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Computational discrimination 
between natural images based 
on gaze during mental imagery
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Marc Alexa1*

When retrieving image from memory, humans usually move their eyes spontaneously as if the image 
were in front of them. Such eye movements correlate strongly with the spatial layout of the recalled 
image content and function as memory cues facilitating the retrieval procedure. However, how close 
the correlation is between imagery eye movements and the eye movements while looking at the 
original image is unclear so far. In this work we first quantify the similarity of eye movements between 
recalling an image and encoding the same image, followed by the investigation on whether comparing 
such pairs of eye movements can be used for computational image retrieval. Our results show that 
computational image retrieval based on eye movements during spontaneous imagery is feasible. 
Furthermore, we show that such a retrieval approach can be generalized to unseen images.

Research on eye movements during visual imagery has a long history. Early investigations1–3 from the begin-
ning of the twentieth century have established a link between eye movements during visual imagery and mental 
images, based on observations of eye movements during imagery. Neisser4 argued that eye movements are actively 
associated with the construction of a visual image, and Hebb5 suggested that eye movements during imagery and 
memory retrieval are necessary to assemble and organize “part images” into a whole visualized image.

Many recent studies6–14 have shown that humans spontaneously move their eyes when recalling a scene from 
memory and that such eye movement patterns closely resemble the spatial arrangement of the elements of the 
recalled content. This effect has not only been demonstrated for participants who encode visual scenes and later 
recall those scenes while looking at an empty screen6,7,9,11,14,15, but also for participants who encode verbal infor-
mation in association with a spatial cue and later recall such information while looking at an empty screen12,13. 
Moreover, it has been shown that participants who listen to scene descriptions also make eye movements which 
correspond to spatial positions from the described scene7,14,15.

Previous studies evaluated the functionality of eye movements to blank space. Results suggest that eye move-
ments while looking at nothing play a functional role during memory retrieval, and act as “spatial indices”4,5,11,12,16 
that may provide assistance in memorizing the spacial layout of a scene4–6,11. However, it has been argued whether 
such eye movements can facilitate memory retrieval as additional cues17,18. In support of such a functional role, 
impaired episodic memory performance has been reported in experiments where participants were restricted 
to look at a fixation cross during recall9–11,15. In Johansson et al.9, participants’ gaze directions were manipulated 
towards positions on an empty screen that are either overlapped with the original locations of the to-be-retrieved 
visuospatial information or selected randomly at irrelevant locations. Results demonstrated that the likelihood 
of successful memorization is increased when there was an encoding-retrieval overlap in gaze locations. Corre-
sponding results were reported in a follow-up study where similar gaze manipulations were used for participants, 
who recalled verbal information that had previously been encoded in association with a particular space13.

Imagery movements have been reported for other muscles beyond the ocular ones, and a consistent finding is 
that muscle activation during imagery is a fraction of the activation during action-related period3,19. Eye move-
ments during imagery are the only muscular activities that largely replicate the activities during actual perception.

The close similarity between eye movements during perception and those during imagery appear to open 
up the possibility for computational image retrieval: Use imagery eye movements to pick the image where the 

OPEN

1Faculty IV ‑ Electrical Engineering and Computer Science, TU Berlin, Berlin 10587, Germany. 2School of Interactive 
Computing, College of Computing, Georgia Institute of Technology, Atlanta, GA  30332, USA. 3Department 
of Psychology, Universität Regensburg, 93053  Regensburg, Germany. 4Department of Psychology, Nicolaus 
Copernicus University, 87‑100 Toruń, Poland. *email: marc.alexa@tu‑berlin.de

http://orcid.org/0000-0001-5442-1116
http://orcid.org/0000-0003-1738-3207
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-69807-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13035  | https://doi.org/10.1038/s41598-020-69807-0

www.nature.com/scientificreports/

similarity between perceptual eye movements and imagery eye movements is the largest. In view of the very 
robust findings on imagery eye movements, this may at first seem like a trivial task, but there are four reported 
issues that pose challenges for this task.

•	 Even though eye movements during mental imagery play a functional role, they do not reinstate the eye 
movements made during encoding of the image8,13.

•	 It has been shown that eye movements during imagery might be potentially driven by covert attention, which 
may explain the functionality of eye movements while looking at nothing20.

•	 It is also known that recalling an image with closed eyes might be preferable for some of us. This effect has 
not yet been fully understood21,22, and has posted a challenge in practice for eye movement recording using 
video-based eye trackers.

