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The seed of Hyptis suaveolens, commonly known as wild flour ball (san fen yuan) in Taiwan,

serves as a main refreshing drink substance in several regions. This study investigated

firstly its secondary metabolites, leading to the isolation of five major caffeoylquinic acid

derivatives (1e5) from the ethanol extract. In addition, ten minors, including three caf-

feoylquinic acid derivatives (12e14), were characterized via assistance of HPLC-SPE-NMR.

Of these isolates, sodium 4,5-dicaffeoylquinate (2) and methyl 3,5-dicaffeoylquinate (4)

showed moderate inhibitory activity against xanthine oxidase with the respective IC50

values of 69.4 mM and 92.1 mM (c.f. allopurinol IC50 28.4 mM). Quantitative HPLC analysis of

the EtOH extract indicates the content of sodium 3,5-dicaffeoylquinate (1) and sodium 4,5-

dicaffeoylquinate (2) to be 0.1% and 0.08% (w/w, dry seed), respectively. This study not only

discloses the bioactive constituents, but also demonstrates the potential of H. suaveolens

seed as an antihyperuricemic nutraceutical.

Copyright © 2019, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hyptis suaveolens (L.) Poir. is distributed worldwide in the

tropical regions [1], and its seed, known as pignut or chan, has

been used for preparation of refreshing drinks in several

countries such as Mexico and Taiwan. Like psyllium seed, it

will swell while immersing in water and appear like flour ball.

Thus, it is called “wild flour ball” in Taiwan. The ethanol

extract of H. suaveolens aerial part has been demonstrated to

possess gastro-protective activity in vivo [2], and the essential

oils from its leaf displayed antimicrobial [3] and insecticidal
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activities [4,5]. Past chemical studies on H. suaveolens seed

mainly focused on the protein [6], and oligo- and poly-

saccharides [7,8]. The bioactive constituents of small mole-

cules in this material, however, required investigation.

Gout is a metabolic disorder associated with hyperurice-

mia caused by overproduction or underexcretion of uric acid.

As uric acid is produced via oxidation of xanthine/hypoxan-

thine by xanthine oxidase, mainly in intestine and liver, the

inhibition of this key enzyme can lower uric acid level, leading

to the prevention of recurrent gout [9]. Natural products have

been considered as a potential source of healthy supplement.
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Recently, our lab has isolated several unusual phenyl-

propanoids from aerial part of Hyptis rhomboids and these

isolates, e.g. hyprhombins B & C, epihyprhombin B, and net-

petoidin B, showed good inhibitory activity against xanthine

oxidase [10]. This current study was aimed to disclose

whether the seed of a related plant, H. suaveolens (L.) Poir.,

contained similar constituents, hence beneficial for hyper-

uricemic persons.

The high performance liquid chromatography-solid phase

extraction-nuclear magnetic resonance (HPLC-SPE-NMR) hy-

phenation has been applied in natural product investigation

for years [11e13]. This hyphenation is powerful to screen the

chemical constituents of the plants because of its high effi-

ciency in separation and analysis (HPLC), provision of infor-

mative data for structural characterization (NMR), and

cumulative compound trapping, removal of eluent interfer-

ence (SPE) to enhance the sensitivity for NMR measurement.

