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Abstract: Polyphenols, as well as volatile compounds responsible for aromatic features, play a
critical role in the quality of vegetables and medicinal, and aromatic plants (MAPs). The research
conducted in recent years has shown that these plants contain biologically active compounds, mainly
polyphenols, that relate to the prevention of inflammatory processes, neurodegenerative diseases,
cancers, and cardiovascular disorders as well as to antimicrobial, antioxidant, and antiparasitic
properties. Throughout the years, many researchers have deeply studied polyphenols and volatile
compounds in medicinal and aromatic plants, particularly those associated with consumer’s choices
or with their beneficial properties. In this context, the purpose of this review is to provide an overview
of the presence of volatile and nonvolatile compounds in some of the most economically relevant and
consumed vegetables and medicinal and aromatic plants, with an emphasis on bioactive polyphenols,
polyphenols as prebiotics, and, also, the most important factors that affect the contents and profiles
of the volatile and nonvolatile compounds responsible for the aromatic features of vegetables and
MAPs. Additionally, the new challenges for science in terms of improving polyphenol composition
and intensifying volatile compounds responsible for the positive characteristics of vegetables and
medicinal and aromatic plants are reported.

Keywords: aromatic plants; bioactive compounds; consumers; medicinal plants; phenolic com-
pounds; plant breeders; volatile compounds; vegetables

1. Introduction

The concept of “quality” is wide, but in horticulture, it can be defined as the degree of
excellence given by the combination of different attributes or characteristics that give each
product value in terms of its proposed use [1]. In this concept, visual appearance, ability
to endure postharvest processing operations, chemical and nutritional composition, and
aroma can be included [2]. Advances have been made in horticultural breeding, and now
it is possible to find fruits and vegetables with characteristics that growers and retailers
desire, such as high yield, high resistance to pest attacks and disease, attractive appearance,
and capacity to support different handling and processing operations. However, most
of the time, many of these horticultural crops fail to achieve top nutritional and flavour
characteristics [3]. Increasing horticultural crops’ flavour by breeding is still not an easy

Foods 2021, 10, 106. https://doi.org/10.3390/foods10010106 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-4945-6741
https://orcid.org/0000-0001-6291-8413
https://orcid.org/0000-0001-5924-1050
https://orcid.org/0000-0002-0062-154X
https://orcid.org/0000-0001-5976-4564
https://orcid.org/0000-0001-5917-357X
https://orcid.org/0000-0002-1615-2418
https://orcid.org/0000-0002-5764-024X
https://doi.org/10.3390/foods10010106
https://doi.org/10.3390/foods10010106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10010106
https://www.mdpi.com/journal/foods
https://www.mdpi.com/2304-8158/10/1/106?type=check_update&version=4


Foods 2021, 10, 106 2 of 29

task, due to the multitude of factors that affect the synthesis of volatile and nonvolatile com-
pounds responsible for flavour attributes such as climate, cultural practices, agricultural
practices (organic vs. conventional), and pre- and postharvest processing operations [4].
Additionally, the astringency, dryness, viscosity, heat, coolness, prickling, and pain, often
referred to as the “texture” of foods, can affect the flavour of vegetables and medicinal and
aromatic plants (MAPs) [5]. This review presents a discussion of the most important factors
that affect the contents and profiles of the volatile and nonvolatile compounds responsible
for the aromatic features of vegetables and MAPs, as well as the recent advances in plant
breeding regarding the achievement of chemical compounds responsible for the typical
aromatic features’ sensory attributes.

2. Plant Bioactive Phenolic Compounds

Vegetables and MAPs are important sources of bioactive phenolic compounds and
have a key role in the development of compounds eliciting beneficial health effects [6].
Phenolic bioactive compounds of plant origin are those secondary metabolites possessing
desired health benefit effects [7]. They might be produced from two distinct pathways: (i)
shikimic acid (phenylpropanoids) and (ii) acetic acid (phenols) [8]. Due to their abundance
in vegetables and MAPs, the study of phenolic compounds’ (simple phenolics, coumarins,
lignans, flavonoids, isoflavonoids, anthocyanins, proanthocyanidins, and stilbenes) ef-
fects on health has increased in recent years, due to the growing evidence indicating that
polyphenols are a major class of bioactive phytochemicals. Their consumption may play a
role in the prevention of several chronic diseases as potent antioxidant properties, preven-
tion of diseases induced by oxidative stress, and prevention of some specific cardiovascular
(mainly high cholesterol levels, high blood pressure) and neurodegenerative diseases (such
as Alzheimer’s or Parkinson’s, type II diabetes, cancers, urinary tract infections) [9–13].
However, the health effects of phenolic compounds are dependent on their type, quantity
consumed, as well as on their bioavailability.

The amount of total phenolic compounds is greater in dark vegetables, such as red
kidney beans, black beans (Phaseolus vulgaris), and black gram (Vigna mango). Bravo [9]
determined (by regarding dry matter, mg/100 g) the amount of total phenolic compounds
in several vegetables such as black gram (540–1200), chickpeas (78–230), cowpea (175–590),
common beans (34–280), green gram (440–800), pigeon peas (380–1710), Brussel sprouts
(6–15), cabbage (25), leek (20–40), onion (100–2025), parsley (55–180), and celery (94).

Phenolic acids have been recently widely studied because of their potential protective
roles. Phenolic acids have a benzene ring, a carboxylic group, and one or more hydroxyl
and/or methoxyl groups. They are usually divided into benzoic acid derivatives (i.e.,
hydroxybenzoic acids, C6-C1) (Figure 1a) and cinnamic acid derivatives (i.e., hydroxycin-
namic acids, C6-C3) (Figure 1b), based on the constitutive carbon structures. The amount
of hydroxybenzoic acid (C6-C1 derivatives) (e.g., gallic acid, salicylic acid, salicylaldehyde,
and protocatechuic acid) is typically low in edible plants [14]. Phenolic acids may make
up about one-third of the phenolic compounds in the human diet; these substances have a
powerful antioxidant activity that may help protect the body from free radicals [9,15].
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Figure 1. Chemical structures of hydroxybenzoic acids (a) and hydroxycinnamic acids (b). 

 

 

 

 

 

Figure 1. Chemical structures of hydroxybenzoic acids (a) and hydroxycinnamic acids (b).

According to Khadem and Marles [16], gallic acid has antineoplastic and bacteriostatic
activities, and salicylic acid exerts anti-inflammatory, analgesic, antipyretic, antifungal, and
antiseptic properties. Protocatechuic acid has also been described as having several bioac-
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tivities such as anti-inflammatory, antifungal, and antioxidant ones [17]. For instance, p-
hydroxybenzoic acid has been isolated from many sources including carrots (Daucus carota)
[18] and protocatechuic acid from onion, garlic, and relatives (Allium spp.) [19].

The hydroxycinnamic acids (C6-C3 derivatives) are more abundant than the hydrox-
ybenzoic acids. The four most common hydroxycinnamic acids are ferulic acid, caffeic
acid, coumaric acid, and sinapic acid. These acids are frequently present in plants in the
combined forms such as glycosylated derivatives or esters of tartaric acid, shikimic acid,
and quinic acid rather than in the free form. Hydroxycinnamic acids are recognised as
powerful antioxidants playing an essential role in protecting the body from free radicals.
Several hydroxycinnamic acid derivatives, such as caffeic acid, chlorogenic acid, ferulic
acid, p-coumaric acid, and sinapic acid, present strong antioxidant activities by inhibiting
lipid oxidation and scavenging reactive oxygen species (ROS) [10]. Chlorogenic acid and
caffeic acid inhibit the N-nitrosation reaction and prevent the formation of mutagenic and
carcinogenic N-nitroso compounds [20].

Rosemary (Rosmarinus officinalis L.) extracts have been used as diuretic, analgesic,
expectorant, antirheumatic, and antimutagenic agents. Caffeic acid and its derivatives,
such as rosmarinic acid (Figure 2) and chlorogenic acid, have been thought to be the most
important ones responsible for the therapeutic properties of rosemary extracts, as they
have antioxidant effects and contribute to the bioactive function of rosemary [21].
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Figure 2. Chemical structures of rosmarinic acid and chlorogenic acid.

