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Abstract

Many studies have reported the association of X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln, Arg194Trp,
Arg280His, 277T.C, and X-ray repair cross-complementing group 3 (XRCC3) T241M polymorphisms with lung cancer risk,
but the results remained controversial. Hence, we performed a meta-analysis to investigate the association between lung
cancer risk and XRCC1 Arg399Gln (14,156 cases and 16,667 controls from 41 studies), Arg194Trp (7,426 cases and 9,603
controls from 23 studies), Arg280His (6,211 cases and 6,763 controls from 16 studies), 277T.C (2,487 cases and 2,576
controls from 5 studies), and XRCC3 T241M (8,560 cases and 11,557 controls from 19 studies) in different inheritance models.
We found that 277T.C polymorphism was associated with increased lung cancer risk (dominant model: odds ration
[OR] = 1.45, 95% confidence interval [CI] = 1.27–1.66, recessive model: OR = 1.73, 95% CI = 1.14–2.62, additive model:
OR = 1.91, 95% CI = 1.24–1.94) when all the eligible studies were pooled into the meta-analysis. In the stratified and sensitive
analyses, significantly decreased lung cancer risk was observed in overall analysis (dominant model: OR = 0.83, 95%
CI = 0.78–0.89; recessive model: OR = 0.90, 95% CI = 0.81–1.00; additive model: OR = 0.82, 95% CI = 0.74–0.92), Caucasians
(dominant model: OR = 0.82, 95% CI = 0.76–0.87; recessive model: OR = 0.89, 95% CI = 0.80–0.99; additive model: OR = 0.81,
95% CI = 0.73–0.91), and hospital-based controls (dominant model: OR = 0.81, 95% CI = 0.76–0.88; recessive model:
OR = 0.89, 95% CI = 0.79–1.00; additive model: OR = 0.80, 95% CI = 0.71–0.90) for XRCC3 T241M. In conclusion, this meta-
analysis indicates that XRCC1 277T.C shows an increased lung cancer risk and XRCC3 T241M polymorphism is associated
with decreased lung cancer risk, especially in Caucasians.
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Introduction

Lung cancer is a major cause of cancer-related death in the

worldwide and the overall survival rate has still an extremely poor

[1]. Although cigarette smoking is the major cause of lung cancer,

only a small fraction of smokers develop this disease, suggesting

that other causes, including genetic susceptibility, might contribute

to the variation in individual lung cancer risk [2,3]. Genetic

susceptibility to environmental or occupational diseases is believed

to play an important role in determining individual differences in

the development of cancer. Research activities have focused on

polymorphisms in DNA-repair genes as an important component

of susceptibility because DNA-repair activities are critical for the

protection of the genome and the prevention of cancer [4]. At the

cellular level, checkpoints can be activated to arrest the cell cycle

and transcription can be unregulated to compensate for the

damage or the cell can apoptosis [5]. DNA repair is essential in

protecting the cellular genome from environmental hazards, such

as tobacco smoke [6]. Several studies have shown that a reduced

DNA repair capacity is associated with increased lung cancer risk

[7–9]. Many DNA repair genes carry genetic polymorphisms, with

the potential to modulate gene function and alter DNA repair

capacity [10].

The DNA repair pathways, including nucleotide excision repair

(NER), base excision repair (BER) and double-strand break repair

(DSBR) play an important role in repairing the DNA damage

resulting from chemical alterations of a single base, such as

methylated, oxidized, or reduced bases [11,12]. The DNA repair

enzymes XRCC1 play a central role in the BER pathway [13,14].

XRCC1 is located on chromosome no. 19q13.2–13.3, and its gene

product is implicated in single-strand break repair and base

excision repair mechanisms [15]. XRCC1 encodes a protein that

function in the repair of single-strand breaks. Shen et al [16]

identified three coding polymorphisms in the XRCC1 gene at

codons 194 (Arg to Trp), 280 (Arg to His), and 399 (Arg to Gln).

59UTR–77T.C is a novel polymorphism identified in the XRCC1

gene located in the 59untranslated region. Hao et al. [50] have

reported that functional SNP 277T.C decreased transcriptional

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e68457



activity of C-allelecontaining promoter with higher affinity to Sp1

binding.

In the DSBR pathway, XRCC3 participate in DNA double-

strand break/recombination repair and likely participates [17–19].

