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Abstract: Cancer metastasis is one of the major causes of death in cancer.  
An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured 
soft coral Sinularia flexibilis has been examined for potential anti-cell migration and 
invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular 
mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their 
corresponding effects, remain poorly understood. In this study, we investigated  
anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T 
cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided 
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a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. 
After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix 
metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type 
plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor 
of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a 
concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed 
the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the 
expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. 

Keywords: 11-epi-sinulariolide acetate; hepatocellular carcinoma; migration; invasion; 
matrix metalloproteinase; ERK1/2; p38MAPK 

 

1. Introduction 

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan due to its 
high recurrence and poor prognosis [1]. The high mortality rate is primarily related to tumor invasion 
and distant metastasis [2]. Previous studies have suggested that tumor cell motility and invasion are 
related to local and distant metastasis, and that various signaling molecules are involved in the 
metastatic process [3,4]. 

The change in adhesive capability between tumor cells and extracellular matrix (ECM) is one key 
factor in cancer cell metastasis. The ECM affects the biological behavior of cancer cells, including the 
regulation of cell attachment, tumor development, and metastasis [5]. The degradation of the ECM is 
mediated by proteases, such as serine proteinase and the matrix metalloproteinases (MMPs). Matrix 
metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are highly expressed in various 
malignant tumors and are involved in the degradation and breakdown of the environmental extracellular 
matrix (ECM) and the basement membrane, promoting cancer metastasis [6,7]. MMP-2 and MMP-9, 
activated by plasmin, are markers associated with the tumor invasion and metastasis [8]. Plasmin is 
derived from cleavage of the specific peptide bond in plasminogen, activated by various enzymes, of 
which urokinase plasminogen activator (uPA) is one key enzyme. Urokinase plasminogen activator 
receptor (uPAR) is a cofactor for plasminogen activation through uPA. Once plasmin is activated by 
uPA enzyme cascade, MMPs are activated, leading to the degradation of type IV collagen. Degradation 
of type IV collagen breakdowns the basement membrane, and leads to increased cell motility. uPA is 
also involved in the proliferation, migration, adhesion, and angiogenesis of tumors [9]. MMP-2, MMP-9 
and uPA act as pivotal roles in degrading ECM and are involved in tumor metastasis and invasion [10]. 
Suppression of MMP-2, MMP-9 and uPA activity and expression could be a valid strategy to prevent 
tumor metastasis and invasion. 

A number of pathological states, including cancer, inflammation, and vascular diseases are associated 
with increased proteinase inhibitors. Tissue inhibitors of metalloproteinase (TIMPs), the endogenous 
inhibitors of the endopeptidases of the matrix metalloproteinase families, act through the formation of 
a tight complex with their cognate enzymes and inhibit the activities of MMPs [11]. The imbalance 
between the TIMPs and MMPs may contribute to degradation or deposition of the ECM [12,13]. 
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Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases involved in different 
cellular responses, and regulate cell proliferation, differentiation and apoptosis. The MAPK signaling 
pathway is one important target in the development of anti-cancer therapies [14,15]. It has been reported 
that invasion and metastasis of HCC cells requires specific intracellular signaling cascade activations, 
among which the ERK1/2, p38MAPK and JNK signaling pathway is considered crucial [16–19].  
An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral 
Sinularia flexibilis, has been shown to suppress inflammatory response and bone destruction in adjuvant 
induced arthritis and inhibits gene expression of cyclooxygenase-2 and interleukin-8 through attenuation 
of calcium signaling in EGF-stimulated epidermoid carcinoma cell [20,21]. The anti-metastatic effects  
of 11-epi-SA on HCC have yet to be evaluated. In the present study, we investigated the potential  
anti-metastatic effects of 11-epi-SA on hepatoma cell (HA22T) and the underlying mechanisms. 