•	 Many previous studies consistently reported that eye movements while looking at nothing contain a large 
distortion due to the lack of reference frame. In particular, the area spanned by eye movements during men-
tal imagery is down scaled, comparing to the area spanned by eye movements during encoding while the 
visual image is in sight6–8,15,23. A clue to why some people scale down their images was given by8,15, in which 
all participants were tested for working memory capacity and the OSIVQ24 was used as an assessment for 
individual differences in object imagery, spatial imagery and verbal cognitive style. Scaling down imagery eye 
movements was most pronounced with participants who had high scores on spatial imagery. Eye movements 
during visual imagery tasks are employed to reduce cognitive resources associated with the processing of 
spatial information, and a weaker spatial imagery ability increases the need for those eye movements.

Image retrieval would only be possible if there is a strong similarity between the eye movements on real versus 
imagined images across different viewers. Previous studies mainly used simple grid-based stimuli9,11,13, where eye 
movements were discretized into unnaturally low resolution. A more high-resolution scene was used in7,15, but 
nevertheless a single stimuli lacks variation. It is unclear whether s strong similarity in eye-movements remains 
during encoding and recall of a large amount of nature images. In view of the fact that such a similarity exists 
but its strength was not quantified, we decided to test the following cases: 

1.	 Encoding vs encoding: Can a visual image be computationally discriminated from 100 other images, based 
only on the gaze pattern from observers looking at those images?

2.	 Imagery vs imagery: Can a visual image be computationally discriminated from 100 other images, based only 
on the imagery gaze pattern from observers asked to think about those images?

3.	 Generalizability: Assuming that we have a classifier that can do 1 and 2, will it be able to computationally 
discriminate a set of new images, that come with new gaze patterns? In other words, will the retrieval tech-
nique generalize?

Results
We adopted the encoding-recall experimental paradigm from9,11. Observers were instructed to encode a set 
of 100 images and then to recall them in front of an empty screen. Figure 1a shows an exemplary structure of 
one trial. Using a video-based eye tracker, we recorded observers’ eye movements during both encoding and 
recall. Our goal was to quantify the similarity between encoding and recall eye movements in the context of 
image retrieval. We first evaluated the eye movement parameters and then tested the retrieval performance in 
the above-mentioned three scenarios, namely encoding vs. encoding, imagery vs. imagery, and generalizability 
on unseen images. In the end we looked at the results in relation to individual behavior and image content to 
investigate how they influence the accuracy of the retrieval task.

Characteristics of eye movements on real and mental images.  Three measurements were used to 
analyze the eye movement sequences: the main sequence graphs of saccades, the fixation count and duration, 
and the overall spatial coverage. Figure 1c shows the main sequence graphs of saccades during encoding (left) 
and recall (right), where peak velocity is plotted as a function of amplitude. Imagery saccades are shorter and 
slower. Fixation duration is plotted over time in Fig. 1b. On average each encoding eye movement sequence has 
16 (SD = 2.8) fixations, which have an averaged duration of 278.0 ms (SD = 73.4 ms). Each recall sequence has 
11 (SD = 3.6) fixations on average with a mean duration of 452.2 ms (SD = 308.0 ms). Recall sequences have less 
fixations than encoding sequences ( t(5.6e3) = 62.77, p < 0.001 , Welch’s t-test) and recall fixations are longer 
than encoding ones ( t(6.7e4) = −57.29, p < 0.001 , Welch’s t-test). Similar observations have been made in pre-
vious studies7,9 that information retrieval from memory might account for the longer duration of fixations made 
during mental imagery.

Similar to previous findings in7,15,23, we also observed a shrinkage of eye movements on mental images, as 
shown in Fig. 1d. Unlike fixations during encoding, which are perfectly aligned with the corresponding visual 
content, fixations during recall very often do not coincide with the intended elements in the original image. 
Consequently, such distortion makes it difficult to estimate the intended locations from recall fixations alone.

