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Diagnosis of undifferentiated fever is a major challenging task to the physician which often remains undiagnosed and delays the
treatment. The aim of the study was to record and analyze a 24-hour continuous tympanic temperature and evaluate its utility
in the diagnosis of undifferentiated fevers. This was an observational study conducted in the Kasturba Medical College and
Hospitals, Mangaluru, India. A total of ninety-six (n = 96) patients were presented with undifferentiated fever. Their tympanic
temperature was recorded continuously for 24 hours. Temperature data were preprocessed and various signal characteristic
features were extracted and trained in classification machine learning algorithms using MATLAB software. The quadratic
support vector machine algorithm yielded an overall accuracy of 71.9% in differentiating the fevers into four major categories,
namely, tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases. The area under ROC curve for
tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases was found to be 0.961, 0.801, 0.815,
and 0.818, respectively. Good agreement was observed [kappa = 0.618 (p < 0 001, 95% CI (0.498–0.737))] between the actual
diagnosis of cases and the quadratic support vector machine learning algorithm. The 24-hour continuous tympanic temperature
recording with supervised machine learning algorithm appears to be a promising noninvasive and reliable diagnostic tool.

1. Introduction

Undifferentiated fever is a commonly encountered febrile ill-
ness without any localized signs or symptoms [1]. According
to a systematic review, the percentage of undiagnosed cases
of undifferentiated fever in Asia is about 8% to 80% [2]. In
resource-limited countries, the decision regarding clinical
investigations at an early stage is a challenging task for the
physicians [3]. The nonspecificity of symptoms and lack of
availability of accurate diagnosis not only has a significant
impact on clinical decision-making but often leads to the
irrational use of antibiotics [3, 4]. In most of the undifferen-
tiated fever cases, empirical treatment either does not work

or may be harmful and might delay hospitalization of the
patient, with subsequent increase in medical expenses.

Monitoring of the fever can provide valuable information
for diagnosis and prognosis of the disease. Many scientific
studies reported on the utility of temperature monitoring as
a predictive tool for certain clinical diseases [5–15]. One
century earlier, Woodhead et al. studied the 24–48 hours of
quasicontinuous temperature recordings in patients for
the diagnosis and prognosis of tuberculosis. In cases of
tuberculosis, they observed a few characteristic features of
temperature curve like sudden rise of afternoon and evening
temperature, rapid fall, continuous high temperature above
99°C for 8 to 9 hours, and mountain peaks on plateau
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phase [11]. However, not enough studies were done to
explore the utility of temperature, probably because of lim-
ited hardware capabilities, with cumbersome recording
methods and software issues, which were not well developed
at that time. Two decades earlier, interest in 24-hour temper-
ature recording system re-emerged after Varela et al. showed
continuous recording of body temperature using tympanic
and axillary probes and analysis of temperature data [4, 12].
The quantitative measurement of body temperature has
shown promising results in the management of hypovolemia,
mortality in critically ill patients, diagnosis of lactic acidosis,
the prognosis of organ hypoperfusion and shock, besides
acting as a marker of cardiovascular status, dyspnea, and
tissue perfusion [5–10]. Another study reported that the
abnormal body temperature could act as a predictor of the
diagnosis of sepsis in febrile, critically ill patients [16].
However, these studies did not address the underlying issue
of diagnostic utility of temperature recordings in undifferen-
tiated fevers.