DSBs are the most common form of radiation-induced DNA

damage [20] and are repaired by two pathways-homologous

recombination repair (HRR) and no homologous end-joining [21–

23]. The HRR pathway consists of at least 16 protein components,

including XRCC3. A common polymorphism in exon 7 of the

XRCC3 gene results in an amino acid substitution at codon 241

(Thr241Met) that may affect the enzyme function and/or its

interaction with other proteins involved in DNA damage and

repair [24].

Molecular epidemiological studies have reported the association

of XRCC1 Arg399Gln, Arg194Trp, Arg280His, 277T.C, and

XRCC3 T241M with lung cancer risk [25–73], but the results

remain conflicting rather than conclusive. Although several studies

[81–86] previously performed pooling analyses regarding the

association of XRCC1 Arg399Gln, Arg194Trp, Arg280His,

277T.C, and XRCC3 T241M with lung cancer risk. However,

several published studies were not included in these meta-analyses

and additional original studies with larger sample sizes have been

published since then. Importantly, the previous meta-analyses on

XRCC1 Arg194Trp, Arg280His, and Arg399Gln with lung cancer

risk have shown conflicting conclusions. Hence, the association of

these polymorphic genes remains unknown. In order to explore

the association between XRCC1 Arg399Gln, Arg194Trp, Ar-

g280His, 277T.C, and XRCC3 T241M polymorphisms with

lung cancer risk, a meta-analysis was conducted to summarize the

data. Meta-analysis is a powerful tool for summarizing the

different studies. It can not only overcome the problem of small

size and inadequate statistical power of genetic studies of complex

traits, but also provide more reliable results than a single case–

control study.

Materials and Methods

Identification and eligibility of relevant studies
A comprehensive literature search was performed using the

PubMed, ISI, and Embase databases for relevant articles

published (last search was updated on Jan 12, 2013) with the

following key words ‘‘XRCC1’’ or ‘‘XRCC3’’, ‘‘polymorphism’’,

and ‘‘cancer’’ or ‘‘carcinoma’’ combined with ‘‘lung’’. All

eligible studies were retrieved, and their bibliographies were

checked for other relevant publications. We excluded data that

were unpublished or published in abstract only. We also

reviewed the Cochrane Library for relevant articles. Additional

articles were identified by hand searching references in the

eligible articles and review articles that possibly have been

missed in the initial search. Authors were contacted directly

regarding crucial data not reported in original articles. When

the same sample was used in several publications, only the study

with the largest sample size was included following careful

examination.

Inclusion criteria
The included studies needed to have met the following criteria:

(1) only the case–control studies were considered, (2) evaluated the

XRCC1 Arg399Gln, Arg194Trp, Arg280His, 277T.C, and

XRCC3 T241M polymorphisms and lung cancer risk, and (3)

sufficient published data for estimating an odds ratio (OR) with

95% confidence interval (CI). Major reasons for exclusion of

studies were as follows: (1) not cancer research, (2) only case

population, (3) duplicate of previous publication, and (4) the

distribution of genotypes among controls are not in Hardy–

Weinberg equilibrium (P,0.01).

Data extraction
Information was carefully extracted from all eligible studies

independently by two investigators according to the inclusion

criteria listed above. The following data were collected from each

study: first author’s name, year of publication, country of origin,

ethnicity, source of controls, genotyping method, match, sample

size, and numbers of cases and controls in the XRCC1 Arg399Gln,

Arg194Trp, Arg280His, 277T.C, and XRCC3 T241M geno-

types whenever possible. Ethnicity was categorized as ‘‘Cauca-

sian’’, ‘‘African’’, and ‘‘Asian’’. When a study did not state which

ethnic groups were included or if it was impossible to separate

participants according to phenotype, the sample was termed as

‘‘mixed population’’. We did not define any minimum number of

patients to include in this meta-analysis. Articles that reported

different ethnic groups and different countries or locations, we

considered them different study samples for each category cited

above.

Statistical analysis
Crude odds ratios (ORs) together with their corresponding 95%

confidence intervals (95% CIs) were used to assess the strength of

association between the XRCC1 Arg399Gln, Arg194Trp, Ar-

g280His, 277T.C, and XRCC3 T241M polymorphisms and lung

cancer risk. The pooled ORs were performed for dominant model

(Arg399Gln: Arg/Gln+Gln/Gln vs. Arg/Arg, Arg194Trp: Arg/

Trp+Trp/Trp vs. Arg/Arg, Arg280His: Arg/His+His/His vs.