Among the phenolic compounds identified by Zheng and Wang [22], rosmarinic acid
was the predominant phenolic compound in Salvia officinalis and Thymus vulgaris (Table 1).

Table 1. Phenolic compounds in Salvia officinalis, Thymus vulgaris, and Rosmarinus officinalis (mg/100 g of fresh weight). Data from
Zheng and Wang [22].

Phenolic Compounds Salvia officinalis Thymus vulgaris Rosmarinus officinalis

Vanillic acid 2.27 ± 0.48 1.73 ± 0.08
Caffeic acid 7.42 ± 0.35 11.7 ± 1.04 2.95 ± 0.12
Luteolin 33.4 ± 1.32 39.5 ± 1.53
Rosmarinic acid 117.8 ± 1.01 91.8 ± 2.75 32.8 ± 1.69
Hispidulin 16.3 ± 1.07 20.8 ± 0.96 19.7 ± 1.12
Cirsimaritin 14.3 ± 0.83 24.4 ± 0.87
Carnosic acid 126.6 ± 6.00
Apigenin 2.4 ± 0.07 1.1 ± 0.15
Naringin 53.1 ± 2.09
Rosmanol 124.1 ± 3.19
Total phenolic (mg of GAE/g of fresh weight) 1.34 ± 0.09 2.13 ± 0.11 2.19 ± 0.15
ORAC (Oxygen Radical Absorbance
Capacity—µmol of TE/g of fresh weight) 13.28 ± 0.40 19.49 ± 0.21 19.15 ± 0.63

In previous years, the use of the active phenolic acid compounds (such as chlorogenic
acid, ferulic acid, cinnamic acid, and rosmarinic acid) in food has increased. Thus, the
study of plants’ phytochemicals is important and essential [23].

Coumarins are a large class of C6-C3 derivatives belonging to the benzo-α-pyrone
group, which exist in the free or combined form as heterosides and glycosides in certain
plants; most of them are isolated from chlorophyll-containing plant materials [24]. Species
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rich in coumarins included Aesculus hippocastanum (Horsechestnut), Passiflora incarnata (Pas-
sionflower), Lawsonia inermis (Henna), Hypericum perforatum (Saint John Wort), Tilia cordata
(Lime Tree), and Uncaria tomentosa (Cat’s Claw) [25]. Coumarins can be categorised into
four types. Simple coumarins are the hydroxylated, alkoxylated, and alkylated derivatives
of the benzene ring of coumarin, and the corresponding glycosides. Furanocoumarins com-
pounds consist of a five-member furan ring attached to the coumarin nucleus, divided into
linear and angular types with a substituent at one or both remaining benzenoid positions.
Pyrano coumarins are analogous to the furanocoumarins but contain a six-member ring.
The last type is coumarins substituted in the pyrone ring [26]. Several products that contain
a coumarin moiety show excellent biological activities such as antitumor, antibacterial, an-
tifungal, anticoagulant, vasodilator, analgesic, and anti-inflammatory activities [24,27,28].

Lignans are a diverse group of bioactive phenolic compounds formed of two β-β-
linked phenylpropane units; they are present in different parts of plant species in free
form or combined form as glycoside derivatives. Lignans are found in vegetables such
as in the brassica family where fresh edible weights (mg/100 g) between 0.185 to 2.32 of
can be found, for instance, for broccoli (98.51), Brussels sprouts (50.36), cauliflower (9.48),
green cabbage (0.03), red cabbage (18.1), white cabbage (21.51), and kale (63). They can
also be found in green beans (22.67), tomato (2.15), cucumber (3.8), zucchini (7.02), green
lettuce (1.17), and carrot (7.66). However, spinach, white potatoes, and mushrooms contain
an amount below 0.1 mg/100 g (fresh edible weight) of lignin [29,30]. Lignan presents a
great antioxidant activity and may be effective in the treatment of cardiovascular disease,
coronary heart disease, and diabetes [31].

Flavonoids have the general structural C6-C3-C6, in which the two C6 units are phe-
nolic and linked by a C3 group. They can be divided into flavones, flavonols, flavanones,
and flavanols, according to the oxidation state of the central pyran ring, as well as in
anthocyanins and isoflavonoids, with different antioxidant, antibacterial, antiviral, and
anticancer activities [15,32].

Flavones usually occur as glycosides of apigenin and luteolin in plants (Figure 3).
Flavones are found in celery (22–108 mg/kg fresh weight) and showed the proprieties of
lowering the levels of total and low-density lipoprotein (LDL) cholesterol and also have
anti-inflammatory and anticancer activities [33]. In other vegetables, the amounts are
(mg/kg of luteolin and apigenin, respectively): 0.41 and 0.05 in water spinach; 0.09 and
0.03 in cucumber; 0.16 and 1.07 in purple cabbage; 1.18 and 0.31 in Chinese cabbage; 0.16
and 0.92 in white cabbage and 0.22 and 0.04 in onion [34].
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Flavonols have been extensively studied and are extensively distributed in plants [35–44].
They are frequently the conjugated form of glycosides such as kaempferol, quercetin, and
myricetin (Figure 4). Quercetin levels in the edible parts of most vegetables are generally
(of fresh weight, mg/kg) below 10, except for onions (284–486), kale (110), broccoli (30),
French beans (32–45), and slicing beans (28–30) [35]. Kaempferol could only be detected
(fresh edible weight, mg/kg) in kale (211), endive (15–91), leek (11–56), and turnip tops
(31–64) [35]. A rich source of flavonols are onion leaves that contain (fresh weight, mg/kg)
1.497 of quercetin and 832 of kaempferol [37], and also sweet potato leaves (purple) showed
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156 mg/kg of myricetin and 267 mg/kg of quercetin [34]. According to Erlund [45], quercetin
is an antioxidant protecting against reactive oxygen species and shows also antiatherosclerosis,
anticancer, anti-inflammatory, and cholesterol-lowering properties. Flavanones are colourless
compounds characterised by the absence of a double bond in the 2, 3-position of the pyrone
ring, and are isomeric with chalcones. Low concentrations of flavanones, namely naringenin,
are found in tomatoes [46].
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Monomeric flavan-3-ols include catechin, epicatechin, gallocatechin, catechin gal-
late, epicatechin gallate, epigallocatechin, epigallocatechin-3-gallate, and gallocatechin
gallate (Figure 5). Catechin and epicatechin are the most abundant flavanols found in
fruits, while in the seeds of some leguminous, the most abundant flavanols are gallocat-
echin, epigallocatechin, and epigallocatechin gallate [47]. In fava beans (Vicia faba L.),
(−)-epicatechin and epigallocatechin were detected by Helsper et al. [48]. A general trend
of increasing “total catechin equivalent” content with increasing darkness of the legumes
within one family can be observed [49,50]. All types of beans, and mature seeds con-
tain flavan-3-ols (mg/100 g, edible portion)—namely, (+)-catechin (1.66); (−)-epicatechin
(0.35) [51] and beans, pinto, mature seeds, raw (Phaseolus vulgaris) (+)-catechin (5.07); (−)-
epicatechin (0.14); (−)-epigallocatechin (0.05 mg/100 g) [52], broad beans, immature seeds,
raw (Vicia faba), (−)-epicatechin (28.96); (−)-epigallocatechin (15.47); (+)-catechin (14.29);
(+)-gallocatechin (4.15) [51,52]. Catechin prevents protein oxidation by its free radical scav-
enging capacity. Furthermore, it possesses the ability to reduce the covalent modification
of protein induced by reactive oxygen species (ROS) or by-products of oxidative stress [53].



Foods 2021, 10, 106 6 of 29

 

Figure 5. Structures of monomeric flavan-3-ols. 