Body temperature is a physiological signal which has
essential features and trends associated with it. However,
some of this information like minute variations, trends, and
patterns in time series domain may not be apparent with
conventional methods and may require complex mathemat-
ical models for their analysis. Unlike other vital signals like
ECG, EEG, and EMG, there are only a limited number of
studies on the temperature signal for predicting certain
diseases by using mathematical models [12, 13, 15].
Researchers observed the body temperature variations in
patients either visually or by using specific mathematical
models. Papaioannou et al. studied the temperature patterns
using linear discriminant analysis and cluster analysis by
extracting wavelet features for the differentiation of patients
with systemic inflammatory response syndrome, sepsis, and
septic shock. Researchers extracted different wavelet features
from the temperature pattern among the three groups
(systemic inflammatory response syndrome, sepsis, and sep-
tic shock) and found statistically significant outcome [15].
Varela et al. applied approximate entropy and detrended
fluctuation analysis (DFA) methods for determining the loss
of complexity of the temperature curve associated with the
diseased state. They compared results with conventional
Sequential Organ Failure Assessment (SOFA) score and
found that the temperature curve complexity is inversely
related to the severity of patient’s status. The approximate
values were significantly low in nonsurvivors than in survival
patients [13, 17]. In another study, Varela et al. used approx-
imate entropy as a feature and found 72% accuracy in classi-
fying two groups: death and survival patients with multiple
organ failure [18]. Two more scientific studies reported the
predictive model for differentiating dengue fever cases with
other febrile illness, early phase of illness using multivari-
ate logistic regression model and decision tree algorithm
[19, 20]. Although these studies were done either in critical
care settings for prognostication or for studying the extent
of complications, they have not been studied in formal set-
tings of diagnostic utility in undifferentiated tropical fevers.

Machine learning provides techniques, tools, and models
that can aid in solving diagnostic and prognostic problems in

a variety of clinical conditions. Machine learning algorithms
are widely applied in classification of diseases based on
ECG, EEG, and EMG signals [21]. Automated detection
and classification of fever patterns using machine learning
techniques with the specific algorithm-based classifier for
specific diseases might have potential benefits such as
increasing efficiency, reproducibility, and cost-effectiveness
by providing early diagnosis of the disease and treatment,
especially in undifferentiated fever cases.

It is through this study that we intend to record, analyze,
and classify the tympanic temperature recordings of patients
presenting with undifferentiated fever and using body tem-
perature as a predictive variable for differentiating undiffer-
entiated fevers.

2. Materials and Methods

2.1. Data Collection. This was an observational study
conducted in a tertiary care hospital. A total of ninety-six
(n = 96) patients presenting with prolonged fever symptom
were recruited in the study. Patients who were on antipy-
retics, steroids, and with a history of hyperthermia and
central nervous system disorder were excluded from the
study. Malaria-infected fever patients were excluded in this
study, because it is evident that malarial fever cycle occurs
at every 48 hours [22] and we recorded the temperatures only
for 24 hours. The patients were informed not to take a
bath during temperature monitoring. Complete procedure
of the study was explained to subjects before taking the
informed consent and conducting the study. The study
was approved by the institutional ethics committee. Anthro-
pometric parameters like age, blood pressure, pulse rate, and
BMI of each subject were noted. The continuous 24-hour
tympanic temperature was recorded by using TherCom®
temperature monitoring device [23, 24]. The final diagnosis
of each patient was noted.

2.2. Preprocessing of Data. The temperature recordings were
plotted and visually inspected for any missing data and
filtered by using the Savitzky–Golay filter for smoothing the
tracings without greatly distorting the signal. Each tempera-
ture recordings have 1440 data points, which were plotted
at 9:00AM to 9:00AM timeframe.

2.3. Feature Extraction. Characteristic features of signal such
as fast Fourier transform, entropy, energy, power, principal
component analysis coefficients, autoregressive coefficients,
wavelet transform coefficients, mean, and variance were
extracted using MATLAB software (version R2013b), and
visual observations of each temperature recordings such as
presence of late night rise and presence of more than or equal
to three peaks features were extracted. Extracted features
were standardized using the normalization method. Further,
90% of extracted features were used for training and 10% for
the test, using the classical 5-fold cross-validation setup.

To identify the accuracy of classification of the disease
type, the four target diseases (tuberculosis, intracellular
bacterial infections, dengue fever, and noninfectious (inflam-
matory and neoplastic) diseases) were assigned as responses
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and extracted features were assigned as predictors. Responses
were assigned based on the final clinical diagnosis of each
case corresponding to temperature recordings.