Arg/Arg, 277T.C: TC+CC vs. TT, and T241M: TM+MM vs.

TT); recessive model (Arg399Gln: Arg/Gln+Arg/Arg vs. Gln/

Gln, Arg194Trp: Arg/Trp+Arg/Arg vs. Trp/Trp, Arg280His:

Arg/His+Arg/Arg vs. His/His, 277T.C: TC+TT vs. CC, and

T241M: TM+TT vs. MM); additive model (Arg399Gln: Arg/Arg

vs. Gln/Gln, Arg194Trp: Arg/Arg vs. Trp/Trp, Arg280His: Arg/

Arg vs. His/His, 277T.C: TT vs. CC, and T241M: TT vs.

MM), respectively. Between-study heterogeneity was assessed by

calculating Q-statistic (Heterogeneity was considered statistically

significant if P,0.10) [74] and quantified using the I2 value,

Venice criteria [75] for the I2 test included: ‘‘I2,25% represents

no heterogeneity, I2 = 25–50% represents moderate heterogeneity,

I2 = 50–75% represents large heterogeneity, and I2.75% repre-

sents extreme heterogeneity’’. If results were not heterogeneous,

the pooled ORs were calculated by the fixed-effect model (we used

the Q-statistic, which represents the magnitude of heterogeneity

between-studies) [76]. Otherwise, a random-effect model was used

(when the heterogeneity between-studies were significant) [77]. We

also performed subgroup analyses by ethnicity (Caucasian and

Asian), source of controls, histological type, gender, and smoking

habits. Moreover, the extent to which the combined risk estimate

might be affected by individual studies was assessed by consecu-

tively omitting every study from the meta-analysis (leave-one-out

sensitivity analysis). This approach would also capture the effect of

the oldest or first positive study (first study effect). Secondly, we

also ranked studies according to sample size, and then repeated

this meta-analysis. Sample size was classified according to a

minimum of 200 participants and those with fewer than 200

participants. The cite criteria were previously described [78]. We

assessed Hardy–Weinberg equilibrium (HWE) for each study using

the goodness-of-fit test (x2 or Fisher exact test) only in control

groups, and deviation was considered when P,0.01. Begg’s funnel

plots [79] and Egger’s linear regression test [80] were used to

assess publication bias. If publication bias existed, the Duval and

Tweedie non-parametric ‘‘trim and fill’’ method was used to adjust
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for it. A meta-regression analysis was carried out to identify the

major sources of between-studies variation in the results, using the

log of the ORs from each study as dependent variables, and

ethnicity, source of controls, and sample size as the possible

sources of heterogeneity. All of the calculations were performed

using STATA version 10.0 (STATA Corporation, College Station,

TX).

Results

Literature Search and Meta-analysis Databases
Relevant publications were retrieved and preliminarily

screened. As shown in Fig. 1, 248 publications were identified,

among which 132 irrelevant papers were excluded. Thus, 116

publications were eligible. Among these publications, 67 articles

were excluded because they were review articles, case reports, and

other polymorphisms of XRCC1 and XRCC3. In addition,

Genotype distributions in the controls of all the eligible studies

were in agreement with HWE. 4 articles [32,37,46,60] were

excluded because of their populations overlapped with another 2

included study [25,33,55,59]. As summarized in Table 1, 45

articles with 104 case–control studies publications were selected in

the final meta-analysis, including 14156 cases and 16,667 controls

for XRCC1 Arg399Gln (from 41 studies), 7,426 cases and 9,603

controls for Arg194Trp (from 23 studies), 6,211 cases and 6,763

controls for Arg280His (from 16 studies), 2,487 cases and 2,576

controls for 277T.C (from 5 studies), and 8,560 cases and 11,557

controls for XRCC3 T241M (from 19 studies). Among these

studies, five studies were included in the dominant model only

because they provided the genotypes of TM+MM versus TT or

Arg/Gln+Gln/Gln versus Arg/Arg as a whole and one study was

included in the recessive model only because it provided the

genotypes of TM+TT versus MM. 45 were population-based

studies and 59 were hospital-based studies. 51 were conducted in

Caucasians, 46 were conducted in Asians, and 6 studies were

conducted in Africans. The remained were conducted in mixed

ethnicity. Tables S1–S5 in File S1 listed ethnicity, HWE, and the

numbers of cases and controls for XRCC1 Arg399Gln, Arg194Trp,

Arg280His, 277T.C, and XRCC3 T241M. All of the cases were

pathologically confirmed.