Hereinwe report our effort in isolation and identification of

quinic acid derivatives possessing xanthine oxidase inhibitory

activity from H. suaveolens seeds via the assistance of HPLC-

SPE-NMR.
2. Material and methods

2.1. Instrumentation

Optical rotations were obtained on a JASCO P-2000 polarim-

eter (Hachioji, Tokyo). UV spectra (MeOH) weremeasured on a

Hitachi U-2900 double-beam spectrophotometer (Hitachi,

Japan). Electron circular dichroic (CD) spectra (MeOH) were

measured on a JASCO J-720 spectropolarimeter (Hachioji,

Tokyo). NMR spectra were recorded by Bruker AV-400, and AV

III-600 (CD3OD, dH 3.30 and dC 49.0 ppm). HPLC-SPE-NMR

(600 MHz), composed of an Agilent 1100 liquid chromato-

graph (Waldbronn, Germany), a Phenomenex Prodigy ODS3

(C-18) 100�A (250� 4.6mm, 5 mm) column, coupledwith a diode

array detector (DAD, G1315A) and a Knauer K120 HPLC pump

(makeup pump), a Prospekt 2 automated solid-phase extrac-

tion unit (Spark Holland, Emmen, Holland), containing 192

HySphere resin GP cartridges (10 � 2 mm, 10e12 mm), con-

necting to a Gilson Liquid Handler 215 automated tube

transfer (TT) system (Gilson, Inc., Middleton, WI, USA), and a

Bruker AV III-600 spectrometer. HPLC-ESIMS (electrospray

ionization mass spectrometry) was performed on an Agilent

1100 series liquid chromatograph, followed by an Esquire 2000

mass spectrometer (Bruker Daltonics, Germany). TLC analysis

was carried out on silica gel plates (KG60-F254, Merck).

2.2. Plant material

The seeds of H. suaveolens (L.) Poir. were purchased from

Yuan-Fong grain store in Zhongzheng District, Taipei, Taiwan

in December, 2017. The voucher specimen (NTUSP10612A)

was authenticated by the author (S.S.L.).

2.3. Extraction and isolation

The dry milled seeds (1.2 kg) of H. suaveolens immersed in 95%

EtOH (3� 3 L) were stirred at room temperature for 12 h, and at
50 �C for another 12 h, then filtered. The EtOH extract (30.9 g)

was yielded after evaporation of the combined filtrate under

reduced pressure at 40 �C. The suspension of the ethanol

extract (30.4 g) in distilled water (150 mL) was partitioned

against dichloromethane, ethyl acetate, and n-butanol

sequentially, each 150 mL for three times, to give the corre-

sponding fraction soluble in CH2Cl2 (14.6 g), EtOAc (1.4 g), n-

BuOH (3.1 g), and H2O (11.2 g) after evaporation. Both EtOAc-

(1.2 g) and n-BuOH- (1.3 g) soluble fractions were separated on

a Sephadex LH-20 column (2.5 cm � 75.0 cm; MeOH) to give 11

subfractions (frs. E1e11) and nine subfractions (frs. B1e9),

respectively, combined on the basis of TLC analysis. Frs. E6

(162.7 mg) and B6 (73.7 mg) were 1, E8 (56.5 mg) was 2, and B8

(18.9 mg) was 3.

Separation of an aliquot of fr. E5 (135.8 mg out of 308.4 mg)

on a Lobar Lichrospher RP-18 Type A column (240 � 10 mm,

40e63 mm; Merck, Germany), eluted by CH3CN-0.1% HOAc(aq)
23:77 with a flow rate of 2.2 mL min�1, yielded five fractions

(frs. E5-1e5). Frs. E5-2 (6.7 mg), E5-3 (78.8 mg), and E5-5

(22.4 mg) were compounds 3, 1, and 4, respectively. Separa-

tion of fr. E5-4 (5.9 mg) on a semi-preparative RP-18 HPLC

column (Phenomenex Prodigy ODS3 100�A, 250� 10mm, 5 mm)

(10� 50 mL; 5.9mg/0.5mL), delivered by CH3CN-0.1%HCO2H(aq)

24:76 with a flow rate of 2.2 mL/min andmonitored at 280 nm,

gave 5 (1.6 mg, tR: 34.1 min).

2.4. HPLC conditions used in HPLC-SPE and HPLC-
ESIMS for frs. E3, E4, and B5

Chemical constituents in the minor fractions, frs. E3 (1.2 mg),

E4 (3.3 mg), and B5 (3.1 mg), were characterized by HPLC-SPE-

TT-NMR and HPLC-ESIMS. HPLC separationwas carried out on

an analytical RP-18 column as indicated above. The HPLC

conditions were as follows: delivery system, CH3CN-0.1%

HCO2H(aq) 5% to 21% in 40 min (linear gradient), 21% for 2 min,

to 95% in 1 min (linear gradient), and 95% for 12 min, for

separation of fr. E3; CH3CN-0.1%HCO2H(aq) 5% to 23% in 20min

(linear gradient), 23% for 50 min, for separation of fr. E4;

CH3CN-0.1% HCO2H(aq) 5% to 22% in 20 min (linear gradient),

22% for 20min, to 28% in 1min (linear gradient), 28% for 7min,

for separation of fr. B5; all with a flow rate of 0.5 mLmin�1 and

detection at 280 nm. ESIMS data were acquired under the

following settings: negative mode, nebulizer pressure 15 psi,

drying gas 10 L min�1 at 250 �C.