 

 

Figure 12. Chemical structure of (E)-2-nonenal and (Z)-3-hexenal. 

 

 

Figure 13. Chemical structure of 3-butylphthalide. 

 
Figure 14. Chemical structure of 2-isobutyl 3-methoxypyrazine and 3-sec-butyl-2-methoxypyrazine. 

 

Figure 5. Structures of monomeric flavan-3-ols.

Isoflavonoids are flavonoids that have their B ring fused with the C3 position of ring
C, which are phenolics with phytoestrogenic activity (Figure 6). The concentrations of
isoflavones in soybean products ranged from 580 to 3800 mg/kg of fresh weight [54].
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Figure 6. Chemical structures of isoflavonoids.

The basic structures of anthocyanins are anthocyanidins, in which the two aromatic
rings A and B are linked by a heterocyclic ring C that possesses oxygen. More than 23
different anthocyanidins have been found with pelargonidin, cyanidin, peonidin, delphini-
din, petunidin, and malvidin being the most common (Figure 7). Anthocyanins in plants
mainly exist in conjugated form as glycosides. Monomeric anthocyanin changed the hy-
droxylation and methoxylation patterns on the B ring; the nature, position, and the number
of conjugated sugar units; the nature and number of conjugated aliphatic or aromatic acid
groups; the existence or lack of an acyl aromatic group in the molecule [55]. They are
usually present in any pink to purple vegetables such as black beans (Phaseolus vulgaris)
(delphinidin (11.98); malvidin (6.45); petunidin (9.57) in mg/100 g, edible portion); kidney
red beans (Phaseolus vulgaris) (pelargonidin (2.42); cyanidin (1.19) in mg/100 g, edible por-
tion) [56]; common raw beans (Phaseolus vulgaris var. Zolfino) (delphinidin (2.50); malvidin
(0.10); petunidin (0.14) in mg/100 g, edible portion) [38]; redraw cabbage (Brassica oleracea)
(cyanidin (72.86), delphinidin (0.01); pelargonidin (0.02) in mg/100 g, edible portion) [42,56]
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and in cowpeas (blackeyes, crowder, southern) (Vigna unguiculata) (cyanidin (94.72); del-
phinidin (94.60); malvidin (34.28); peonidin (11.07); petunidin (27.82) in mg/100 g, edible
portion) [57]. The protective effects of anthocyanins include antiedema, antioxidant, anti-
inflammatory, and anticarcinogenic activities [58].
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Condensed tannins, also recognised as proanthocyanidins, mainly comprise a flavan-
3-ol unit to form dimers, oligomers, and polymers of up to 50 monomer units (Figure 8).
Proanthocyanidins have complex structures depending on the number of the flavan-3-
ol units, the location and type of interflavan linkage in the molecule, and the nature
and position of substituents on the flavan-3-ol unit. Proanthocyanidins can be classified
into procyanidins and prodelphinidins based on their hydroxylation patterns of A and B
rings [33]. The proanthocyanidin contents in spinach (Spinacea oleracea) and radish leaves
(Raphanus sativus) are 88.46 and 13.57 proanthocyanidins in mg/100 g fresh weight, respec-
tively [59]. Proanthocyanidins have antioxidant activity responsible for cardioprotection,
cancer chemoprevention, and lowering cholesterol amounts [33].

 

Procyanidins: n > 0 

Oligomeric procyanidins: n = 0–7 

 

Figure 8. Chemical structure of procyanidins
Figure 8. Chemical structure of procyanidins.

Quinones are phenolic compounds with conjugated cyclic dione structures, such as
that of benzoquinones, derived from aroma compounds by the conversion of an even
number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double
bonds. The most common skeletal structures of quinones found in plants are p-quinone,
o-quinone, anthraquinone, naphthoquinone, and naphtodianthrone (Figure 9).
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Figure 9. Quinone structures.

Stilbenes are a group of phenolic compounds that share a similar chemical structure
to flavonoids, in which the two aromatic rings (A and B) are linked by a methylene bridge.
One of the most aroma compounds stilbenes is present mostly in glycosylated forms is
trans-resveratrol (Figure 10). Resveratrol is a phytoalexin that has been particularly studied
as it shows several biological activities, reduces the formation of atherosclerotic plaque,
present neuroprotective, antidiabetic, anti-inflammatory, antioxidant, anticarcinogenic
effects, and antiviral activity [60,61]. It was also shown in several studies that trans-piceid
a 3-β-glucosylated form of trans-resveratrol could inhibit platelet aggregation [62,63] and
oxidation of human low-density lipoprotein (LDL). Peng et al. [64] showed that trans-piceid
was the major form existing in most vegetables, and most of the samples contained higher
trans-piceid than trans-resveratrol. The concentration of trans-resveratrol in µg/100 g
fresh weight lies between 1.14 and 0.70 in cauliflower and 1.78 and 23.12 in celery, as well
as 8.8 and 19.74 in black soya bean. As for trans-piceid, it is between 43.04 and 783.29
in celery, 0.80 and 9.22 in leaf lettuce, 1.10 and 12.0 in tomato, and 18.16 and 194.40 in
red radish [64]. According to Sebastià et al. [65], the concentration of trans-resveratrol in
tomatoes is 0.2 µg/g.
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Flavonoids are largely distributed in vegetables and they have been studied mainly
because of their potential health benefits as antioxidants and chemopreventive agents [48].
However, until now no recommended daily intake of these compounds has been estab-
lished mainly because the composition data are incomplete, the biological activities are
not well determined, and especially because the bioavailability and pharmacokinetic data
are inconclusive. Emerging science from some studies suggests that flavonoid-rich diets
may lower the risk of some diet-related chronic degenerative diseases [66–68] but a few
clinical and laboratory reports indicate that very high doses of certain flavonoids may have
adverse effects [69,70]. Therefore, it is important to accurately assess flavonoid intakes
from the perspectives of both disease prevention and safety [71,72]. The specific action
of each phenolic compound from vegetables and medicinal and aromatic plants is not
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easy to measure since only a small part of it is truly absorbed and, also, it may potentially
transform [73]. Numerous dietary phenolic compounds are antioxidants able to quench
ROS and toxic free radicals formed from the peroxidation of lipids and, consequently, have
anti-inflammatory and antioxidant properties. Flavonoids are recognised as preventing
the production of free radicals by chelating iron and copper ions to directly scavenge ROS
and toxic free radicals and inhibit lipid peroxidation, which may damage DNA, lipids, and
proteins, linked to ageing, atherosclerosis, cancer, inflammation, and neurodegenerative
diseases [74].

Many of these reported biological functions have been attributed to free radical
scavenging activity and there has been intensive research on the natural antioxidants
derived from plants [32,75–77]. Hundreds of epidemiological studies have correlated the
antioxidant, anticancer, antibacterial, cardioprotective, anti-inflammation, and immune
system promoting roles of plants enhanced by phenolic content. Tables 2 and 3 summarise
important bioactivities related to the presence of phenolic identified in vegetables and
MAPs widely consumed in the world. For example, Salem et al. [78] found that extracts
of artichokes rich in polyphenols were capable of inhibiting the production of histamine,
bradykinin, and chemokines. These authors discovered that polyphenols present in extracts
were capable of acting synergistically, enhancing their anti-inflammatory potential. Addi-
tionally, Sharma et al. [79] observed that extracts of onion were capable of inhibiting the
bacterial growth of Staphylococcus sp. and Escherichia coli, due to the presence of quercetin
aglycone, quercetin-4′-O-monoglucoside, and quercetin-3,4′-O-diglucoside. However, the
intensity of the antagonistic effect was dependent on the concentration of each compound
in each onion variety assessed. In 2018, Dzotam et al. [80], using extracts of nutmeg rich in 7-
trihydroxyflavone, observed an antibacterial activity of such extracts against the multidrug
resistant Gram-negative bacteria Providencia stuartii and Escherichia coli. A recent study
showed that Thymus extract rich in rosmarinic acid and 3,4-dihydroxybenzoic acid was
capable of exhibiting antiradical and antioxidant properties and enhanced gastrointestinal
digestion [81].
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Table 2. Phenolic compounds present in some vegetables consumed worldwide and the main bioactivities pointed.

