunicamycin for indicated time 
periods and ground by using a mortar and pestle with 

liquid nitrogen. Total RNA was extracted using acid 
guanidinium thiocyanate, phenol, and chloroform as 
described elsewhere [18].

One hundred ng RNA was reverse transcribed by 
High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems) using random hexamer according to the 
manufacturer’s instruction. Quantitative real-time PCR 
was performed by using Applied Biosystems 7300 Real-
Time PCR Systems (Applied Biosystems) with THUN-
DERBIRD SYBR qPCR Mix (TOYOBO) according to 
the manufacturer’s instruction. Primers used were listed 
in Additional file 1. Error bars represent standard errors 
calculated from three biological replicates.

Results
hyl1 mutant is more sensitive to ER stress
We first asked whether miRNA-related Arabidopsis 
mutants exhibit altered ER stress sensitivity. We exam-
ined hyl1-2, se-1, and ago1-46 mutants for ER stress 
sensitivity. As shown in Fig.  1a, compared to wild-type 
seedlings, growth of hyl1-2 mutant seedlings was more 
severely affected by treatment with tunicamycin, an 
inhibitor of N-linked glycosylation, which disrupts fold-
ing of glycosylated proteins, thereby causing ER stress. 
In contrast, growth of se-1 and ago1-46 mutant seedlings 
was similar to that of the wild-type seedlings. As shown 
in Fig. 1b, the survival rate was also significantly affected 
in hyl1-2 mutant, but not in se-1 and ago1-46 mutants, 
when grown on tunicamycin-containing MS medium. 
The observation that only hyl1-2 mutant was more sensi-
tive to tunicamycin suggests that the hypersensitive phe-
notype of hyl1-2 mutant to tunicamycin is attributed to 
the deficiency in the function of HYL1, rather than the 
defective miRNA biogenesis.

This hypersensitive phenotype of the hyl1-2 mutant was 
complemented by expressing the HYL1-YFP fusion con-
struct (Fig. 1c, d), confirming that the disruption of HYL1 
accounts for the observed tunicamycin hypersensitivity.

A transcriptional response of hyl1 mutant plants appears 
to be indistinguishable from that of wild‑type plants
We next compared the sensitivity of hyl1-2 mutant to that 
of ire1ab, a known mutant that exhibit hypersensitivity to 
ER stress due to the defective transcriptional response to 
ER stress [11]. As shown in Fig. 2a, the hypersensitivity of 
hyl1-2 mutant to tunicamycin was comparable to that of 
ire1ab mutant.

We then asked whether hyl1-2 mutant is defective in 
the UPR. We treated wild-type and hyl1-2 and ire1ab 
mutant seedlings with tunicamycin and subjected 
them  to qRT-PCR analysis. We first detected BiP3 as a 
gene induced in an IRE1-dependent manner in the early 
phase of the UPR [19, 20]. As shown in Fig.  2b, BiP3 
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was upregulated in hyl1-2 mutant as well as in wild-
type seedlings, whereas ire1ab mutant seedlings showed 
compromised BiP3 induction as previously reported 
[11]. We next detected another ER stress-responsive 
gene, At5g40010. At5g40010 is a gene up-regulated to 
some extent in the wild-type but more strongly in ire1ab 
mutant, presumably because ire1ab mutant under-
goes more severe cell damage [13]. As shown in Fig. 2b, 
At5g40010 transcripts responded similarly to tunicamy-
cin in hyl1-2 mutant as well as in the wild-type, whereas 
ire1ab mutant exhibited stronger At5g40010 induction 
as previously reported [13]. Other genes that encode ER-
resident molecular chaperones and folding enzymes also 
exhibit similar expression both in the wild-type and hyl1-
2 mutant plants (Fig. 2c). We also tested se-1 and ago1-46 
mutants, which exhibit similar tunicamycin sensitivity to 
the wild-type plants, for two ER chaperone genes; IRE1-
dependent BiP3 and IRE1-independent CRT2. As shown 
in Fig. 2d, induction of these two genes in both se-1 and 
ago1-46 mutants was similar to that in  the wild-type 
(Fig. 2d). Taken together, the transcriptional response of 
hyl1-2, se-1, and ago1-46 mutant plants is indistinguish-
able from that of wild-type plants.

Discussion
We demonstrated in the present study that, among 
Arabidopsis miRNA-related mutants tested, only hyl1-2 
mutant was more sensitive to the ER stress inducer tuni-
camycin while se-1 and ago1-46 mutants did not exhibit 
such hypersensitivity. It suggests that an overall reduc-
tion in miRNA biogenesis and function is not the cause 
of the observed tunicamycin oversensitivity.