Image retrieval based on eye movements during encoding.  We modeled the retrieval of an image 
based on eye movements as a classification task, in which each single image represents one class. 2D gaze density 
histogram was used to represent the eye movement sequence. The whole space is divided into a regular grid and 
the number of raw samples is counted in each cell, which reflects the duration one has fixated in one cell. Note 
that all sequence information was disregarded in this representation, a choice motivated by repeated findings 
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that encoding positions are revisited during recall but that the sequence is not reinstated. Given an input query, 
the algorithm estimates the image (class) and the accuracy of each query was evaluated by the rank of the true 
image (class) among all images (classes). Accumulating all ranks together yielded the accumulated classification 
rank curve, which essentially is a Receiver Operating Characteristic (ROC) curve. A good retrieval algorithm 
finds the right image among the top ranked returns, and the corresponds ROC curve quickly reaches the high-
est point already at the beginning. The retrieval accuracy was measured by the standard area under the curve 
(AUC).

As a baseline, we classified images using a simple k-nearest neighbor (kNN) classifier based on Euclidean 
distance. The standard leave-one-out cross validation was used to determine the accuracy, and for each fold, 
one subject was dropped from the training set and used for the testing only. We reported the averaged results 
over all cross validation sets. For comparison, we employed a convolutional neural network (CNN) following 
the structure proposed in Ref.25.

The retrieval accuracy of both CNN and kNN were significantly above chance (AUC = 50% ). Similar to previ-
ous results25, CNN achieved the accuracy of AUC = 97.5% and AUC = 94.5% was achieved when using kNN. The 
achieved top-1 and top-3 ranks using CNN were 61.3% and 79.1% respectively, and 60.6% and 77.9% using kNN. 
This suggests that gaze positions from observers looking at images contain ample information for classification, 
which, for a database of around 100 images, can be used to retrieve the images with decent accuracy. Even a 
simple classifier like kNN can correctly identify the visual stimulus more than 60% of the time.

Image retrieval based on eye movements during recall.  We then analyzed the ability of the classi-
fier to retrieve images based on recall eye movements, again using the same leave-one-out cross validation. The 
performance for the kNN classifier dropped down to chance level (AUC = 54.3% , U = 5.5e3 , n1 = n2 = 100 , 
p = 0.245 two-tailed, Mann–Whitney rank test). This failure reflects the repeated finding that eye movements 
during mental imagery suffer from spatial distortion6,15,26, so we should not use the Euclidean distance measures 
on imagery data, unless we could somehow remap the distorted gaze data onto the (unknown) correct positions. 
Using the same architecture as in encoding, the CNN classifier achieved an accuracy of AUC = 69.8% . The top-1 
and top-3 rank dropped to 5.9% and 13.8% , however, still significantly above the chance performance ( 1% and 
3%).

Fixation Center Encoding
(5s)

Mask
(1s)

Recall
(5s)

Fixation Center

(a) (b)

(c) (d)

Figure 1.   Experimental paradigm and eye movement statistics. (a) Paradigm of one single trial in the 
experiment. After an initial fixation (of 500 ms) at the center of the display, one image stimulus was presented 
for 5 s, followed by a noise mask. Briefly after that, observers were asked to recall the image they had just seen 
for another 5 s. (b) Average of fixation duration in encoding (blue) and recall (orange). X-axis indicates the time 
and y-axis corresponds to the duration of each fixation. The black curves in the middle of each plot correspond 
to the average duration within the five seconds and the light coloured areas indicate the center intervals of 50%. 
(c) Main sequence diagrams during encoding (left) and recalling (right) where peak velocity is plotted as a 
function of the amplitude of saccades. (d) Histogram of the spatial coverage of all fixations over the 100 stimuli. 
For each image, one bounding box of all fixations in one sequence is drawn and we compute the percentage of 
the area covered by the bounding box with respect to the whole screen. The distribution of the spatial coverage 
of all encoding fixations is drawn in blue and the distribution computed from all recall fixations is drawn in 
orange. (a contains public domain imagery downloaded from the dataset published in Judd et al.45).
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Even though gaze positions during recall are distorted, they still share many similarities with gaze positions 
during encoding. To improve the recall-based retrieval, we introduced a second learning task, which forces the 
network to explicitly learn the mapping of gaze positions between encoding and recall. A decoder was added to 
the classification network (Fig. 7a). Given a recall gaze histogram, the decoder network was trained to generate an 
encoding gaze histogram for the same image. Using the same leave-one-out test, we achieved a slightly improved 
performance of AUC = 72.1% as shown in Fig. 2 ( U = 7.3e3 , n1 = n2 = 100 , p < .001 two-tailed, Mann–Whitney 
rank test). We interpret this poor performance to reflect the previously noted variation among observers’ recall 
behaviour (more discussions in the next section).