Quantitative synthesis
Table 2 listed the main results of the meta-analysis of XRCC1

Arg399Gln polymorphism and lung cancer risk. When all the

eligible studies were pooled into the meta-analysis of XRCC1

Arg399Gln polymorphism, no significant association was found in

any genetic model. However, significant between-study heteroge-

neity was detected in any genetic model. Hence, we performed

subgroup analysis by ethnicity, histological type, smoker habits,

gender, and source of controls. Among the stratified analysis,

significantly increased lung cancer risk was observed in non-

smokers (recessive model: OR = 1.57, 95% CI = 1.02–2.42, P

value of heterogeneity test [Ph] = 0.026, I2 = 49.4%).

Table 2 also listed the main results of the meta-analysis of

XRCC1 Arg194Trp polymorphism and lung cancer risk. When all

the eligible studies were pooled into the meta-analysis of XRCC1

Arg194Trp polymorphism, significantly increased risk of lung

cancer was observed in the recessive model (OR = 1.23, 95%

CI = 1.05–1.44, Ph = 0.216, I2 = 18.8%) and additive model

(OR = 1.22, 95% CI = 1.04–1.44, Ph = 0.107, I2 = 28.9%). Among

the stratified analyses, significantly increased lung cancer risk was

observed in Asians (recessive model: OR = 1.22, 95% CI = 1.03–

1.45, Ph = 0.277, I2 = 17.5%; additive model: OR = 1.22, 95%

CI = 1.02–1.45, Ph = 0.111, I2 = 36.0%) and the hospital-based

controls (recessive model: OR = 1.28, 95% CI = 1.03–1.59,

Ph = 0.141, I2 = 32.2%).

Table 2 also listed the main results of the meta-analysis of

XRCC1 Arg280His polymorphism and lung cancer risk. When all

the eligible studies were pooled into the meta-analysis of XRCC1

Arg280His polymorphism, no significant association was observed

in any genetic model. In the stratified analyses, there was not still

significant association between XRCC1 Arg280His polymorphism

and lung cancer risk.

Table 2 also listed the main results of the meta-analysis of

XRCC1 277T.C polymorphism and lung cancer risk. When all

the eligible studies were pooled into the meta-analysis of XRCC1

277 T.C polymorphism, significant increased risk of lung cancer

was observed in any genetic model (dominant model: OR = 1.45,

95% CI = 1.27–1.66, Ph = 0.638, I2 = 0.0%, Fig. 2; recessive

model: OR = 1.73, 95% CI = 1.14–2.62, Ph = 0.469, I2 = 0.0%,

Fig. 3; additive model: OR = 1.91, 95% CI = 1.24–2.94,

Ph = 0.494, I2 = 0.0%, Fig. 4).

Table 2 also listed the main results of the meta-analysis of

XRCC3 T241M polymorphism and lung cancer risk. When all

the eligible studies were pooled into the meta-analysis of XRCC3

T241M polymorphism, there was no evidence of significant

association between lung cancer risk and XRCC3 T241M

polymorphism in any genetic model. In the stratified analysis,

there was not still significant association.

Heterogeneity and sensitive analysis
There was significant heterogeneity among these studies for

dominant model comparison (XRCC1 Arg399Gln: Ph = 0.009,

XRCC1 Arg194Trp: Ph = 0.042, XRCC1 Arg280His: Ph,0.001,

and XRCC3 T241M: Ph = 0.011); recessive model comparison

(XRCC1 Arg399Gln: Ph = 0.017 and XRCC3 T241M = 0.003);