2.5. SPE-TT-NMR procedures

After the HPLC separation, the eluate was added water by a

make-up pump with a flow rate of 1.2 mL min�1, and each

compound peak was passed through an individual

HySphere-Resin GP cartridge (10 � 2 mm, 10e12 mm) in the

Prospekt 2 automated solid-phase extraction unit. This

HPLC-SPE process was repeated six to seven times. The

concentration of each sample and the volume of injection

per HPLC run are shown in supplementary data (Figs.

S1�3). Each compound loaded cartridge was flushed with

dry nitrogen stream for 30 min to remove the eluent res-

idue and the trapped compound in the cartridge was

transferred into a 2-mm NMR tube with CD3OD by a Gilson

Liquid Handler 215 automated tube transfer (TT) system.

https://doi.org/10.1016/j.jfda.2019.05.006
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The NMR tubes were then placed on an automatic NMR

tube exchanging system to record NMR spectra by a Bruker

AV III-600 spectrometer using a multiple solvent suppres-

sion pulse program at 298 K.

2.6. Measurement of circular dichroic spectroscopy

After the measurement of NMR spectra as indicated above,

each sample solution was evaporated under reduced pressure

at 40 �C to give a dry residue which was redissolved in MeOH

(5mL) for CDmeasurement. The settings for CDmeasurement

were as follows: step resolution 0.1 nm, scan speed

50 nm min�1, response 0.25 s, and sensitivity 200 mdeg.

2.7. Quantitative analysis of dicaffeoylquinic acids
(1e3) in EtOH extract

The reference compounds 1e3 were isolated as described

above (Section 2.3). Each reference compound was weighed

accurately, dissolved in MeOH, and diluted to five concen-

trations (1000, 500, 100, 50, 10 mg mL�1) to establish linear

regression curve. The EtOH extract of H. suaveolens seed,

obtained as described in Section 2.3, was weighed accu-

rately, and prepared as the 5.0 mg mL�1 solution (MeOH).

The quantitative RP-18 HPLC analysis was carried out on

the same HPLC equipment as described above. The HPLC

conditions were as follows: delivery system, CH3CN-0.1%

HCO2H(aq) 24% for 25 min, to 95% in 1 min (linear gradient),

and 95% for 9 min; flow rate, 0.5 mL min�1; detection

280 nm. Each concentration of the reference compounds

and the EtOH extract of H. suaveolens seed were analyzed in

triplicate, and the injection volume of each analysis was

10 mL. The regression curve was established by mean peak

areas (mAu � s) versus the amounts (mg) of reference

compound, and the linearity was evaluated by coefficient of

correlation (R2).

2.8. Xanthine oxidase inhibitory bioassay

The bioassay of fractions and compounds against xanthine

oxidase was carried out by a method modified from a report

[14]. To the corresponding well in a 96-well plate was added

vehicle (10 mL, MeOHeH2O 1:9, v/v) or sample in vehicle (10 mL),

and 0.5 mM xanthine (Sigma) solution (60 mL), then xanthine

oxidase (30 mL, 0.05 U mL�1) (EC 1.2.3.2, bovine milk, Sigma)

was added to start the reaction. The produced uric acid was

determined by measuring the absorbance at 290 nm on a

Microplate spectrophotometer SPECTRAmax® PLUS (Molecu-

lar Devices) at 2 min intervals. The inhibitory percentage

against xanthine oxidase (%) was calculated by the following

equation: inhibition (%) ¼ 100 � [1 � (Asample � Ablank)/

(Acontrol � Ablank)]. Compounds 2 and 4 with better inhibitory

activity were selected to determine the IC50 value. The IC50

value was determined by the doseeresponse curve (Sigmoid

regression) of six concentrations (10, 20, 50, 100, 200, and

500 mM) of each test sample in triplicate, using log value of

concentration as x-axis and inhibition percentage as y-axis.