Generalized retrieval of new image content.  To investigate the generalizability of the system, we used 
two networks similar to the ones used for classification to learn 16-dimensional descriptors from the eye move-
ment histograms. Following the architecture proposed in25, we used triplet loss27 to force descriptors of matching 
encoding and recall gaze histograms to be closer together than non-matching ones, without learning to map 
between them. The resulting dual networks allowed us to see whether retrieval based on eye movements during 
mental imagery can generalize to new image content that is not in the training dataset used by the networks. In 
other words, whether the system can generalize to unseen images (with eye movement data).

We thus matched recall eye movements to encoding eye movements, and a recall histogram is then assigned to 
the class of the matching encoding histogram. Matching was restricted to the pairs for each observer and a 10-fold 
cross validation over the images was used to determine the retrieval accuracy, e.g., for each fold training on 90 
images and testing on the remaining 10. An average AUC of 66.4% was achieved over the 10-folds ( U = 78.5 , 
n1 = n2 = 10 , p = 0.250 two-tailed, Mann–Whitney rank test) (Fig. 3). The top-1 and top-3 ranks were 23.5% 
and 40.2% respectively. These results indicate that the learned space can be used to describe eye movements 
related to unseen images, and allows the generalization about new stimuli with a reasonable retrieval accuracy.

Dependence on individual participants’ behavior.  We examined the variation of the retrieval accu-
racy among individual dataset and looked at the achieved AUCs from previous leave-one-out cross validation 
using CNN (Fig. 4a). On average, recall-based retrieval had a larger variation (SD = 0.07) then encoding-based 
retrieval (SD = 0.02) as depicted in Fig. 4b. It seems that imagery vs imagery retrieval works better for some 
observers who actively moved their eyes during mental imagery. Our intuition is the current neural network 
design works well when observers resemble their perceptional eye movements during recall, but performs 
poorly when it comes to severe distortion, i.e. when eye movements during recall are largely shifted, scaled or 
translated, or when observers don’t move their eyes much during recall.

Dependence on stimuli content.  Images used in the experiment have 1,024 pixels in the largest dimen-
sion and gaze position histograms of eye movements are essentially down-scaled representations. This poses a 
natural limitation on the total number of images that could be computationally discriminated. As histograms 
encode information of where we look and how long we look, two distinct images could inevitably lead to two 
histograms that are very similar to each other. To further investigate this aspect, we visually inspected the most 
and least misclassified image pairs when CNN was used as the retrieval method.

For encoding-based retrieval, the most confusing image pairs (Fig. 5a) had noticeably higher similarities 
especially in the scene layout, whereas the least confusing pairs (Fig. 5b) shared less similarity. Interestingly, 
similar results were observed in recall-based retrieval and Fig. 6 shows the most confusing image pairs. Despite 
the inaccuracy of eye movements during mental imagery, the similarity of image content still seems to be one 
source of confusion for the classification.

Figure 2.   Recall-based retrieval using CNN trained with two tasks. The black curve shows the averaged result 
of all leave-one-out tests. Light areas depict the 50% intervals of all ROC curves.
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Discussion
Our study aimed at investigating the possibility of using computational models to retrieve natural images based 
on eye movements during encoding and mental imagery. We found that image retrieval based on eye movements 
when looking at the images can achieve very high accuracy even with a simple method. The gaze patterns from 
observers inspecting the images contain unique signatures of the content, and they can be used to retrieve the 
corresponding images. However, a successful retrieval based on eye movements when looking at nothing requires 
more complicated machine learning algorithms. Using a convolutional neural networks (CNN), we demonstrated 
that eye movements during mental imagery can be used to retrieve images with a reasonable performance. 
Furthermore, our results show that the intrinsic similarity between eye movements during encoding and those 
during recall allows us to extend the retrieval framework to new photos.

Using physiological measurements for the retrieval of mental imagery is not new. Others have aimed at 
reading a person’s mental state28,29 or reconstructing the imagery they have in mind26,30,31, by making use of 
brain activities measured by functional magnetic resonance imaging (fMRI). Eye movements during looking 
at images have also been previously used in practice. In human-computer interaction, fixations were used as a 
mouse cursor for selection32. In Ref.33, gaze data were used to indicate where observers allocate their attention 
in a fine-grained object classification task, as gaze data provided the information on where humans look for the 
distinction. Surprisingly, eye movements have not been used to retrieve the mental imagery before, despite sub-
stantial previous work demonstrating that eye movements during recall in front of an empty space are abundant 
and play a functional role in memory retrieval6–14.