Vegetables Main Phenolics Bioactivities Pointed Ref.

Artichoke
(Cynara scolymus L.)

Hydroxytyrosol, verbascoside, apigenin-7-glucoside, oleuropein,
quercetin, pinoresinol, and apigenin

Anti-inflammatory activities of C. scolymus were found due to the
synergistic effect of phenolic compounds. Inhibitory action of artichoke
extracts in the inflammatory process such as histamine, bradykinin, and
chemokine mediators’ processes was related to the phenolic content.

[78]

Broccoli florets
(Brassica oleracea L. var. italica)

Hydroxybenzoic acid, hydroxycinnamic acid, flavone,
polymethoxylated flavone, kaempferol glycosylated and kaempferol
derivatives, quercetin-3-O-glucoside and derivatives,
isorhamnetin-3-O-rutinoside, isorhamnetin glucoside, and related
compounds

Hydroalcoholic extracts were capable of directly reacting with and
quenching DPPH and Oxygen (ORAC) radicals. Flavonoids and derivatives
showed significant positive correlations to DPPH, and ORAC.

[82]

Celery
(Apium graveolens L.)

High content of apiin, apigenin, and rutin, 3,7-dihydroxyflavone,
cyanidin and diosmetin, and terpenes (α-ionone)

Antioxidant activity was highly correlated with the presence of apiin,
apigenin, and rutin, mainly due to the lower BDE of O–H bonds in their B
rings, which enhanced their H atom donating ability.

[83]

Garlic
(Allium sativum L.)

The high content of total phenolic content,
vanillic acid, caffeic acid,
p-coumaric acid, ferulic acid, sinapic acid,
cyanidin-3-(6′-malonyl)-glucoside)

A positive and significant correlation between the content of total phenolic
content and antimicrobial and antioxidant activity was found. The highest
total phenolics content was significantly correlated with the lowest EC50
values for all the tested antioxidant activity assays.

[84,85]

Ginseng leaves
(Panax ginseng C. A. Mey.) Gallic acid and galangin

The antioxidant capacity in the lipophilic fraction was higher than those in
hydrophilic fractions and positive correlations between antioxidant capacity
and total phenolic content, gallic acid, and galangin were found.

[86]

Leek
(Allium porrum L.)

Rosmarinic acid, quercetin, and apigenin glycosylated forms and
respective derivatives

Extracts showed a favourable antimicrobial activity against Staphylococcus
aureus, Bacillus subtilis, and Aspergillus niger. Extracts inhibit Hep2c, L2OB,
and RD tumor cells in a dose-dependent manner after 48 h treatment period.

[87]

Onion
(Allium cepa L.)

Quercetin aglycone, quercetin-4′-O-monoglucoside, and
quercetin-3,4′-O-diglucoside

The antioxidant activity of onions was dependent on variation in the
contents of quercetin compounds in all onion varieties assessed.
Antibacterial activity against Staphylococcus sp. and Escherichia coli was
dependent on variation in both phenolic profile and content.

[79]

Watercress
(Nasturtium officinale L.)

Coumaric acid, sinapic acid, caftaric acid, quercetin, and quercetin
derivatives were the major phenolic compounds identified

The radical scavenging activity (RSA) of root, stem, and leaves of watercress
methanolic extracts were highly correlated with the variation of phenolics.
Watercress leaves had similar antioxidant potential to that of tocopherol.

[88]
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Table 3. The key role of some important phenolics identified in some medicinal and aromatic plant (MAP) species extracts and respective bioactivities.

MAP Extracts Main Phenolics Identified Bioactivities Pointed Ref.

Fern
(Asplenium nidus L.) 7-O-hexoside and quercetin-7-O-rutinoside

Antimicrobial activity against Proteus mirabilis Hauser,
Proteus vulgaris Hauser, and Pseudomonas aeruginosa (Schroeter).
Migula was shown when fern extracts were applied at different
concentrations.

[89]

Ginkgo leaves
(Ginkgo biloba L.) Quercitin-3-O-glucoside Ginkgo leaf extracts were capable of decreasing sunburn symptoms

in UVB-induced skin in vivo models. [90]

Green tea
(Camellia fangchengensis Liang and Zhong)

Procyanidin B1, B2, B3, procyanidin trimer, fangchengbisflavan A
and B, catechin 7-O-β-glucopyranoside, epicatechin, (−)-epicatechin
gallate, epigallocatechin, and epicatechin 3-(3-O-methyl) gallate

Antiradical and antioxidant activity against in vitro studies was
shown. [91]

Haskap berry
(Lonicera caerulea L.)

Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, chlorogenic acid,
quercitin-3-O-rutinoside, quercitin-3-O-glucoside, and catechin

Extracts exhibited comparable anti-inflammatory effects to
diclofenac which is a COX inhibitory medicine. [92]

Nutmeg
(Myristica fragrans Houtt) 30,40,7-trihydroxyflavone

Antibacterial activity of nutmeg extracts against the multidrug
resistant Gram-negative bacteria Providencia stuartii Ewing and
Escherichia coli was observed.

[80]

Lavandula
(Lavandula pedunculata Mill.) Caffeic acid, luteolin-7-O-glucuronide, and rosmarinic acid Exhibited highest anti-inflammatory activity in rat RAW 264.7

macrophages by inhibiting nitric oxide production. [93]

Rosemary
(Rosmarinus officinalis L.)

Isorhamnetin-3-O-hexoside, carnosic acid, carnosol, rosmanol,
epirosmanol, rosmaridiphenol, rosmarinic acid, and their methoxy
derivatives

Antioxidant and antiradical activities were observed. Exerted a
direct cytocidal effect via upregulation of nitric oxide (NO) in cancer
cells, which in turn acts in a proapoptotic manner and induces cell
apoptosis.

[94]

Oregano
(Origanum vulgare L.) Rosmarinic acid, 3,4-dihydroxybenzoic acid

The hydroalcoholic extract shows antioxidant activity in vitro and
in vivo models. The oral formulation of oregano preserves
antioxidant activity from gastrointestinal digestion.

[81]

Thymus
(Thymus algeriensis Boiss. and Reut)

Rosmarinic acid, caffeoyl rosmarinic acid, eriodictyol hexoside,
kaempferol-O-hexoside, kaempferol-O-hexuronide,
luteolin-O-hexuronide, apigenin-C-di-hexoside, and
apigenin-O-hexuronide

Methanolic extracts were found to possess substantial antioxidant
and antiacetylcholinesterase activities which were correlated to their
phenolic contents; however, significant variations were observed
between populations.

[95]

Sage
(Salvia officinalis L.)

Apigenin, carnosic acid, carnosol, rosmanol, epirosmanol,
rosmarinic acid, and their methoxy derivatives

Antioxidant and antiradical activities were observed. Sage extracts
were capable of exerting a direct cytocidal effect via upregulation of
nitric oxide (NO) in cancer cells, in a proapoptotic manner which
induced cell apoptosis.