Allopurinol (Synmosa Biopharma Corporation) was used as a

positive control whose IC50 values were found to be

28.4 ± 1.1 mM.
3. Results and discussion

3.1. Isolation and structural characterization of major
dicaffeoylquinic acid derivatives

The 95% ethanol extract of H. suaveolens seeds was divided

into fractions soluble in CH2Cl2, EtOAc, n-BuOH, and H2O via

liquideliquid partitioning process. Through xanthine oxidase

inhibition assay, the EtOAc soluble fraction showed the best

inhibitory activity, up to 52.90% at 100 mg mL�1 (Fig. 1). Sepa-

ration of this bioactive fraction on Sephadex LH-20 and C-18

columns afforded five compounds (1e5) (Fig. 2).

These five compounds contained a dicaffeoylquinic acid

moiety in common, as reflected by the 1H NMR spectra, dis-

playing two sets of AMX system in the aromatic region, and

two sets of trans-coupling system for olefinic protons (1: H-7ʹ,

d 7.61, d, J ¼ 15.9 Hz; H-700, d 7.57, d, J ¼ 15.8 Hz; H-8ʹ, d 6.34, d,

J¼ 15.9 Hz; H-800, d 6.26, d, J¼ 16.0 Hz), designating to two trans-

caffeoyl residues; two double triplets and a double doublet for

three oxymethine protons (1: H-3, d 5.42, dt, J¼ 6.8, 3.7 Hz; H-5,

d 5.38, dt, J¼ 4.7, 7.2 Hz; H-4, d 3.96, dd, J¼ 7.4, 4.7 Hz), and four

double doublets belonging to four protons of two methylenes

(1: H-2a, d 2.31, dd, J ¼ 13.9, 3.8 Hz; H-6a, d 2.24, dd, J ¼ 13.6,

7.6 Hz; H-6b, d 2.20, dd, J¼ 14.0, 4.1 Hz; H-2b, d 2.15, dd, J¼ 13.9,

6.9 Hz), characteristic for a quinic acid residue (Table 1). The

coupling relationship of these protonswas verified by analysis

of the COSY spectra (Figs. S4�6, Supplementary data). Com-

pound 1 was identified as sodium 3,5-dicaffeoylquinate [15],

supported by the 1H NMR spectrum, showing downfield shif-

ted H-3 and H-5 in the quinic acid moiety, d 5.42 and 5.38 ppm,

and the ESI-MS data ([MþNa]þ at m/z 561.3, [MþH]þ at m/z

539.1, [M�H]� at m/z 536.9, and [M�Na]� at m/z 514.9). Com-

pound 2 was identified as sodium 4,5-dicaffeoylquinate [16],

supported by the 1H NMR spectrum, showing downfield shif-

ted H-4 and H-5 in the quinic acid moiety, d 5.11 (dd, J ¼ 8.9,

3.0 Hz) and 5.61 (dt, J ¼ 5.0, 9.1 Hz) (Supplementary data).

Compound 3 was identified as sodium 3,4-dicaffeoylquinate

[16], supported by the 1H NMR spectrum, showing downfield

shifted H-3 and H-4 in the quinic acidmoiety, d 5.63 (dt, J¼ 4.0,

3.8 Hz) and 5.00 (dt, J ¼ 8.8, 3.1 Hz) (Supplementary data).

These three compounds are present as sodium salt as sup-

ported by their ESI-MS data ([MþNa]þ at m/z 561.3, [MþH]þ at

m/z 539.1, [M�H]� at m/z 536.9, and [M�Na]� at m/z 514.9)

(Supplementary data).

Compounds 4 and 5 were identified as the corresponding

methyl ester of 1 and 3, respectively, as verified by almost

identical 1H NMR spectrum except for the presence of an

additional methyl singlet at d 3.68 and 3.75 (Supplementary

data) [17,18]. The 13C NMR spectra of 4 and 5, showing a

respective methyl signal at d 53.0 (4) and 52.9 (5), and ESI-MS,

both showing [M�H]� at m/z 529.0, also supported this struc-

ture elucidation.

These major dicaffeoylquinic acids have been found in

several food sources, such as kumquat, passion fruit, sweet

granadilla [19], and sweet potato [20], and have been reported

to possess several bioactivities in vitro, e.g. antioxidant, a-

glucosidase inhibitory activity [21], and aldose reductase

inhibitory activity [22]. Besides, these derivatives also display

hypotensive [23] and anti-thrombotic [24] effects in vivo. The

https://doi.org/10.1016/j.jfda.2019.05.006
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Fig. 1 e Inhibitory activity of the H. suaveolens seeds against xanthine oxidase (allopurinol IC50 28.4 ± 1.1 mM): (a) the EtOH

extract, soluble in CH2Cl2, EtOAc, n-BuOH, and water (100 and 10 mg mL¡1); (b) compounds 1e4; (c) doseeresponse curve and

IC50 values of compounds 2 and 4.
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Fig. 2 e Structures of compounds 1e15 from H. suaveolens seeds.