We have replicated previous research showing that gaze patterns from observers encoding images differ 
from the patterns while observers think about the same images6–8,15,23: imagery eye movements cover a smaller 
area compared to the area covered by encoding eye movements (Fig. 1d), and imagery fixations are longer 
(Fig. 1b). For this reason, the discriminatory information contained in imagery eye movements is poorer. More 

Figure 3.   Generalization to unknown stimuli. ROC curve of retrieval based on matched eye movements during 
recalling. Blue area depicts the 50% intervals of all ROC curves of each subject.

(a) (b)

Figure 4.   Area under the curve of each leave-one-out test using CNN. (a) AUC when data of each subject is 
used for testing. Classification based on encoding eye movements are shown in blue and classification based on 
recall eye movements are shown in orange. The mean values and standard errors (one standard deviations) of 
the AUCs are shown in (b).
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specifically, successful discrimination does not work with straight-forward k-nearest-neighbor search (kNN) 
and its Euclidean distance measure, while convolutional neural networks (CNN) can better discriminate the 
content. In contrast, gaze patterns from encoding the photographical content contain sufficient information that 
allow both the kNN and the CNN methods to perform successful discrimination. By explicitly modelling the 
distortions contained in recall eye movements, the dual-task CNN method achieved an improvement on recall-
based retrieval comparing to the pure classification network. Additionally, our analysis results indicate that the 
retrieval performance varies among individuals and similarities of image content will pose a major challenge of 
extending to larger databases.

Eye movements representations.  In this study, eye movements were represented with a 24× 24 2D 
histogram of gaze positions (also known as a gridded gaze density map). This is a natural choice, as most imagery 
research has shown that the location of fixations is preserved during imagery but not the fixation order. How-

Figure 5.   Top-5 image pairs that are most often confused (a) and never confused (b) in encoding-based 
retrieval using CNN. (a) Image pairs are sorted by the number of confusions from left to right: the first column 
shows the two images for which the eye movements during encoding are confused most often. In each pair, the 
image in first row is classified as the image in the second row. Histograms aggregated over the complete dataset 
are shown in the third row. Histograms of the images in the first row are show in red and histograms of the 
images in the second row in green. (b) Examples of the most distinct pairs of images, i.e., images in the first row 
are never misclassified as images in the second row. Similar to (a), aggregated histograms are plotted in the third 
row. (Public domain imagery downloaded from the dataset published in Judd et al.45).

Figure 6.   Top-5 most confused image pairs (in each column) in recall-based retrieval. Images in the first row 
are most often misclassified as the images below. The frequency of each pair’s confusion goes down from left to 
right. Notably that interesting scene elements in the images of each pair have very similar layout. For example, 
the two images in the second column have dominant features in the right half: the boy in the top image and 
the text and display in the bottom one. In the third pair, a dog and a house are placed similarly to the positions 
where the boy and the adult are in the bottom image. (Public domain imagery downloaded from the dataset 
published in Judd et al.45).
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ever, other types of information might well be suppressed. Besides the simple 2D histograms, we experimented 
with several different representations, which are (1) binary histogram excluding the time spent in each cell; (2) 
histograms with a third dimension of time; (3) concatenated histograms of differences between consecutive eye 
positions. None of them performed significantly better. It is therefore unclear how much better the image dis-
crimination would be if order information were to be included in the representation of eye movement sequences. 
We suspect observers may have difficulties to recall anything else than locations of objects in the limited five 
seconds time. But it is also possible that other details of the mental imagery (e.g. color and texture) are hidden in 
finer gaze patterns, which might require longer recall time. An interesting direction in future work is to explore 
different representations for other types of information.

Improvement on performance.  We noticed that image retrieval based on eye movements from recall 
worked better for some observers than for others. Johansson et al.8 showed that people with a poorer spatial 
imagery ability produced eye movements during imagery with a larger dispersion, more similar to those during 
encoding of the physical image. People with a good spatial imagery ability can recall photos without making 
extensive eye movements, which often results in scaled, shifted and translated gaze areas. From this perspective, 
computational retrieval of image content using eye movements better suits people with a poorer spatial imagery 
ability.