One possible interpretation is that miRNAs that show 
less accumulation specifically in hyl1-2 mutant accounts 
for the observed hypersensitivity. Indeed, not all miRNAs 
are similarly affected among miRNA-related mutants 
[21], and the observable growth and morphological phe-
notypes of those mutants were not identical. Therefore, 
it is plausible that less accumulation of some of miR-
NAs whose accumulation is more dependent on HYL1 
stabilizes their target mRNAs, resulting in ER stress 
sensitivity.

Another possible interpretation is that HYL1-specific 
function contributes to ER stress tolerance. In plants, 
miRNA biogenesis, in which pri-miRNA transcripts are 
processed by DCL1 to generate mature miRNA, occurs 
in the subnuclear bodies called D-bodies in the nucleus. 
HYL1 is a dsRNA-binding protein that increases pri-
miRNA processing by DCL1 [1]. Although HYL1 is 
primarily localized in D-bodies and nucleoplasm in 
the nucleus, a subfraction of HYL1 is also detected in 
the cytoplasm [22]. Therefore, it is conceivable that 

Fig. 1  Sensitivity of Arabidopsis miRNA-related mutants to ER stress. 
a Sensitivity of miRNA-related mutants to tunicamycin. Seeds of 
wild-type (WT), hyl1-2, se-1, and ago1-46 were sown on half-strength 
MS medium with indicated concentrations of tunicamycin, grown 
for 10 days, and photographed. b Effect of tunicamycin on survival 
of miRNA-related mutants. Seeds of indicated genotypes were 
grown for 10 days as in a, and the percentage of seeds that survived 
was calculated. c Sensitivity of hyl1-2 and HYL1-YFP/hyl1-2 plants to 
tunicamycin. Seedlings of wild-type (WT), hyl1-2, and HYL1-YFP/hyl1-2 
were grown as in a and photographed. d Effect of tunicamycin on 
survival of hyl1-2 and HYL1-YFP/hyl1-2 plants. Seeds of indicated 
genotypes were grown for 10 days as in c, and the percentage of 
seeds that survived was calculated
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Fig. 2  Sensitivity and transcriptional response of hyl1-2 and ire1ab mutants to tunicamycin. a Effect of tunicamycin on survival of wild-type, hyl1-2, 
and ire1ab. Seeds of wild-type (WT), hyl1-2, and ire1ab were sown on half-strength MS medium with indicated concentrations of tunicamycin and 
grown for 10 days. The percentage of seeds that survived was calculated. b qRT-PCR analysis of wild-type and hyl1-2 and ire1ab mutant seedlings 
to tunicamycin. Ten-day-old wild-type and hyl1-2 and ire1ab mutant seedlings were treated with 5 μg/mL tunicamycin for indicated times and 
subjected to qRT-PCR analysis for detecting BiP3 and At5g40010. The expression values of indicated genes were normalized to that of Act8. c 
qRT-PCR analysis of wild-type and hyl1-2 mutant seedlings to tunicamycin. Ten-day-old wild-type and hyl1-2 mutant seedlings were treated with 
5 μg/mL tunicamycin (+Tm) or 0.1% DMSO (−Tm) as a solvent control for 5 h, and subjected to qRT-PCR analysis for detecting indicated genes. 
The expression values of indicated genes were normalized to that of Act8. d qRT-PCR analysis of wild-type and hyl1-2, se-1, and ago1-46 mutant 
seedlings to tunicamycin. Ten-day-old wild-type and mutant seedlings were treated with tunicamycin or DMSO and subjected to qRT-PCR analysis 
for BiP3 and CRT2 as in c 
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cytoplasmically localized HYL1 plays a role in recover-
ing cellular damages caused by ER stress.

There have been recent reports that implicate a link 
between  miRNA function and the ER. It has been 
reported that AGO1 is a peripheral ER membrane pro-
tein and that miRNA-mediated translational repression 
occurs on the ER membrane in plants [23]. Further-
more, in animal systems, IRE1 has been reported to 
destabilize a subset of pre-miRNAs to reduce accu-
mulation of select miRNAs and initiate apoptosis, 
demonstrating the involvement of the UPR signaling 
pathway component in miRNA biogenesis [24]. Those 
reports prompted us to speculate a possible connection 
between miRNA biogenesis and function machineries 
and the ER stress response. However, the present study 
was unable to identify such connections, because hyl1-
2 mutant exhibited a normal transcriptional response 
to ER stress despite its significantly less tolerance. Nev-
ertheless, this study presents an interesting observation 
that one of miRNA biogenesis-related mutants exhib-
its hypersensitivity to ER stress-inducing agents. Fur-
ther analyses such as genome-wide transcript profiling 
would be required to elucidate the role of HYL1 in ER 
stress tolerance and the UPR.

Limitations
The shortcoming of this paper is that the function of 
HYL1 during the ER stress response remains to be elu-
cidated due to the lack of further experimental analyses 
such as transcriptome profiling using RNA-seq.

Supplementary information
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org/10.1186/s1310​4-019-4623-3.
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