Table 1 e 1H NMR spectroscopic data (d/ppm, m, J) of compounds 1 and 12e14.

Proton 1a 12b 13b 14b

2 2.31 dd (13.9, 3.8)

2.15 dd (13.9, 6.9)

2.31 dd (13.7, 3.7)

2.15 dd (13.4, 7.1)

2.31 dd (13.9, 3.5)

2.16 dd (13.8, 6.8)

2.32 dd (13.8, 3.8)

2.15 dd (13.6, 6.7)

3 5.42 dt (6.8, 3.7) 5.42 dt (6.8, 3.7) 5.43 dt (6.5, 3.5) 5.43 dt (7.0, 3.7)

4 3.96 dd (7.4, 3.4) 3.97 dd (7.3, 3.2) 3.97 dd (7.4, 3.2) 3.97 dd (7.2, 3.2)

5 5.38 td (7.2, 4.7) 5.38 td (6.7, 4.4) 5.39 m 5.38 td (7.1, 4.1)

6 2.24 dd (13.6, 7.6)

2.20 dd (14.0, 4.1)

2.24 dd (13.9, 7.3)

2.20 dd (13.9, 3.6)

2.24 m

2.20 m

2.25 dd (13.8, 7.2)

2.20 dd (13.5, 3.8)

20 7.06 d (2.2) 7.06 d (1.9) 7.21 d (1.6) 7.06 d (2.0)

30-OMe e e 3.90 s e

50 6.771 d (8.2) 6.771 d (8.2) 6.81 d (8.1) 6.771 d (8.2)

60 6.96 dd (8.3, 2.0) 6.96 dd (8.2, 1.9) 7.08 dd (8.1, 1.6) 6.96 dd (8.2, 2.0)

70 7.61 d (15.9) 7.61 d (16.1) 7.67 d (15.9) 7.61 d (15.9)

80 6.34 d (15.9) 6.34 d (15.8) 6.44 d (15.9) 6.34 d (15.9)

200 7.05 d (2.2) 7.48 d (8.6) 7.05 d (2.0) 7.21 d (1.7)

300 e 6.80 d (8.6) e e

300-OMe e e e 3.90 s

500 6.773 d (8.2) 6.80 d (8.6) 6.774 d (8.2) 6.81 d (8.2)

600 6.97 dd (8.3, 2.0) 7.48 d (8.6) 6.97 dd (8.2, 1.9) 7.10 dd (8.2, 1.7)

700 7.57 d (15.8) 7.64 d (16.1) 7.57 d (15.8) 7.63 d (15.8)

800 6.26 d (16.0) 6.32 d (15.8) 6.26 d (15.8) 6.35 d (15.9)

a Data obtained from analyzing the general 1H NMR spectra (CD3OD, 600 MHz).
b Data obtained from analyzing the 1H NMR spectra using a multiple solvent suppression pulse program (CD3OD, 600 MHz).
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current chemical investigation demonstrates that H. suaveo-

lens seed contains several bioactive ingredients beneficial to

health.

3.2. Identification of minors by assistance of HPLC-SPE-
NMR and HPLC-MS

As the amounts of two bioactive fractions (frs. E3 and E4) from

Sephadex LH-20 column were limited, HPLC-DAD-SPE-TT-

NMR hyphenation assisted by HPLC-MS was applied to char-

acterize the chemical constituents in these fractions. Under

the optimized HPLC conditions, base-line separation of frs. E3

and E4 was achieved, as that shown in Fig. S1 (Supplementary

data) for fr. E3, Fig. 3 and Fig. S2 (Supplementary data) for fr.

E4. This effort led to identification of five compounds (6e10)

from 1.2 mg of fr. E3 and seven compounds (1, 3, 7, 11e14)

from 3.3 mg of fr. E4, based on analysis of 1H NMR spectra
(Fig. 4, fr. E4), UV, CD, and ESI-MS data (Tables 1 and 2 and

Supplementary data).