The down-scaled eye movements during mental imagery make the retrieval task more difficult as clusters are 
formed in close range around the image center. Maybe we could instruct observers to extensively look around 
and actively make larger eye movements in the full extent of the tracking space, in other words, to imagine an 
up-scaled photo. Asking participants to make an effort is not unreasonable and in many brain-computer interface 
applications, it is the norm. It is known that a successful brain scan using fMRI requires the participants to lie 
still during imaging. Electroencephalogram (EEG) provides a way to communicate with less physical constrains, 
especially for patients with aggravating conditions34,35. However, the measured signals very often can only be used 
to distinguish in binary cases36. Even though it requires a long training time37, blink or other body movements 
can still lead to low signal-to-noise ratio38. In comparison, making eye movements during mental imagery is 
much more natural and intuitive, and has a potential to be a product that many people could use.

In practice, additional noise could be introduced into the data that lead to a decreased signal-to-noise ratio. 
For instance, in the uncontrolled experimental condition during mental imagery, participants may easily lose 
their focus and instead think about something irrelevant to the task. However, such cases are difficult to detect. 
Without an effective approach to increase the signal-to-noise ratio, both training and testing procedures can-
not be free from the impact of noisy data. Due to the lack of reference frame, the retrieval methods suffer from 
distortions contained in eye movements during mental imagery. Errors in recall gaze locations may accumulate 
overtime as no feedback was given in the recall period. We did not find any consistent distortion patterns among 
the recall eye movements even for one dataset of one observer. This could explain why the explicit learning of 
the mapping between recall and encoding did not significantly improve the performance. More details can be 
found in the supplementary information 1.

Surprisingly, in the third case (the generalization result), the resulting AUC (Fig. 3) was somewhat weaker 
than in the second case (the imagery result). We were uncertain about the reason of this performance drop but 
we suspected this is likely caused by the increased difficulty of having to deal with variations in the encoding and 
imagery data simultaneously. We decided not to include more components than 16 in the descriptor vector, as 
they would just increase the likelihood to overfit in the network. Eye movements have been used to refer where 
people allocate their attention for a long time and they are partially driven by the visual features in the images. 
Studies on visual feature importance39,40 could offer a guideline for the integration of image content in the next 
steps. As the recalled mental imagery potentially shows the encoded scene content in the episodic memory, work 
on image memorability41,42 could be specially relevant in future work.
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Figure 7.   (a) CNN architectures employed for direct image retrieval and (b) for descriptor learning. Width and 
height of layers are indicted by the numbers around and below is the number of channels. (c) Each histogram 
was first fed through the network described in (b) to generate a 16-dimensional descriptor. Two distinct 
networks (truncated pyramids) were used for encoding and recall respectively. We used two triplet losses for 
descriptor learning, forcing matching pairs closer to each other than non-matching ones.
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Scalability.  Photos that have comparable layouts lead to similar gaze patterns from observers looking at 
them. In the context of computational image retrieval, it means such photos are more likely to be indistinguish-
able. Our results suggest that such dependencies were also present in the imagery vs. imagery retrieval. For 
example, a textual sign with a box underneath it results in a similar triangular shape in the gaze data as a photo 
of face. Clearly, this imposes a natural limit on the number of images a computational method could possibly 
retrieve based on the eye movements. It does not come as a surprise as eye movements only encode the location 
and likely the significance of the scene elements. Unless other types of information, e.g. semantics, are available, 
it remains difficult to differentiate images of similar layout, especially when discrete histograms are used. Yet the 
computation retrieval method based on eye movements has significantly increased the number of distinguish-
able image instances. In comparison, brain activities measured by fMRI have only been used to distinguish 
among smaller datasets with fewer instances. Study in Ref.43 used only three film events as testing data and the 
work44 on reconstruction of face images were tested on 30 samples.

Partially due to its high cost of acquisition, fMRI data are often collected from few participants (10 in Ref.43 
and 6 in Ref.44). The sparse dataset may pose a severe challenge when using deep learning methods.

Long‑term memory.  The current study only focuses on the effect of short-term memory where image 
recall was performed immediately after the inspection of the original images. As indicated by previous study11, 
recall/imagery eye movements are likely to be less accurate as memory deteriorates over time, and consequently 
the retrieval performance would decrease. We have not explored this and it could be an interesting future direc-
tion.

Conclusions
Taken together, our results suggest that it is possible to retrieve an image based on encoding and recall eye 
movements. Without additional training and practice, naive participants could use our method to retrieve an 
image. We cannot estimate the feasibility when significantly more images are included in the database, how-
ever, the presented results achieved a clear performance benefit over brain activity based measurements. Fewer 
restrictions are posed on the participants’ side, and if we ask them to exercise a small effort to actively imagine 
a larger image, the recall-based retrieval is very likely to achieve a comparable accuracy to when encoding eye 
movements are used.