2.4. Evaluation of Algorithm. Evaluation of classification
algorithm was done by using classification application in
MATLAB, which has a set of algorithms, where we can train
extracted feature datasets. The algorithm which gives the
highest accuracy was selected. In our study, we found the
highest classification accuracy in quadratic support vector
machine (SVM) algorithm.

2.5. Statistical Analysis. Data were expressed as mean± SD.
Descriptive data analysis was done and an agreement
between the classification of fever patterns by quadratic sup-
port vector machine learning algorithm and final diagnosis of
the cases was performed by Kappa statistics by using Statisti-
cal Package for Social Sciences (SPSS) version 16, Chicago,
IL. Feature extraction and area under receiver operating
characteristic (ROC) curve of each categorized data were
performed using the MATLAB software (version R2013b,
the Mathworks, USA).

3. Results

A total of ninety-six (n = 96) patients presenting with undif-
ferentiated fever were recruited in the study. As per the phy-
sician’s diagnosis and based on laboratory diagnostic tests,
subjects were categorized into tuberculosis (n = 28), intra-
cellular bacterial infections (n = 27), dengue fever (n = 15),
and noninfectious diseases (n = 26). Table 1 summarizes
the demographic details of each disease category. Demo-
graphic measures such as mean age, body mass index
(BMI), blood pressure, and pulse rate did not differ between
different disease groups.

We analyzed a quadratic support vector machine algo-
rithm model for the differentiation of cases of the fever with
24-hour continuous tympanic temperature data and found
an overall 71.9% accuracy in the algorithm. The algorithm
performance for classifying the undifferentiated fever cases
is summarized in Table 2. The overall area under ROC curve
of each categorized data set is described in Table 3. The pos-
itive and negative predictive values and likelihood ratios of
each categorized data set are described in Table 4. In sum-
mary, the quadratic support vector machine algorithm shows
clinically significant accuracy in classifying assigned diseases.

We performed kappa agreement test between the classifi-
cation of temperature patterns by quadratic support vector
machine learning algorithm and with an actual diagnosis
of cases.

We found a statistically significant good kappa agree-
ment of 0.618 [p < 0 001, 95% CI (0.498–0.737)] between
the quadratic support vector machine (SVM) learning algo-
rithm and final diagnosis of cases.

4. Discussion

In this study, we found a very high yield in the quadratic sup-
port vector machine (SVM) learning algorithm in classifying
undifferentiated fevers using data obtained from 24-hour
continuous noninvasive temperature monitoring. We found
that classification of undifferentiated fevers into four major
categories is possible and is likely to optimize the evaluation
of undifferentiated tropical fevers.

Undifferentiated tropical fevers are very perplexing issues
for the internist or general physicians in resource-limited
settings, because undirected investigations add to the cause
and lead to inappropriate clinical decisions. The classification
model confirmed the utility of body temperature signal as a
primary variable for classifying the undifferentiated fevers.

Table 1: Demographic details of subjects.

Sl number
Cases

(N = 96)
Age, mean (SD),

years
BMI, mean (SD),

kg/M2

Blood pressure
Pulse rate, mean (SD),

per min
SBP, mean (SD),

mmHg
DBP, mean (SD),

mmHg

1 Tuberculosis (N = 28) 44.14 (14.39) 20.07 (3.61) 121.07 (11.0) 79.71 (7.45) 83.25 (10.24)

2
Intracellular

bacterial infections
(N = 27)

32.18 (13.77) 23.10 (3.53) 124.11 (9.33) 80.0 (3.92) 82.51 (5.36)

3 Dengue fever (N = 15) 41.13 (12.50) 24.10 (5.52) 122.00 (9.41) 78.93 (5.49) 81.33 (7.15)

4
Noninfectious diseases

(N = 26) 44.03 (15.05) 22.03 (3.46) 123.00 (10.52) 78.65 (7.42) 83.38 (8.46)

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure.

Table 2: Confusion matrix of quadratic support vector machine algorithm of undifferentiated fever cases.