The n-BuOH soluble fraction, displaying 15.18% inhibitory

activity against xanthine oxidase at 100 mg ml�1, was sepa-

rated by a Sephadex LH-20 column to give compounds 1e3

containing fractions (frs. B6e8), confirmed on the basis of

HPLC retention time and UV data in HPLC-DAD analysis

(Fig. S3, Supplementary data). HPLC-SPE-TT-NMR analysis of

fr. B5 (3.1 mg) identified 15 in addition to 1 (Fig. S3, Table S4,

Supplementary data).

Compounds 6e10 and 15 were simple phenolics and were

established as 1-(30,40-dihydroxyphenyl)-2-hydroxyethan-1-
one (6) [25], 3,4-dihydroxybenzoic acid (7) [26], 3,4-

dihydroxybenzaldehyde (8) [27], 4-hydroxybenzoic acid (9)

[26], 30,40-dihydroxyacetophenone (10) [28], and isovanillic

acid (15) [29], respectively. Compound 11 was identified as

caffeic acid [30].

https://doi.org/10.1016/j.jfda.2019.05.006
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Fig. 4 e 1H NMR spectra of compounds 1, 3, 7, and 11e14 (CD3OD), adopted from HPLC-SPE-TT-NMR of fr. E4.
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Table 2 e HPLC retention time, ESI-MS, and UV data of
compounds in fr. E4.

Compound tR (min) [M�H]� m/z lmax (nm)a

7 20.0 152.9 228, 261, 294

11 27.2 178.8 239, 324

3 38.9 514.9 243, 324

1 42.4 514.9 242, 326

12 60.2 498.9 232, 316

13 63.9 528.9 240, 326

14 66.2 528.9 240, 326

a Recorded in CH3CN-0.1% HCO2H(aq).
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The 1H NMR spectrum of 12 was similar to that of 1 except

for the replacement of an AMX system in the aromatic region

by an AA0XX0 system (Fig. 4). The 1H NMR spectrum of 13 is

close resemblance to that of 14, both of which were similar to

that of 1 except for the presence of an additional methoxy

singlet (Fig. 4). The NOESY spectrum of 14 (Fig. S7,

Supplementary data) showed correlation of the methoxy
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Fig. 5 e 1H NMR comparison of compounds 1 and 12
singlet (d 3.90) to an aryl proton doublet (H-2, d 7.21, J¼ 1.7 Hz),

designating a 3-OMe group. The ESI-MS spectrum of 12

showed [M�H]� at m/z 498.9, being 16 amu less than that of 1,

while that of 13 and 14 showing the same pseudo molecular

ion [M�H]� atm/z 528.9, 14 amumore than that of 1. Based on

these data, compound 12 was O-caffeoyl-O-p-coumaroyl

quinic acid while the isomeric 13 and 14 were O-caffeoyl-O-

feruloyl quinic acids.

Compounds 12e14 had been elucidated as 3-O-caffeoyl-5-

O-p-coumaroylquinic acid, 3-O-feruloyl-5-O-caffeoylquinic

acid, and 3-O-caffeoyl-5-O-feruloylquinic acid, respectively,

mostly based on LCeMSn data [31e33]. The location of p-cou-

maroyl, caffeoyl, and feruloyl residues at either C-3 or C-5 of

the quinic acid moiety, however, was not well clarified. Thus,

despite the location of the phenylpropenoyl groups in 13 had

been determined on the basis of 2D-NMR spectroscopic anal-

ysis [34], the great similarity between the 1HNMR spectra of 13

and 14 (Fig. 4) hampered their identification. In this study,

such issue was solved by comparison of their 1H NMR data,

particularly those of olefinic protons (Fig. 5), with that of
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Table 3 e Regression equations, estimated amounts (in EtOH extract), and content (in dry seeds, w/w) of 1e3.