Methods
Participants.  Twenty-eight naive participants took part in the study (9 females, mean age 26 ± 4). All par-
ticipants had normal or corrected to normal vision and none of them had colour deficiencies. They all gave their 
written informed consent before the experiment and their time was compensated. The experimental protocol 
was approved by the local Ethics Committee at the Faculty IV of Technische Universität Berlin in compliance 
with the Guidelines of the German Research Foundation (DFG) on Ethical Conduct for Research involving 
humans.

Apparatus.  The experiment was conducted in a dark and quiet room. Participants were seated in front of a 
24-inch display (resolution: 1,920× 1,200 pixels; physical size: 0.52 m × 0.32 m; distance: 0.7 m) on which image 
stimuli were presented. Each participant viewed and recalled 100 images binocularly, however, only the domi-
nant eye movement was recorded with an EyeLink 1,000 in remote mode at 1,000 Hz. Gaze point on the screen 
was calibrated using a standard 9-point calibration and a chin and forehead rest was used to help participants 
stabilize their positions.

Visual stimuli.  We randomly selected 100 images from the MIT data set45, including both indoor and out-
door scenes. In practice, an eye-tracking experiment session must have a limited amount of time. Therefore, we 
decided to use only a subset of 100 images in this study considering our experimental design. All images were 
presented at the center of display in their original size and the largest dimension has 1,024 pixels.

Experimental procedure.  We followed the standard looking-at-nothing paradigm9,11 to collect eye move-
ments during both encoding and recall as shown in Fig. 1a. Observers were instructed to look closely at each 
image and try to remember its content. The instruction for recall was to think about the image and generate a 
visual representation of the content which is interesting. Each observer had an initial round of 10 practice trials. 
We assumed that they had then learned the task, and after that there were no further instructions regarding the 
task.

The total 100 trials were divided into five blocks and for each participant, images were presented in a ran-
domized order. At the beginning of each block of 20 trials, we calibrated the eye tracker on the display. The 
calibration procedure was repeated unless it achieved a good accuracy (below 0.5◦ ) in the following validation. 
We had 200 eye movement sequences from each participant, including 100 sequences of encoding 100 images 
and 100 sequences of recall all the images.

Memory task.  At the end of the experiment, we randomly selected five from the viewed 100 images and 
presented them together with five new unseen images in a randomized order. We asked participants to report 
whether one image has been seen before. All participants could easily determine which image had been seen 
before, except for one single mistake made by one participant. This indicates that participants still had the image 
content in their memory.
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Data analysis.  Each eye movement sequence, either during encoding or during recall, consisted of raw 
pupil positions on the screen. Collected at a sampling rate of 1000 Hz, we had slightly less than 5000 raw data in 
each sequence, very often with missing data due to blink. Saccades and fixations were detected from the raw data 
using the velocity based algorithm provided by SR research (the velocity threshold = 30◦/s and the acceleration 
threshold = 8,000◦/s2 ). Only 95% fixations from eye movements during thinking about an image were located 
inside of the stimuli domain (SD = 8% ), while 99%(SD = 1.9%) fixations during looking at the images were 
within the stimuli boundaries.

Data representation.  The raw samples from each eye movement sequence were aggregated over time to 
generate the spacial histogram representation of various sizes. Each grid counts the total number of samples in 
the cell, which naturally encodes the duration. In total, there were 2800 spatial histograms from perception and 
2800 spatial histograms from recall.

Measures.  The performance of a retrieval task can be measured by ranking. In our formulation of a classifi-
cation task, it means the rank of the true class label. Very often we are not only interested in the top-one perfor-
mance, but also top-three or top-ten results. Especially in a computational retrieval framework, users’ feedback 
on the ranking results can be fed back into the methods to improve the overall performance46,47. Instead of taking 
a fixed threshold, we therefore used the full range till top-100 rank as that is the worst rank in a dataset of 100 
classes. Connecting the accumulated number of instances in each rank allows to create a Receiver Operating 
Characteristic (ROC) curve. We took the standard area under the curve (AUC) to measure the accuracy of the 
classification, i.e. the retrieval accuracy. A curve with a steep slope at the beginning would have a large AUC. The 
larger the AUC is, the higher the accuracy is. A random guess would correspond to an AUC of 50%.

kNN classification.  In order to have a baseline for comparison, we used a simple k-nearest neighbor (kNN) 
classifier based on Euclidean distance. The basic idea of kNN classifier is each query is exhaustively compared 
to all training samples and classified as the class of the k-closest ones. k was set to 27 in our experiment and 
the class label was determined as the distance weighted labels of the nearest 27 samples. The overall accuracy 
was determined by leave-one-out cross validation. Each time we dropped out one dataset for testing and used 
all remaining datasets for training. This method was used for image retrieval based on eye movements during 
encoding and during recall separately.