Cases Tuberculosis Intracellular bacterial infections Dengue fever Noninfectious diseases

Tuberculosis 27 01 0 0

Intracellular bacterial infections 06 15 01 05

Dengue fever 0 01 08 06

Noninfectious diseases 0 03 04 19
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In particular, diagnostic yield for tuberculosis was extremely
high and sensitivity and specificity of tuberculosis group were
found to be 96.43% (81.65%–99.9%) and 91.18% (81.78%–
96.6%), respectively (Table 3). This could help in limiting
unnecessary investigations focusing on a group of diseases
and will allow a targeted investigative approach in undiffer-
entiated fevers.

We found that the SVM learning algorithm showed
higher sensitivity of 96.43% (95%CI, 81.65–99.91) and
specificity of 91.18% (81.78–96.6) in detecting tuberculosis
in comparison to acid-fast bacilli smear test with a sensitivity
of 67.5% (95%CI, 60.6–73.9) and specificity of 97.5% (95%CI,
97.0–97.9) among 5336 samples reported by Mathew et al.
[25]. The SVM learning algorithm showed low sensitivity
[53.33% (95%CI, 26.59–78.73)] and specificity [93.83%
(95%CI, 86.18–97.97)] in predicting the cases of dengue in
comparison to the sensitivity [77.3% (95%CI, 69.8–83.6)]
and specificity [100% (95%CI, 98.5)] of the NS1 Ag rapid
strip test for the diagnosis of dengue fever in 154 patients
[26]. In case of intracellular bacterial infections, SVM
learning algorithm presented sensitivity [55.56% (95% CI,
35.33–74.52)] and specificity [92.75% (95%CI, 83.89–
97.61)] in predicting the bacterial infections from undifferen-
tiated fever cases using features of temperature tracings
which were comparable with findings of procalcitonin as a
biomarker for bacterial infection with 64.5% sensitivity and
84.0% specificity in differentiating the bacterial infections
from febrile patients as reported by Qu et al. [27]. The
advantage of SVM learning algorithm is that one test is
sufficient to differentiate four major clinical conditions,
whereas culture or serology tests are to be performed
separately for each clinical condition and these tests are
invasive and expensive.

The procedure is simple, noninvasive, inexpensive, and
reliable. The algorithm can easily be exported to any conven-
tional computational devices, thereby allowing this to be
implemented as a point of care diagnostic test. In addition,
the 24-hour continuous temperature recording also helps us

in identifying the undetected fever spikes in conventional
monitoring method. Two scientific studies were reported
on the significance of continuous temperature monitoring
over conventional temperature monitoring method [4, 24].
Varela et al. studied in 62 patients presenting with fever
and found that continuous temperature recording method
detected mean of 0.7 (95% CI, 0.27–1.33) peaks of fever
unnoticed by conventional care [4]. In our previous study,
we found that intermittent nature of fever patterns was
clearly detected by continuous recordings, whereas conven-
tional method failed to capture 29.9% of intermittent nature
of fever patterns. Hence, capturing complete variations of
body temperature was an added benefit of 24-hour continu-
ous temperature monitoring method.

In the previous study, some of the mathematical models
were utilized for prediction and prognostication of certain
clinical conditions. In two different studies, Varela et al.
applied approximate entropy alone, and along with
detrended fluctuation analysis (DFA) to measure the com-
plexity of temperature curve in correlating with SOFA values
for predicting survival in critically ill patients [17, 18].
Papaioannou et al. assessed the temperature complexity in a
cohort of critically ill patients who developed sepsis and sep-
tic shock during their stay in ICU and found an early predic-
tion of mortality in them by extracting Tsallis entropy (TsEn)
and Shannon entropy (Sh) as features [28]. Varela et al. also
tried the classification of diagnostic groups using complexity
variable (approximate entropy) [4]. However, researchers did
not yield fruitful results probably because of single or either
of the two mathematical parameters such as approximate
entropy and DFA, TsEn, and Shannon entropy were looked
for in the signal, and the other features which we believe
are important were not evaluated. Moreover, the previous
studies addressed the complexity of temperature signal in
critical care patients and not in formal settings. Wavelet
analysis and multiscale entropy were used in one study by
Papaioannou et al. [15]; however, in our study, we included
wavelet coefficients as a feature of one-dimensional signal

Table 4: Positive and negative predictive values of quadratic support vector machine algorithm.