2. Results and Discussion 

2.1. Effects of 11-epi-SA on HA22T Cells Viability 

The results illustrate the anti-proliferation effects of 11-epi-SA at various concentrations  
(1.33~39.9 μM) on hepatocellular carcinoma cells (HA22T). The 11-epi-SA exhibited anti-proliferation 
activity against HA22T cells in a concentration-dependent manner (Figure 1). At a concentration of 
15.9 μM, 11-epi-SA significantly inhibited the proliferation of HA22T cells, but at a concentration 
below 7.98 μM, the anti-proliferative effect was not obvious (Figure 1). We chose a concentration range 
of 11-epi-SA lower than 7.98 μM for all subsequent experiments. The concentrations of 11-epi-SA in 
this study have been examined in normal skin cell lines, HaCaT cells. The results (data not shown) 
exhibited that the cytotoxicity of 11-epi-SA is obviously lower in normal cells. 

Figure 1. Evaluation of the cell viability effects of 11-epi-sinulariolide acetate (11-epi-SA) 
on HA22T cells. The cell viability of HA22T was concentration-dependently suppressed by 
MTT assay (* p < 0.001, # p < 0.05). Mock: the DMSO-treated cell. The experiments were 
repeated three times. 
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2.2. Inhibitory Effect of 11-epi-SA on Cell Migration and Invasion 

Cell migration and invasion assays were performed to estimate the inhibitory effects of 11-epi-SA 
on the migratory characteristics of HA22T cells. Using a cell migration and invasion assay with a 
Boyden chamber, results showed that 11-epi-SA significantly reduced HA22T cells migration  
and invasion in a concentration-dependent manner. After treatment with 2.66, 5.32 and 7.98 μM of  
11-epi-SA, the cell migration/invasion rates were 13%/12%, 41%/38%, and 60%/55%, respectively 
(Figure 2A,B) The results indicated increased inhibition of cell migration and invasion with increasing 
11-epi-SA concentration. 

Figure 2. 11-epi-SA inhibits HA22T cells migration and invasion. (A) 11-epi-SA inhibited 
transwell migration of HA22T cells; (B) 11-epi-SA inhibited invasion of HA22T cells. The 
transwell migration and matrigel invasion assay were performed as described in Materials 
and Methods. 11-epi-SA from 2.66 to 7.98 μM concentration-dependently decreased HA22T 
cells migration and invasion (* p < 0.001). Scale bar (A,B) = 20 μm; Mock: the  
DMSO-treated cell. The experiments were repeated three times. 
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and then subjected to western blot analysis. Figure 3B showed that 11-epi-SA significantly reduced the 
protein levels of MMP-2, MMP-9 and uPA, and increased TIMP-1 and TIMP-2 protein expression in a 
concentration-dependent manner. 

Figure 3. 11-epi-SA suppressed MMP-2, MMP-9 and uPA activities and protein expression 
and increased TIMP-1/-2 protein expression. (A) The cells were treated with various 
concentrations of 11-epi-SA (1.33, 2.66, 5.32 and 7.98 μM) for 24 h. The conditioned media 
were collected and then MMP-2, MMP-9 and uPA activities were determined by gelatin 
zymography and casine zymography, respectively; (B) Quantification of MMP-2, MMP-9 
and uPA; (C) The protein levels of MMP-2, MMP-9, uPA, TIMP-1 and TIMP-2 were 
verified in HA22T cells treated with 11-epi-SA (1.33, 2.66, 5.32 and 7.98 μM) for 24 h by 
western blot analysis. Mock: the DMSO-treated cell. β-actin was used as the internal control. 
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2.4. The ERK1/2 and p38MAPK Signaling Pathways Are Involved in the Anti-Metastatic Mechanism 
of 11-epi-SA 