[94]
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2.1. Polyphenols as Prebiotics

As mentioned previously, polyphenols are natural compounds present in many veg-
etables and MAPs. In the human body, the majority of polyphenols have poor absorptions
and they are retained in the intestine for more time where they can promote beneficial
effects, specifically by affecting the gut microbiota [96–98]. This leads to a mutual reaction
between polyphenolic compounds and gut microbiota. The polyphenols are biotrans-
formed into low-molecular-weight phenolic metabolites by gut microbiota resulting in
an increase in polyphenol’s bioavailability, responsible for the health effects derived from
the consumption of polyphenol-rich plants, which may differ from the native compound
found in the plants [97–102]. The properties of polyphenols are dependent on the bioac-
tive metabolites produced when they are metabolised by the microbiota [103]. At the
same time, specific polyphenols can modulate the gut microbial composition frequently
by the inhibition of pathogenic bacteria and increase the growth of beneficial bacteria
resulting in changes of gut microbial composition [104–107]. Finally, they may act as
prebiotic metabolites and enhance the beneficial bacteria. It was demonstrated in ani-
mal studies that the consumption of polyphenols, especially catechin, anthocyanins, and
proanthocyanidins, increases the abundance of Lactobacillus, Bifidobacterium, Akkermansia,
Roseburia, and Faecalibacterium spp. [108]. Prebiotics were defined in 1995 as “nondigestible
food constituents that beneficially act in the host by selectively stimulating the growth
and/or activity of one or a limited number of bacterial species, already resident in the
colon” [109]. Later, in 2010, prebiotics was defined as “a selectively fermented ingredient
that allows specific changes, both in the composition and/or activity in the gastroin-
testinal microflora, benefits upon host well-being and health” [110]. Bioavailability of
polyphenols is influenced by their structural characteristics, mainly by their degree of poly-
merisation [111,112]—for example, proanthocyanidins are not absorbed by the intestinal
mucosa [112], only aglycones and some glucosides can be absorbed [113]. Additionally,
the prebiotic effect of each polyphenol can be influenced by the plant source and the char-
acteristic of the chemical structure of the compound, along with the individual differences
in gut microbiota compositions [114].

2.2. Advances in Phenolic Compounds and Future Research Perspectives

As plant bioactive phenolic compounds have received increasing attention in recent
years [115,116], the research concerning their biosynthesis, biological activities, extraction,
purification processes, and chemical characterisations are of the utmost interest. New ana-
lytical strategies, such as Nuclear magnetic resonance (NMR) and Mass spectrometry (MS),
have demonstrated their use in the identification of new molecular structures and charac-
terisation of plant phenolic profiles [117]. Recently, Jacobo-Velázquez et al. [118] focused on
most recent advances in plant phenolic research such as the functional characterisation of
enzymes involved in the biosynthesis of flavonoids; the evaluation of pre- and postharvest
treatments to increase the phenolic concentrations of different plants and the chemical
characterisation of the phenolic profiles from different plants, and the evaluation of their
bioactivities. Therefore, the development of analytical methods for exploring qualitative or
quantitative approaches to analyse these bioactive phenolic compounds, in different plants,
is essential. Sample preparation and optimisation of the extraction process (solid–liquid
extraction, ultrasound-assisted extractions, microwave-assisted extractions, supercritical
fluid extraction) are essential for achieving higher accuracy of results [119–121]. According
to Swallah et al. [122] it is difficult to choose a universal method for the preparation and
extraction of phenolic compounds from different plants, as they have different polarities,
molecular structures, concentrations, hydroxyl groups, and several aromatic rings involved.
Their analysis can be carried out by using different methods such as spectrophotometry,
gas chromatography, liquid chromatography, thin-layer chromatography, capillary elec-
trophoresis, and near-infrared spectroscopy, which are required to develop rapid, sensitive,
and reliable methods [123,124]. Another challenge is the analysis of polymeric phenolic
compounds, as their polydispersity results in poor resolution and detection, an example
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of which is proanthocyanidins, which have polydisperse structures for which method
development is needed; consequently, characterising the unknown phenolic is one of the
main challenges in the research on plant polyphenols [117].

3. Plant Volatile Compounds Responsible for Aromatic Features
3.1. Vegetable Volatile Compounds

More than 730 flavour compounds have been identified in vegetables [125–129], in-
cluding some nonvolatile compounds. For example, in tomatoes more than 400 volatile
and nonvolatile compounds are known, although only 30 are present in concentrations
higher than 1 µL/L, as summarised in different studies [130–132]. Nonetheless, lower
concentrations of volatile compounds must be considered, because one compound could
be lower than 1µL/L but odour active. In pepper, the “sweetness”, “spicy”, “floral”, and
“herbal” characteristics are caused by a mixture of volatile compounds—(Z)-3-hexenal, 2-
heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol, and linalool
and nonvolatile compounds (fructose and glucose) [133]. In vegetables, the presence of
flavour and nonflavour compounds are diverse, but the key volatile compounds related
to the typical sensory properties of vegetables and their respective aromatic features are
summarised in Table 4.
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Table 4. Key volatile and nonvolatile compounds present in some vegetables largely consumed worldwide. The sensory attributes were adapted from Parker et al. [126] and Maarse [134].

Vegetables Key-Volatile Compounds Sensory Attributes Ref.

Broccoli
(Brassica oleracea L. var. italica)

Methanethiol, hydrogen sulphide, dimethyl disulphide, trimethyl disulphide, dimethyl
sulphide, hexanal, (Z)-3-hexen-1-ol, nonanal, ethanol, 4-methylthiobutyl isothiocyanate, butyl
isothiocyanate, 2-methyl butyl isothiocyanate, and 3-isopropyl-2-methoxypyrazine

“Cabbage”, “radish” [135]

Cabbage
(Brassica oleracea L. var. capitate)

2-Propenyl isothiocyanate, methanethiol, dimethyl sulphide, dimethyl trisulphide, ethanol,
methyl acetate, ethyl acetate, hexanal, (E)-2-hexenal, and (Z)-3-hexen-1-ol “Sulphury”, “onion”, “sweet corn” [136,137]

Cauliflower
(Brassica oleracea L. var. botrytis) 2-Propenyl isothiocyanate, dimethyl trisulphide, dimethyl sulphide, and methanethiol “Sulphur”, “cauliflower”, “putrid” [138,139]

Carrot
(Daucus carota L. subsp. sativus)

α-Pinene, sabinene, myrcene, limonene, β-ocimene, γ-terpinene, p-cymene, terpinolene,
β-caryophyllene, α-humulone, (E)-γ-bisabolene and β-ionone, 3-sec-butyl-2-methoxypyrazine

“Earthy”, “fruity”, “citrus-like”, “woody”,
and “sweet” [134]

Celery
(Apium graveolens L.)

3-Butylphthalide and 3-butyltetrahydrophthalide (sedanolide), (Z)-3-hexen-1-ol, myrcene,
limonene, α-pinene, γ-terpinene, 1,4-cyclohexadiene, 1,5,5-trimethyl-6-methylene-cyclohexene,
3,7,11,15-tetramethyl-2-hexadecen-1-ol, and α-humulene

“Herbal” [140,141]

Cucumber
(Cucumis sativus L.) 3-Isopropyl-2-methoxypyrazine, (E, Z)-2,6-nonadienal, and (E)-2-nonenal “Fatty”, “green”, “cucumber” [140,142]

Garlic
(Allium sativum L.)

Allicin, S-alk(en)yl-cysteine sulfoxides, di-2-propenyl disulphide, methyl 2-propenyl disulphide,
dimethyl trisulphide, methyl 2-propenyl trisulphide, and di-2-propenyl trisulphide “Ammonia”, “sulphur-like smell” [143]

Leek
(Allium porrum L.)

1-Propanethiol, dipropyl disulphide, dipropyl trisulphide, methyl(E)-propenyl disulphide, and
propyl (E)-propenyl disulphide “Onion”, “green” [144,145]

Onion
(Allium cepa L.)

S-alk(en)yl-cysteine sulfoxides, thiopropanal-S-oxide (the lachrymatory factor)
3,4-dimethyl-2,5-dioxo-2,5-dihydrothiophene, propyl methanethiosulfonate, and propyl
propanethiosulfonate

“Ammonia”, “sulphur-like smell” [144]

Pea
(Pisum sativum L.)

Hexanal, (E)-2-heptenal, (E)-2-octenal, 1-hexanol, (Z)-3-hexen-1-ol, 3-alkyl-2-methoxypyrazines,
3-isopropyl-2-methoxypyrazine, 3-sec-butyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine,
5-methyl-3-isopropyl-2-methoxypyrazine, and 6-methyl-3-isopropyl-2-methoxypyrazine

“Green”, “herbal” [146]

Pepper
(Capsicum annuum L.)