Cases
Positive predictive

value (%)
Negative predictive

value (%)
Positive likelihood

ratio
Negative likelihood

ratio

Tuberculosis 81.82 (67.63–90.65) 98.41 (90.03–99.77) 10.93 (5.07–23.54) 0.04 (0.01–0.27)

Intracellular bacterial infections 75.00 (54.72–88.16) 84.21 (77.68–89.10) 7.67 (3.09–19.03) 0.48 (0.31–0.73)

Dengue fever 61.54 (37.70–80.88) 91.57 (86.31–94.92) 8.64 (3.27–22.84) 0.50 (0.29–0.86)

Noninfectious diseases 63.33 (48.90–75.72) 89.39 (81.61–94.12) 4.65 (2.58–8.39) 0.32 (0.17–0.61)

Table 3: Area under ROC curve of quadratic support vector machine algorithm.

Cases AUROC# False-positive rate True-positive rate Sensitivity (%) Specificity (%)

Tuberculosis 0.961 0.088 0.964 96.43 (81.65–99.91) 91.18 (81.78–96.6)

Intracellular bacterial infections 0.801 0.072 0.555 55.56 (35.33–74.52) 92.75 (83.89–97.61)

Dengue fever 0.815 0.061 0.533 53.33 (26.59–78.73) 93.83 (86.18–97.97)

Noninfectious diseases 0.818 0.157 0.730 73.08 (52.21–88.43) 84.29 (73.62–91.89)
#Area under ROC curve was automatically calculated and given by MATLAB software.
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and applied it in the machine learning processes. In addi-
tion to this, we observed some of the important features
visually. We combined both visually important and other
extracted features in the machine learning algorithm,
which appears to yield a very high success rate in appro-
priate classification.

While the concept of continuous fever recording began
way back a century ago, [11], somehow it was not taken
forward because of hardware and software impediments.
Now, there is a need to revisit this interesting concept with
manifold better hardware and software technologies and
their issues have been largely dealt with.

Limitation of the study includes relatively very small
sample size, but case mixes were similar those in other
reported study [29]. Some technical difficulties while
monitoring temperature were mainly the falling off of
the tympanic probe from the ear canal which interrupts
the continuous recording. Secondly, the loose connection
of probe to the data logger interrupted continuous data
storage. This was also mentioned in a previously conducted
study by Varela et al. [4]. We applied the Savitzky–Golay
filter for noise reduction and smoothening of the tempera-
ture signal without distorting the signal. There are other
filtering methods that can be applied to filter the data which
may increase the yield in classification algorithm.

The interesting observations found in this small group of
samples need to be studied in a bigger sample size. Once the
large data sets are obtained, artificial neural network analysis
may offer a higher yield. Extensive use of this promising
algorithm may yield significant output with a larger dataset
in the future, which will further allow us to apply artificial
neuronal network at that point in time. We have done the
analysis in undifferentiated fever settings, but it is very likely
that it may also be useful in pyrexia of unknown origin
settings. We have four classifying groups of samples, but with
the expanding samples, further groups may be apparently
evident and might improve the accuracy of the model.
Another important possibility would be to record two or
three days of temperature and to look for patterns and extract
features in a bigger recording time frame.

5. Conclusion

Use of supervised automated classifying algorithm can pro-
vide a significant clue for the discrimination of undifferenti-
ated fevers at an early stage. An accurate diagnostic test
aids the process of quick decision-making by the physician,
in addition to minimizing the cost of unnecessary diagnostic
tests. As a noninvasive tool, temperature pattern classifier
algorithm may become an essential, additional diagnostic
tool which can be used as inpatient and outpatient clinical
settings in the future for the evaluation of fever of various
clinical conditions.
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