CNN classification.  For image retrieval from encoding or recall histograms, we employed Convolutional 
Neural Networks (CNN) that operated on histograms of size 24× 24 . Each encoding (or, respectively, recall) 
sequence of eye movements was accumulated into a histogram which served as a one channel input image to the 
CNN. The classification network was similar to the architecture used in25. In the dual-task network (Fig. 7a), a 
decoder branch that approximately mirrors the structure of the encoder network was added and we skipped the 
dropout layers as well as batch normalization in both encoder and decoder in the dual-task network. To increase 
the capacity, a convolution layer was added before each transposed convolution layer in the decoder branch. 
All weights were initialized using Xavier initialization48 and, where applicable, initial filters were orthogonal to 
each other. The classification network was trained using Cross Entropy Loss ( Lcross ). The decoder was trained 
using L1 Loss ( LL1 ), which compares the generated histogram to the encoding histogram for the same image. 
The dual-task network (Fig. 7a) was trained using the combined loss function L = Lcross + �LL1 , where � is set 
to 1000, for 80 epochs. We used the Adam parameter update scheme49 (learning rate = 5e−4 and weight decay = 
2e−5), and a batch size of 100.

To test classification accuracy (in the first two cases), we performed leave one (subject) out cross validation. 
That is, we trained the network 28 times, each time withholding the data from one of the 28 subjects from the 
training pool. Testing was then performed only on the data of the withheld subject, thus testing how the network 
generalizes to new subjects. Overall accuracy was reported as the average over all tests.

Matching recall sequences to encoding sequences.  In order to extend to new images more elegantly, 
we employed a different formulation to the retrieval problem. Instead of classifying an encoding/recall histogram 
to an image index, we performed image retrieval by comparing a given recall histogram to a set of encoding his-
tograms of the same subject for which we knew which image was seen. In this setting, image retrieval was cast as 
a matching problem where the most closely matching encoding histogram indicated which image was recalled.

To this end, we trained an embedding of encoding and recall histograms into a low dimensional descriptor 
space in which matching encoding and recall pairs were close together, and non-matching pairs were far apart. 
Figure 7a illustrates a similar network architecture for matching (see more details in25) and each (encoding/
recall) histogram was mapped to a 16 dimensional descriptor. These descriptors were then used to match a query 
histogram to a set of previously recorded reference histograms and, by extension, find the closest encoding his-
togram for a given recall histogram. The difference to the previous network was in the smaller output layer (16 
outputs instead of 100) and the removal of the batch normalization layers. Initialization of weights and scaling 
of the learning rate was handled as in the previous network.

Two triplet losses27 were used in tandem with four descriptor mapping networks (Fig. 7b). We trained each 
fold for 1,000 epochs with an initial base learning rate of 0.001 that we scaled by 0.75 every 100 epochs. We used 
the same Adam optimizer with β1,2 = 0.95 and a batch size of 20. All layers had a small L2 weight decay of 1e−8. 
We also experimented with hinge loss, which simply forced matching descriptors to be close and non-matching 
descriptors apart, but found that triplet loss, while training more slowly, generalized better.
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During application, a subject’s encoding sequences for all possible images needed to be recorded and fed 
through the “encoding-descriptor-network” to compute the descriptors of each image. Then a recall sequence 
from the same subject could be recorded and fed through the “recall-descriptor-network” to obtain a query 
descriptor. This query descriptor was then compared to all encoding descriptors to produce a ranking of images 
based on descriptor distance. At this point, ROC curves and AUC could be computed as in the classification case.

For evaluation, we performed 10-fold cross validation to show that this setup generalizes to new images. 
The 100 images were split into 10 groups of 10 images each. Training was performed 10 times, each time with-
holding one group of images from the training data and using it for testing. Reported numbers were the average 
over the 10-folds.

Data availability
All data used in the study can be found at project page.

Code availability
Source code available at project page.
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