(Z)-3-hexenal, 2-heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol,
and linalool, 2-Isobutyl 3-methoxypyrazine

“Green pea”, “green bell pepper”, “spicy”,
“herbal” [133]

Tomato
(Solanum lycopersicum L.)

Hexanal, cis -3-hexenal and trans -2-hexenal, hexanol, cis -3-hexenol, 1-penten-3-one,
2-isobutylthiazole, 6-methyl-5-hepten-2-one, β-ionone, 3-methylbutanal, 3-methyl butanol,
2-pentenal, acetone, ethanol and fureanol, (Z)-3-hexenal

“Green”, “wasabi”, “privet”, “tomato leaf”,
“fatty”, “grassy” [147,148]
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In Table 5 are some examples of compounds responsible for typical sensory attributes
found in vegetables.

Table 5. The key role of some volatile compounds responsible for the sensory attributes of some vegetable species adapted
from Parker et al. [126] and Maarse [134].

Vegetables Volatile Compound Sensory Attributes

Alcohols

Watermelon (Z, Z)-3,6-Nonadienol “Fatty”, “soapy”, “cucumber”, “watermelon”,
“rind”

Aldehydes
Cucumber (E)-2-nonenal “Fatty”, “green”, “cucumber”
Tomato (Z)-3-hexenal “Green”, “fatty”, “grassy”

Lactones
Celery 3-Butylphthalide “Herbal”

Pyrazines

Green bell pepper, peas 2-Isobutyl 3-methoxypyrazine “Green pea”, “green bell pepper”, “spicy”,
“herbal”

Carrot 3-sec-butyl-2-methoxypyrazine “Earthy”, “fruity”, “citrus-like”, “spicy”, “woody”,
and “sweet”

Terpenoids
Red beet Geosmin “Freshly plowed soil”, “earthy”

Sulphur compounds
Asparagus, cabbage Dimethyl sulphide “Sulphury”, “onion”, “sweet corn”
Tomato 2-Isobutyl thiazole “Green”, “wasabi”, “privet”, “tomato leaf”
Turnip 3-Butenyl-glucosinolate “Bitter taste and aftertaste”
Broccoli 4-Methylthiobutyl isothiocyanate “Cabbage”, “radish”
Onion Propyl propanethiosulfonate “Roasted alliaceous”
Radish 4-Methylthio-3-butenyl-isothiocyanate “Sharp taste”, “mustard/horseradish-like”
Garlic, onion S-alk(en)yl-cysteine sulfoxides “Ammonia”, “sulphur-like smell”

Branched-chain alcohols, which are a result of amino acid deamination and decar-
boxylation [139,149], are common in plant materials. (Z, Z)-3,6-Nonadienol (Figure 11) has
been described as having “fatty”, “soapy”, “cucumber”, “watermelon”, and “rind” sensory
attributes, in watermelon, but also “boiled leaf-like” and “grassy” attributes in fresh-cut
melon [150] or “muskmelon-like” and “musky” flavours in cantaloupe [151].
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Volatile aldehydes, also a chemical class formed by the lipoxygenase pathway from
fatty acids [139,149], are well-known for their green note odour. (E)-2-nonenal and (Z)-3-
hexenal (Figure 12), despite their different structures, also originate from different fatty
acids ((E)-2-nonenal, from linoleic acid and (Z)-3-hexenal from linolenic acid) and are de-
scribed as presenting other sensory attributes. “Penetrating”, “waxy” [150] or “fatty” [152]
characteristics have been linked to (E)-2-nonenal, while, for (Z)-3-hexenal, “leafy”, “power-
ful”, “strawberry leaf”, “winey”, “green leaves”, “apple-like”, “leaf-like” and “cut grass”
attributes have also been linked.
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Sesquiterpene lactones are among the most prevalent and biologically significant classes
of secondary metabolites found across the plant kingdom, comprising over 5000 known
compounds, being most common in families such as Cactaceae, Solanaceae, Araceae, and the
Euphorbiaceae. 3-Butylphthalide (Figure 13) is one of the most known lactones, and besides the
“herbal” note associated with it, it is also mainly responsible for the “celery” aroma [153].
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Pyrazines are heterocyclic compounds found in a wide variety of foods and are mostly
associated with nutty and roasty flavours, as well as those of green vegetables. 2-Isobutyl
3-methoxypyrazine and 3-sec-butyl-2-methoxypyrazine (Figure 14) are two well-known
pyrazines that present low sensory detection thresholds, making them very important, as
they can be the compounds responsible for the dominating aromatic features in several
vegetables [154].
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The chemical class of terpenoids includes compounds widely distributed in plants
and fruits and can be divided into two major groups: monoterpenes and sesquiterpenes or
irregular terpenes, which are mostly synthesised in catabolic reactions and/or by autoxida-
tion [155]. Geosmin (Figure 15) is an irregular terpene, and its major sensory attributes, as
referred to, are “earthy” and “freshly plowed soil”.

Foods 2021, 10, x FOR PEER REVIEW 15 of 28 
 

 

Sesquiterpene lactones are among the most prevalent and biologically significant 
classes of secondary metabolites found across the plant kingdom, comprising over 5000 
known compounds, being most common in families such as Cactaceae, Solanaceae, Araceae, 
and the Euphorbiaceae. 3-Butylphthalide (Figure 13) is one of the most known lactones, and 
besides the “herbal” note associated with it, it is also mainly responsible for the “celery” 
aroma [153]. 

 
Figure 13. Chemical structure of 3-Butylphthalide. 

Pyrazines are heterocyclic compounds found in a wide variety of foods and are 
mostly associated with nutty and roasty flavors, as well as those of green vegetables. 2-
Isobutyl 3-methoxypyrazine and 3-Sec-butyl-2-methoxypyrazine (Figure 14) are two well-
known pyrazines that present low sensory detection thresholds, making them very im-
portant, as they can be the compounds responsible for the dominating aromatic features 
in several vegetables [154]. 

 
Figure 14. Chemical structure of 2-Isobutyl 3-methoxypyrazine and 3-Sec-butyl-2-methoxypyra-
zine. 

The chemical class of terpenoids includes compounds widely distributed in plants 
and fruits and can be divided into two major groups: monoterpenes and sesquiterpenes 
or irregular terpenes, which are mostly synthesized in catabolic reactions and/or by au-
toxidation [155]. Geosmin (Figure 15) is an irregular terpene, and its major sensory attrib-
utes, as referred to, are “earthy” and “freshly plowed soil”. 

 
Figure 15. Chemical structure of geosmin. 

Sulphur-containing compounds (Figure 16) are synthesized from methionine and 
cysteine and can be emitted due to an increased accumulation of free methionine. They 
are key trace volatiles and are a major factor in the sensory properties of fruits and vege-
tables [156]. 

Figure 15. Chemical structure of geosmin.



Foods 2021, 10, 106 17 of 29

Sulphur-containing compounds (Figure 16) are synthesised from methionine and cys-
teine and can be emitted due to an increased accumulation of free methionine. They are key
trace volatiles and are a major factor in the sensory properties of fruits and vegetables [156].

 
Figure 16. Chemical structure of sulphur-containing volatile compounds. 

 

 

Figure 16. Chemical structure of sulphur-containing volatile compounds.

The formation of volatile and nonvolatile compounds is diverse, due to the multi-
tude of molecules that convey flavour. In general, these molecules are synthesised from
terpenoid, apocarotenoid, and lipoxygenase pathways and are derived from amino and
fatty acids [139,149] (Figure 17).
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Figure 17. The principal plant volatile compounds are derived from four biosynthetic classes of precursors: terpenoids,
fatty acid catabolites, aroma, and amino acid derived products. Many of these products are made more lipophilic (storage
in membranes or oil bodies) before their release by removing or masking hydrophilic functional groups through reduction,
methylation, or acylation reactions. Adapted from Baldwin et al. [157].