MAPKs are well-established pathways that modulate MMPs expression. In human HCC cells, 
activation of MAPKs signaling pathway is required for the invasion process. Thus, we investigated the 
effects of 11-epi-SA on MAPKs signaling pathways using western blot analysis. Figure 4A shows that 
11-epi-SA significantly reduced the expression of phosphorylated ERK1/2 and p38MAPK in a 
concentration-dependent manner, but not JNK (Figure 4A). In order to evaluate whether the inhibitory 
effect of 11-epi-SA on cell migration, cell invasion and MMP-2 and MMP-9 expression were correlated 
with inhibition of the ERK1/2 and p38MAPK signaling pathway, HA22T cells were pretreated with 
ERK1/2 inhibitor (PD98059, 2 μM) and p38MAPK inhibitor (SB203580, 20 μM) for 1h and then 
incubated with 11-epi-SA (7.98 μM) for 24 h. The results showed that treatment of HA22T cells with 
11-epi-SA and pretreated with PD98059 and SB203580 significantly inhibited cell invasion and 
reduced MMP-2 and MMP-9 proteins expression. Meanwhile, the expression of TIMP-1 and TIMP-2 
were increased (Figure 4B,C). 

Figure 4. Effects of 11-epi-SA on MAPKs signaling pathway related proteins expression 
in HA22T cells. (A) The protein levels of ERK1/2, p-ERK1/2, p38MAPK, p-p38MAPK, 
JNK, and p-JNK after treatment with various concentrations of 11-epi-SA were analyzed 
by western blotting; (B) HA22T cells were pretreated with SB203580 and PD98059 for 1 h 
and then incubated in the absence or presence of 11-epi-SA (7.98 μM) for 24 h. Cell 
invasiveness was measured using matrigel invasion assay; (C) The protein levels of  
MMP-2, MMP-9, TIMP-1 and TIMP-2 were analyzed in treated HA22T cells by western 
blot analysis. Scale bar (B) = 20 μm. Mock: the DMSO-treated cell. β-actin was used as the 
internal control. 
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2.5. Effects of 11-epi-SA on PI3K/AKT/mTOR Signaling Pathways 

We investigated the effects of 11-epi-SA on FAK/PI3K/AKT/mTOR pathways using western blot 
analysis. Results showed that 11-epi-SA decreased the phosphorylation of FAK, PI3K, AKT and 
mTOR in a concentration-dependent manner. The protein expressions of PI3K, AKT and mTOR were 
not changed after 11-epi-SA treatment (Figure 5). 

Figure 5. Effects of 11-epi-SA on FAK/PI3K/AKT/mTOR signaling pathways in HA22T 
cells. Western blotting data showed the changes of p-FAK, p-PI3K, PI3K, AKT, p-AKT, 
mTOR, and p-mTOR expression in HA22T cells treated with different concentrations of 
11-epi-SA. Mock: the DMSO-treated cell. β-actin was used as the internal control. 
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Figure 6. 11-epi-SA inhibited the levels of associated protein in cell migration and invasion 
of HA22T cells. The levels of PKC, GRB2, Ras, Rho A, MEKK4 and MKK3 expression in 
HA22T cells treated with different concentrations of 11-epi-SA were estimated by western 
blot analysis. Mock: the DMSO-treated cell. β-actin was used as the internal control. 
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HCC [35,36]. Chen et al. showed that dihydroaustrasulfone alcohol, isolated from marine coral, 
substantially suppressed the proliferation and invasiveness of a non-small cell lung carcinoma cell line 
(A594), with a notable decrease in MMP-2 and MMP-9 expression [37]. In the present study, we found 
that 11-epi-SA reduced the protein levels and activity of MMP-2, MMP-9 and uPA and simultaneously 
increased TIMP-1 and TIMP-2 protein levels (Figure 3). These results indicate that the inhibition of 
the migratory and invasive effect of 11-epi-SA on HA22T cells is correlated with the modulation of 
MMPs and their inhibitors. 