Compound Regression equationa R2 In EtOH extract (50 mg)b Content (%)c

Mean peak area (mAu � s) Estimated amounts (mg)

1 y ¼ 8749x þ 338.79 0.9999 16,681.69 1.9 0.10%

2 y ¼ 7942.3x � 1004.8 0.9995 10,827.09 1.5 0.08%

3 y ¼ 8405.9x þ 187.82 0.9999 2546.27 0.3 0.02%

a The regression equation: y ¼ ax þ b; x, the amounts of compound (mg); y, peak area (mAu � s).
b EtOH extract was prepared as 5.0 mg,mL�1 solution; 10 mL/injection (50 mg).
c Content (%) of whole plant material, e.g. 1: 1.9/50*30.9 g (EtOH extract)/1.2 kg (seed weight) z0.1%.
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sodium 3,5-dicaffeoylquinate (1) (Table 1), which was

assigned unambiguously by 2D-NMR spectroscopic analysis

(HMBC, COSY) [15]. That is the 1H NMR data of both caffeoyl

residues at C-3 and C-5 positions were distinguishable, espe-

cially for the trans-coupled olefinic protons, i.e. dH-70 7.61 and

dH-80 6.34 (3-caffeoyl) vs. dH-700 7.57 and dH-800 6.26 (5-caffeoyl).

Such comparison thus allowed designation of the caffeoyl

residue substituted at C-3 for 12 and 14 but at C-5 for 13.

Complete 1H NMR assignment of these compounds was made

as listed in Table 1.

3.3. Quantitative analysis of EtOH extract

The contents of three major constituents (1e3) in the EtOH

extract of H. suaveolens seeds were determined quantitatively

by reverse-phase HPLC analysis (Fig. S8, Supplementary data).

The regression equations for linear standard curve of 1e3

(Fig. S9, Supplementary data) were established at concentra-

tion range, 0.1e10 mg. Based on these, the content of 1e3 in H.

suaveolens seeds was determined to be 0.10%, 0.08%, and

0.02%, respectively (Table 3). This result could demonstrate

that H. suaveolens seed is abundant in bioactive dicaffeoyl-

quinic acids, which was described in Section 3.1.

3.4. Xanthine oxidase inhibitory activity

Among these isolates, four majors (1e4) were also assayed

against xanthine oxidase in vitro (Fig. 1). Sodium 4,5-

dicaffeoylquinate (2, 0.08% in dry seeds) and methyl 3,5-

dicaffeoylquinate (4, 0.004% in dry seeds) which showed bet-

ter inhibitory activity were selected to determine the IC50

value, calculated from the doseeresponse curve. The IC50

values of 2 and 4 were 69.4 ± 1.1 mM and 92.1 ± 1.2 mM,

respectively (c.f. allopurinol IC50 28.4 ± 1.1 mM). The result also

indicated that the location of the caffeoyl substitution affected

the activity, i.e. 4,5-dicaffeoyl (2) > 3,5- dicaffeoyl (1) and 3,4-

dicaffeoyl (3), and the corresponding methyl ester could

enhance the inhibitory activity (4 > 1), which was consistent

with that reported in literature [35]. Although poor bioavail-

ability of caffeoylquinic acids has been reported previously,

the hydrolysis of caffeoylquinic acids by human intestinal

microbiota to form caffeic acid, which displays moderate

xanthine oxidase inhibitory activity and better bioavailability,

may enhance the absorption of bioactive compounds [35e37].

Moreover, xanthine oxidase highly distributes in liver and

intestine [38], indicating that caffeoylquinic acids themselves

would act directly in the intestine as hypouricemic agents. As

oral administration of methyl 4,5-dicaffeoylquinate has been

demonstrated to have good hypouricemic effect in potassium
oxonate-treated rat [39], the H. suaveolens seed, rich in dicaf-

feoylquinic acids, may provide a good source of healthy sup-

plement beneficial for the hyperuricemic persons.
4. Conclusion

This first chemical investigation on H. suaveolens seed,

commonly used as drink substance, led to the identification of

15 compounds via combination of Sephadex LH-20, reverse-

phase chromatography, and HPLC-SPE-TT-NMR hyphenation.

Of these, caffeoylquinic acid derivatives (1e5, and 12e14) and

caffeic acid (11) are xanthine oxidase inhibitors, especially

sodium 4,5-dicaffeoylquinate (2) and methyl 3,5-

dicaffeoylquinate (4). This work also provides solid 1H NMR

data for identification of positional isomers of quinic acids

substituted with heterogeneous phenylpropenoyl groups.

This study demonstrates the H. suaveolens seed, rich in dicaf-

feoylquinic acids, to be a potential nutraceutical with benefit

for the gout patients.
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