Although many of the volatile and nonvolatile compounds responsible for aromatic
features have been identified, many of their biochemistry pathways are still not well
explained. Still, several metabolic pathways are involved in the biosynthesis of compounds
responsible for the aromatic features and taste in vegetables. Many volatile compounds are
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synthesised from fatty acid, amino acid, and carotenoid pathways [130,158], others from
isoprenoid substrates. However, it is well-known that primary metabolism is fundamental
for the formation of nonvolatile compounds, which also contribute to the aromatic features
and taste of vegetables [158] (Figure 18). Among these are sugars, organic acids, free
amino acids, provitamins, minerals, and salts [159]. For example, sweetness is determined
by the concentrations of the predominant sugars, while sourness is determined by the
concentrations of the predominant organic acids [160].

Foods 2021, 10, x FOR PEER REVIEW 17 of 28 
 

 

free amino acids, provitamins, minerals, and salts [159]. For example, sweetness is deter-
mined by the concentrations of the predominant sugars, while sourness is determined by 
the concentrations of the predominant organic acids [160]. 

 
Figure 18. Generalized pathways for the synthesis of some nonvolatile compounds present in 
plants. Adapted from Ncube and Staden [161]. 

In tomato, its characteristic sweet-sour taste is due to a combination of the sugars and 
organic acids, and positive correlations between perceived sweetness, reducing sugar con-
tent, and soluble solids have been found [162]. Therefore, to define what compounds are 
more critical to flavor is more complex than expected. Moreover, when vegetables are 
harvested, a catabolic process starts due to the disruption of plant tissues, affecting their 
aroma and transforming their key flavors into different compounds. Some of them may 
even turn into a new biologically active compound. For example, in brassica vegetables, 
operations such as cutting, chewing, and cooking have an uncontrolled effect on volatile 
compounds, due to the mixture of enzymes. The brassica vegetables’ typical odors and 
tastes are mainly due to the presence of glucosinolates, which when in contact with the 
enzyme myrosinase (EC 3.2.1.147, thioglucoside glucohydrolase) hydrolyze into new 
groups of breakdown products such as isothiocyanates, organic cyanides, oxazolidinethi-
ones, and thiocyanate [162], affecting their aroma and transforming their key flavor into 
a different one. A similar situation occurs with Allium species, such as onion, shallot, gar-
lic, leek, and others, have in common the presence of the sulfur-based S-alk(en)ylcysteine 
sulfoxide (alliin, I) in their composition. In damaged or disrupted tissue transformation 
into several other compounds, via alliinase occurred [163]. The initial hydrolysis products 
are ammonia, pyruvate, and an alk(en)ylthiosulphinate (allicin, II), and can undergo fur-
ther nonenzymatic reactions to yield a variety of compounds such as thiosulfate [III] and 
di- and trisulphides [IV] [146], which gives to Allium species their typical odor of a sulfur-
like smell. 

Although most of such compounds are related to odor and flavor, some of them are 
also involved in important biochemical activities. Epidemiological studies have shown 

Figure 18. Generalized pathways for the synthesis of some nonvolatile compounds present in plants.
Adapted from Ncube and Staden [161].

In tomato, its characteristic sweet-sour taste is due to a combination of the sugars
and organic acids, and positive correlations between perceived sweetness, reducing sugar
content, and soluble solids have been found [162]. Therefore, to define what compounds
are more critical to flavour is more complex than expected. Moreover, when vegetables are
harvested, a catabolic process starts due to the disruption of plant tissues, affecting their
aroma and transforming their key flavours into different compounds. Some of them may
even turn into a new biologically active compound. For example, in brassica vegetables,
operations such as cutting, chewing, and cooking have an uncontrolled effect on volatile
compounds, due to the mixture of enzymes. The brassica vegetables’ typical odours and
tastes are mainly due to the presence of glucosinolates, which when in contact with the en-
zyme myrosinase (EC 3.2.1.147, thioglucoside glucohydrolase) hydrolyse into new groups
of breakdown products such as isothiocyanates, organic cyanides, oxazolidinethiones,
and thiocyanate [162], affecting their aroma and transforming their key flavour into a
different one. A similar situation occurs with Allium species, such as onion, shallot, garlic,
leek, and others, have in common the presence of the sulphur-based S-alk(en)ylcysteine
sulfoxide (alliin, I) in their composition. In damaged or disrupted tissue transformation
into several other compounds, via alliinase occurred [163]. The initial hydrolysis products
are ammonia, pyruvate, and an alk(en)ylthiosulphinate (allicin, II), and can undergo fur-
ther nonenzymatic reactions to yield a variety of compounds such as thiosulphate [III]
and di- and trisulphides [IV] [146], which gives to Allium species their typical odour of a
sulphur-like smell.
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Although most of such compounds are related to odour and flavour, some of them are
also involved in important biochemical activities. Epidemiological studies have shown that
glucosinolate hydrolysis products (responsible for the bitterness and mustard/horseradish-
like flavours) may act as an anticarcinogen agents and can exert antibacterial and antifungal
activities against diverse human and plant pathogens [164]. Recently, allicin, a derived
compound from alk(en)ylcysteine sulfoxide in Allium species, showed antimicrobial and
anticarcinogenic activities [165,166]. Compounds such as lycopene and carotene, largely
present in tomato, carrot, and spinach, have been associated with anti-inflammatory
properties [167].

3.2. MAP Volatile Compounds Responsible for Aromatic Features

Plants provide multiple ranges of aromatic features well-noticed by the most sensitive
human senses—taste, and odour [168]. Over time, many plant species have been used to
produce foods and medical or herbal formulations [169]. The use of MAPs began as an
unselective wild-harvesting of plants, moving into a selective collection and then to the
cultivation of the most useful. From ancient times to the present day, plants have been
used as medicines and food preservers [170]. Nowadays, their cultivation, pharmacognosy,
phytochemistry, biology, conservation, and sustainable use are matters of interest [171].
MAPs yield a wide variety of natural compounds, produced and stored in glands located in
different parts of the plant: leaves, flowers, fruits, seeds, barks, and roots [172,173]. These
natural compounds, most of which are essential oils, are volatile at room temperature,
and important for plant adaptation and survival—namely as pollinator attractants, as
herbivores restraints, or as a defence against pathogenic microorganisms. Because of their
biological activities, they are also important to Man in both commercial and industrial
resources—namely, in traditional medicine [172], which also provides raw materials for
use in pharmaceuticals, cosmetics, food, and chemical industries [173].

What are the MAPs? According to Maiti and Geetha [174], MAPs are plants that
provide “medicines” to humans that prevent disease, maintain health, or cure illnesses; “let
food be your medicine”, attributed to Hippocrates, 460–377 B.C., is again a popular concept.
New designations have emerged to classify the beneficial effects of the use of some plants
or plant parts and products. According to Barata et al. [172], MAPs can be divided into four
groups, based on their final usage: raw materials for essential oil extraction, which is the
major use of MAPs around the world; spices, nonleafy parts of plants used as flavouring or
seasoning; herbs, leafy or soft flowering parts of the plant used as flavouring or seasoning;
miscellaneous group, MAPs used in different ways.