Mitogen-activated protein kinases (MAPKs) include extracellular signal-regulated kinase 
(ERK1/2), p38MAPK and c-jun-N-terminal kinase (JNK1/2) [38]. MAPKs activation is followed  
by phosphorylation of various cytosolic proteins associated with cell migration, cell invasion, cell 
proliferation, cell differentiation, and cell apoptosis [39]. Recent reports indicate that MAPKs signaling 
pathways are involved in the regulation of MMPs and uPA expression in tumor cell invasion [40,41]. 
Reports also suggest that invasion and metastasis of HCC cells requires MAPKs signaling cascade 
activations [18,19]. In this study, we verified that 11-epi-SA has an inhibitory effect on migration  
and invasion through the suppression of MMP-2, MMP-9 and uPA on HA22T cells. Our data showed 
that 11-epi-SA suppressed the expression of phosphorylation of ERK1/2 and p38MAPK in a 
concentration-dependent manner, but not JNK1/2. The 11-epi-SA combined with ERK1/2 inhibitor 
(PD98059) and p38MAPK inhibitor (SB203580) significantly reduced HCC cell invasion and was 
accompanied by downregulation of MMP-2 and MMP-9 and upregulation of TIMP-1 and TIMP-2 
(Figure 4). 

Focal adhesion kinase (FAK) acts as an important protein in cell-ECM interactions that affect cell 
proliferation, migration and metastasis [42,43]. Phosphorylated FAK acting as a scaffold, regulates 
mainly focal adhesion signaling related to cell adhesion to ECM and MMPs-mediated matrix 
degradation [44]. The FAK/PI3K/AKT/mTOR signal transduction pathway is involved in cell 
proliferation, differentiation, survival, and migration [45]. Several studies have indicated that 
FAK/PI3K/AKT/mTOR signal pathway is involved in the regulation of MMP-2 and MMP-9  
activity [46–48]. In our study, western blot results showed that 11-epi-SA decreased the 
phosphorylation of FAK, PI3K, AKT and mTOR. The protein expression of PI3K, AKT and mTOR 
were not changed after 11-epi-SA treatment (Figure 5). 

GRB2 is an adaptor protein that binds to Son of Sevenless (SOS), encoding Ras-specific guanine 
nucleotide exchange factor (GEF), in the MAPK pathway. Binding of SOS to GRB2 in the plasma 
membrane sequentially activates Ras, Raf, MEK1/2, and ERK1/2 [49]. In invasive breast cancer cells, 
GBR2 is suggested to regulate the activation of the GTPases ARF1 and ARF6 [50]. The Rho family of 
GTPases regulates intracellular actin dynamics, cell spreading and migration, and the activity of rho 
proteins changes with the change in upstream GEF signal [51,52]. Some studies indicate inhibition of 
the RhoA reduced cancer cell migration and invasion [53,54]. In our study, western blot results 
showed that 11-epi-SA decreased the levels of GRB2, Ras, RhoA, MEKK4 and MKK3, which are also 
involved in cell migration (Figure 6). 

Based on our results, the proposed signaling pathways of the inhibitory effect of 11-epi-SA on 
HA22T cells migration and invasion are shown in Figure 7. 11-epi-SA was downregulated MMP-2, 
MMP-9 and uPA protein expression and inhibited metastatic effect through suppressed ERK1/2, 
p38MAPK and FAK/PI3K/AKT/mTOR signals on HA22T cells. 
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Figure 7. Molecular signaling pathways of the inhibitory effect of 11-epi-SA on 
hepatocellular carcinoma HA22T cell migration and invasion. 

 

3. Material and Methods 
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39.9 μM) and harvested after incubation for 24 h. The cell viability of HA22T cells after 11-epi-SA 
treatment was examined by MTT assay as described in our previous study [20]. HA22T cells were 
seeded on 24-well culture plates at a density of 1 × 105 cells/well. After various concentrations of  
11-epi-SA incubation for 24 h, 50 μL of MTT solution (1 mg/mL in PBS) was added to each well. Cells 
treated with DMSO were used as blank control. The cell culture plates were incubated at 37 °C for 4 h 
and then cells were lysed with 200 μL DMSO. The optimal density (OD) was measured at 595 nm by a 
microtiter ELISA reader (Bio-Rad, Hercules, CA, USA). All the experiments were repeated three times. 