additive model comparison (XRCC1 Arg399Gln: Ph = 0.003 and

XRCC3 T241M,0.001). Then, we assessed the source of

heterogeneity by meta-regression analysis. We found that source

of controls, ethnicity, and sample size did not contribute to

substantial heterogeneity among the meta-analysis (data not

shown). Sensitivity analyses were conducted to determine whether

modification of the inclusion criteria of this meta-analysis affected

the results. Although the sample size for cases and controls in all

eligible studies ranged from 100 to 8,488, the corresponding

pooled ORs were not qualitatively altered with or without the

study of small sample. However, for XRCC1 Arg399Gln polymor-

phism, when one study was excluded, the results were changed in

non-smokers (recessive model: OR = 1.12, 95% CI = 0.96–1.21,

Ph = 0.114, I2 = 32.6%). For XRCC1 Arg194Trp polymorphism,

when one study was excluded, the results were also changed in

overall analysis (recessive model: OR = 1.17, 95% CI = 0.99–1.39,

Ph = 0.313, I2 = 11.4%; additive model: OR = 1.15, 95%

CI = 0.97–1.37, Ph = 0.227, I2 = 18.3%), Asians (recessive model:

OR = 1.16, 95% CI = 0.97–1.38, Ph = 0.447, I2 = 0.0%; additive

model: OR = 1.14, 95% CI = 0.95–1.37, Ph = 0.295, I2 = 16.1%),

hospital-based studies (recessive model: OR = 1.17, 95%

CI = 0.92–1.49, Ph = 0.241, I2 = 21.9%), and smokers (dominant

model: OR = 0.87, 95% CI = 0.74–1.03, Ph = 0.409, I2 = 0.0%).

For XRCC3 T241M polymorphism, when one study was excluded,

significantly decreased lung cancer risk was observed in overall

analysis (dominant model: OR = 0.83, 95% CI = 0.78–0.89,

Ph = 0.302, I2 = 13.0%, Fig. 5; recessive model: OR = 0.90, 95%

CI = 0.81–1.00, Ph = 0.507, I2 = 0.0%; additive model: OR = 0.82,

95% CI = 0.74–0.92, Ph = 0.278, I2 = 16.1%), Caucasians (domi-

nant model: OR = 0.82, 95% CI = 0.76–0.87, Ph = 0.248,

I2 = 20.5%; recessive model: OR = 0.89, 95% CI = 0.80–0.99,

Ph = 0.427, I2 = 6.3%; additive model: OR = 0.81, 95% CI = 0.73–
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0.91, Ph = 0.277, I2 = 18.1%), and hospital-based controls (dom-

inant model: OR = 0.81, 95% CI = 0.76–0.88, Ph = 0.193,

I2 = 28.2%; recessive model: OR = 0.89, 95% CI = 0.79–1.00,

Ph = 0.213, I2 = 25.9%; additive model: OR = 0.80, 95%

CI = 0.71–0.90, Ph = 0.108, I2 = 40.6%).

Publication bias
Begg’s funnel plot and Egger’s test did not reveal any

publication bias for XRCC1 Arg399Gln (P = 0.546 for dominant

model, P = 0.767 for recessive model, and P = 0.984 for additive

model), Arg194Trp (P = 0.588 for dominant model, P = 0.416 for

recessive model, P = 0.555 for additive model), Arg280His

(P = 0.439 for dominant model, P = 0.520 for recessive model,

P = 0.292 for additive mode), 277T.C (P = 0.186 for dominant

model, P = 0.162 for recessive model, P = 0.246 for additive

mode), although possible publication bias was suggested between

XRCC3 T241M polymorphism and lung cancer risk in dominant

model (P = 0.012) and additive model (P = 0.041). This might be a

limitation for this meta-analysis because studies with null findings,

especially those with small sample size, are less likely to be

published. The Duval and Tweedie non-parametric ‘‘trim and fill’’

method was used to adjust for publication bias. Meta-analysis with

and without ‘‘trim and fill’’ did not draw different conclusion

(Fig. 6), indicating that our results were statistically robust.

Figure 1. Study flow chart explaining the selection of the 45 eligible articles included in the meta-analysis.
doi:10.1371/journal.pone.0068457.g001
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Table 1. Main characteristics of all studies included in the meta-analysis.