The International Union for Conservation of Nature and the World Wildlife Fund
estimated that about 50,000–80,000 flowering plant species are used in medicinal formu-
lations across the world. Among these, only 1 to 10% has been studied chemically and
pharmacologically for their potential value [175]. MAPs contain a wide variety of bioactive
secondary metabolites, such as essential oils, alkaloids, phenolics (such as flavonoids),
steroids, terpenes, sesquiterpenes, diterpenes, and saponins [176], that find uses in several
perfumeries, flavourings, and pharmaceutical compounds [177]. Many secondary metabo-
lites include aroma substances, and phenolic compounds or their oxygen-substituted
derivatives such as tannins [178], and many of these compounds have anti-inflammatory
and antioxidant properties. Plant secondary metabolites are characterised as exhibiting
chemical polymorphism, which causes the occurrence of several chemotypes within the
same species [179]. The chemotypes are of extreme importance when considering the safety,
quality, and efficacy of herbal products derived from MAPs. There are numerous cases
of plant species showing a great variety of chemotypes. The genus Thymus shows many
examples since many Thymus species are chemically heterogeneous. Thymus vulgaris is
among the most popular plants having chemotypes. Six different chemotypes are known,
depending on the main component of the essential oil: thymol, carvacrol, linalool, geraniol,
borneol, sabinete hydrate, and multiple component chemotypes [180].
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Table 6 summarises some important MAPs and their main volatile compounds. Re-
garding the data presented in this table, a different type of compound is responsible for
the aromatic features of MAPs. For example, Lee et al. [181] identify a high content of
linalool, methyl cinnamate, estragole, eugenol, and 1,8-cineole compounds in basil culti-
vars and reported that these compounds were responsible for the typical aroma of basil
perceived by consumers. Similar results were presented by Shahwar et al. [182], who
reported that the typical aroma of coriander is due to a mixture of different compounds in
which decenal and related compounds (Table 6) assume a high preponderance. Several
other authors [181–191] have reported that the typical aromatic features exhibited by MAPs
are a result of a combined effect of several compounds rather than a single compound, as
shown by Kizhakkayil and Sasikumar [185] for ginger. These authors reported that the
typical “spicy” and “fresh” aromas exhibited by ginger is due to the simultaneous presence
of different compounds such as zingiberene, 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol,
8-shogaol, geranial, and neral. These compounds, even in lower amounts, are critical for
the consumer to perceive the typical aroma of ginger, all of them are important to define
the ginger “bouquet”.

Table 6. Key volatile compounds present in some medicinal and aromatic plants (MAPs). In bold are the major volatile compounds of
each MAP. The names of the compounds in bold are those represented in the figures.

MAP Main Volatile Compounds Chemical Structure of Major
Volatile Compounds Ref.

Basil
(Ocimum basilicum L.)

Linalool, methyl cinnamate, estragole, eugenol, and
1,8-cineole
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(Zingiber officinale Rosc.) 

Zingiberene, 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
shogaol, 10-shogaol, geranial, neral, 1,8-cineole, β-bisabolene, β-
sesquiphellandrene, (E)(E)-α-farnesene, viridiflorol, and (E)(E)-far-
nesal  

[184,185] 

Lavender 
(Lavandula angustifolia 
Mill.) 

1,8-Cineole, camphor and borneol 

 

[186]  

Melissa 
(Melissa officinalis L.) 

Geranial, neral, alloaromadendrene, geranyl acetate, 6-methyl-5-
hepten-2-one, and β-caryophyllene  

[187]  

Oregano 
(Origanum vulgare L.) 

Sabinene, 1,8-cineole, caryophyllene oxide, (E)-β-caryophyllene, p-
cymene, α-terpineol, and germacrene D 

 

[188]  

Parsley 
(Petroselinum crispum 
(Mill.) Nym. Ex A.W.Hill 

α-Pinene, sabinene, myrcene, β-pinene, cis-3-hexenyl acetate, α-
phellandrene, p-cymene, limonene, β-phellandrene, trans-β-
ocimene, γ-terpinene, terpinolene, 1,3,8-p-menthatriene, α-terpin-
eol, trans-β-caryophylle, germacrene-D, nerolidol, and myristcin  

[189]  

[188]
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Table 6. Cont.

MAP Main Volatile Compounds Chemical Structure of Major
Volatile Compounds Ref.

Parsley
(Petroselinum crispum
(Mill.) Nym. Ex A.W.Hill

α-Pinene, sabinene, myrcene, β-pinene,
cis-3-hexenyl acetate, α-phellandrene, p-cymene,
limonene, β-phellandrene, trans-β-ocimene,
γ-terpinene, terpinolene, 1,3,8-p-menthatriene,
α-terpineol, trans-β-caryophylle, germacrene-D,
nerolidol, and myristcin
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Peppermint
(Mentha x piperita L.)

Santene, camphene, β-pinene, myrcene,
cis-3-hexenyl acetate, p-cymene, α-terpinene,
limonene, trans-β-ocimene, γ-terpinene,
trans-sabinene hydrate, nonanal, linalool,
cis-limonene oxide, trans-limonene oxide, and
cis-p-mentha-2,8-dien-1-ol
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For better exploitation of any MAP species, it is necessary to evaluate the genetic
stability of their populations, i.e., whether such populations continue to produce the same
characteristic products after being transplanted to and grown in habitats with different
edaphoclimatic conditions. In all, for each species, it is crucial to perform a detailed study,
which addresses, for instance, the influence of seasonal and geographic variations and local
environmental conditions. The results obtained will provide the scientific basis for the
selection and cultivation of species showing better qualities, thus bringing some economic
and social benefits for local growers.

3.3. Advances in Aromatic Features and Future Research Perspectives

From the aromatic features perspective, the actual challenges in research are multifold:
(a) overcome the crop defects; (b) refinement of aroma deviations; (c) modulate volatile
and nonvolatile compounds’ biosyntheses to produce high-potency aromatic features; (d)
increase the accuracy of aromatic features signature; (e) understand how preharvest and
postharvest factors can affect vegetable and MAP aromatic features or tastes. The flavour
is the result of a complex metabolic network that can be influenced by several factors, such
as genetics, environment, agricultural practices, and postharvest handling and storage.
However, recent findings show that the biosynthesis of the compounds can be remarkably
influenced by other factors, such as enzyme specificity of gene adaptation [192,193] leading
to the research of new steps. Until recently, the research focus was to understand how
agriculture practices affect plant composition and interfere in the consumer´s perception
of aromatic features [126,194], but the latest research studies are shifting from yield to
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quality factors. Nowadays, the trends in consumption are mostly defined by consumer’s
preferences (sustainability, nutrition, aromatic features, novelty) and not exclusively by the
producer’s priorities [194]. Genomic and metabolomic analysis with clarification of the fun-
damental metabolism of volatile compounds with aromatic features and their biosynthetic
mechanisms, regulations, and localisation is a hot topic [194]. So, linkages of the biosynthe-
sis of aromatic features with enzymatic endogenous processes will provide new insights
into the flavour control mechanism. Moreover, the association of genome and metabolome
analysis with identification of key enzymatic changes occurred in physiological processes
would address new opportunities to increase the contents of specific compounds, par-
ticularly those with importance for consumer acceptance. This approach will open the
possibility to produce vegetables and MAP species with an enhanced content of a specific
volatile or nonvolatile compound, with greater biological properties. Additionally, it will
speed up the discovery of new or unknown chemosensory-active molecules and under-
standing of their biochemical interactions with main food matrix constituents. Likewise, it
will open ways of direct improvement of foods by adapting processing parameters that
can help to overcome taste defects or undesirable aromatic features, without the addition
of any artificial ingredients.

4. Final Remarks

Vegetables and MAPs are two important sources of bioactive and volatile compounds
that are responsible for consumer perceptions on their importance in human health. Hun-
dreds of studies using in vitro and in vivo models have shown that phenolics and volatile
compounds are directly involved in different degenerative cellular mechanisms and thus
are being considered as key compounds to reduce or to inhibit pro-oxidant and inflam-
matory processes. The combination of such compounds gives us an important view on
the quality of vegetables and MAPs. Thus, it is important to understand what types of
compounds are present in vegetables and MAPs, the relations between them, and how they
can be affected by biotic or abiotic factors. This review summarises all these aspects. This
information is important to a better understanding of all the processes behind the formation
of volatile and nonvolatile compounds as well as their bioactivities, their interaction with
other compounds, but, more importantly, how they influence the consumer’s perception of
quality. Moreover, their influence on the human tendency to buy vegetables and MAPs is
also supported by this type of information. This is true to all plant species reported in this
work, but also to those not included here, and a continuous effort to identify volatile and
nonvolatile compounds is ongoing. Furthermore, the improvement of aromatic features is
fundamental and must be achieved without compromising other quality traits of crops.
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