3.3. Cell Migration and Invasion Assay 

The cell migration assay was performed according to the methods described by Neoh et al. [56]. 
HA22T cells were seeded into a Boyden chamber (Neuro Probe, Cabin John, MD, USA) at  
104 cells/well in serum-free media. HA22T cells with 11-epi-SA treatment (0, 2.66, 5.32 and 7.98 μM) 
were kept at 37 °C for 24 h to allow cell migration. For invasion assay, 10 μL Matrigel (25 mg/50 mL; 
BD Biosciences, MA, USA) was coated onto 8 μm pore-size polycarbonate membrane filters, and 
HA22T cells were plated in the upper chamber of the Matrigel-coated Transwell insert. The bottom 
chamber contained cell culture medium previously described by Yeh et al. [57]. The migrated and 
invaded cells on the lower chamber were fixed with 100% methanol and stained with 5% Giemsa 
(Merck, Germany). Cell numbers were counted using a 100× light microscope. 

3.4. Determination of MMP-2/MMP-9 and uPA Activities by Gelatin Zymography 

Gelatin and casein zymography assays were used to measure the activities of MMP-2, MMP-9 and 
uPA in conditional medium as previously described [58]. HA22T cells were treated with various 
concentrations of 11-epi-SA (1.33, 2.66, 5.32 and 7.98 μM) for 24 h. To analyze the secretion of 
MMP-2/-9 and uPA in culture media, the collected culture media were concentrated by a speed 
vacuum. The samples were separated by 10% SDS-PAGE containing 0.2% gelatin under non reducing 
conditions for MMP-2/-9 activity assay and containing 0.2% casein and 10 μg/mL plasminogen for 
uPA activity assay. The gels were washed in wash buffer (100 mM NaCl and 2.5% Triton X-100 in  
50 mM Tris-HCl, pH7.5) three times. Then the gels were incubated in reaction buffer (200 mM NaCl, 
0.02% NaN3, 1 μM ZnCl2, 1 mM CaCl2, 2% Triton-X 100, in 50 mM Tris-HCl, pH 7.5) at 37 °C for 
24 h. The gels were stained with Coomassie Blue R-250, and destained and quantified using  
Image J 1.47 software (National Institutes of Health, Bethesda, MD, USA). 

3.5. Western Blot Assay 

The treated samples and the control samples (25 μg) were separated by 12.5% SDS-PAGE, and 
then transferred onto PVDF membrane for 1.5 h at 400 mA using Transphor TE 62 (Hoeffer) and then 
protein transfer was checked by staining with Ponceau S solution. The membranes were subsequently 
incubated with 5% dehydrated skimmed milk in PBS Buffer (10 mM NaH2PO4, 130 mM NaCl) to 
block nonspecific protein bindings, and then incubated with primary antibodies at 4 °C overnight. The 
primary anti-human MMP-2, MMP-9, uPA, TIMP-1, TIMP-2, GRB2, p-FAK, MEKK4, MKK3, Rho A, 
JNK, p-JNK, PKC, ERK, p-ERK, p38MAPK, p-p38MAPK, PI3K, p-PI3K, AKT, p-AKT, mTOR,  
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p-mTOR and β-actin antibodies were used. The second antibodies (horseradish peroxidase conjugate 
goat anti-rabbit, 1:5000 in blocking solution) were added and incubated for 2 h at 4 °C and then 
visualized using chemiluminesence (Pierce Biotechnology, Rockford, IL, USA). 

3.6. Statistical Analysis 

Data analyses of MTT assays, cell migration and invasion assays were derived from three 
independent experiments. Tukey-Kramer test was used for data acquisition and analysis of variance 
(ANOVA), using Graphpad Instat 3 software (San Diego, CA, USA). 

4. Conclusions 

Overall, our results demonstrated for the first time that 11-epi-SA effectively inhibited migration 
and invasion of human HA22T cells through ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling 
pathways, causing downregulation of MMP-2, MMP-9 and uPA expression as summarized in Figure 7. 
Based on these observations, we suggest that 11-epi-SA could be a potential candidate for development 
of preventive agents against hepatocellular carcinoma metastasis and invasion in the future. 
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