First author/year Country Ethnicity SNPS GM SC Matching

Ratnasinghe [25] 2001 China Asian Arg399Gln TaqMan PB Age/sex

Ratnasinghe [25] 2001 China Asian Arg194Trp TaqMan PB Age/sex

Ratnasinghe [25] 2001 China Asian Arg280His TaqMan PB Age/sex

David-Beabes [26] 2001 USA Caucasian Arg399Gln PCR-RFLP PB Age/sex/ethnicity

David-Beabes [26] 2001 USA Caucasian Arg194Trp PCR-RFLP PB Age/sex/ethnicity

David-Beabes [26] 2001 USA African Arg399Gln PCR-RFLP PB Age/sex/ethnicity

David-Beabes [26] 2001 USA African Arg194Trp PCR-RFLP PB Age/sex/ethnicity

David-Beabes [27] 2001 USA Caucasian T241M PCR-RFLP PB Age/sex/ethnicity

David-Beabes [27] 2001 USA African T241M PCR-RFLP PB Age/sex/ethnicity

Divine [28] 2001 USA Caucasian Arg399Gln PCR-RFLP HB No clear

Chen [29] 2002 China Asian Arg399Gln PCR PB Age/sex

Chen [29] 2002 China Asian Arg194Trp PCR PB Age/sex

Park [30] 2002 Korea Asian Arg399Gln PCR-RFLP HB Age

Misra [31] 2003 USA Caucasian Arg399Gln PCR PB Age

Misra [31] 2003 USA Caucasian Arg280His PCR PB Age

Misra [31] 2003 USA Caucasian T241M PCR PB Age

Zhou [33] 2003 USA Caucasian Arg399Gln PCR-RFLP PB No clear

Wang [34] 2003 USA Mixed T241M PCR-RFLP PB Age/ethnicity/gender

Ito [35] 2004 Japan Asian Arg399Gln PCR-CTTP HB Age/sex

Popanda [36] 2004 German Caucasian Arg399Gln PCR HB No clear

Popanda [36] 2004 German Caucasian T241M PCR HB No clear

Harms [38] 2004 German Caucasian Arg399Gln PCR HB Age/ethnicity/gender

Harms [38] 2004 German Caucasian T241M PCR HB Age/ethnicity/gender

Jacobsen [39] 2004 Danish Caucasian T241M PCR PB No clear

Zhang [40] 2005 China Asian Arg399Gln PCR-RFLP PB Age/sex

Hung [41] 2005 Europe Caucasian Arg399Gln PCR HB Age/sex/area

Hung [41] 2005 Europe Caucasian Arg194Trp PCR HB Age/sex/area

Hung [41] 2005 Europe Caucasian Arg280His PCR HB No clear

Hung [41] 2005 Europe Caucasian T241M PCR HB No clear

Vogel [42] 2004 Danish Caucasian Arg399Gln PCR PB No clear

Vogel [42] 2004 Danish Caucasian Arg280His PCR PB No clear

Schneider [43] 2005 German Caucasian Arg399Gln PCR HB No clear

Schneider [43] 2005 German Caucasian Arg194Trp PCR HB No clear

Schneider [43] 2005 German Caucasian Arg280His PCR HB No clear

Shen [44] 2005 China Asian Arg399Gln PCR PB Age/sex/village

Shen [44] 2005 China Asian Arg194Trp PCR PB Age/sex/village

Shen [44] 2005 China Asian Arg280His PCR PB Age/sex/village

Chan [45] 2005 China Asian Arg399Gln PCR-RFLP HB Age/sex

Chan [45] 2005 China Asian Arg194Trp PCR-RFLP HB Age/sex

Hu [47] 2005 China Asian Arg399Gln PCR HB Age/sex/area

Hu [47] 2005 China Asian Arg194Trp PCR HB Age/sex/area

Hu [47] 2005 China Asian 277T.C PCR-RFLP HB Age/sex/area

Zienolddiny [48] 2006 Norway Caucasian Arg399Gln TaqMan PB Age/sex/smoking

Zienolddiny [48] 2006 Norway Caucasian Arg194Trp TaqMan PB Age/sex/smoking

Zienolddiny [48] 2006 Norway Caucasian Arg280His TaqMan PB Age/sex/smoking

Zienolddiny [48] 2006 Norway Caucasian T241M TaqMan PB Age/sex/smoking

Matullo [49]2006 Europe Caucasian Arg399Gln TaqMan PB Age/sex/smoking

Matullo [49]2006 Europe Caucasian T241M TaqMan PB Age/sex/smoking

Hao [50] 2006 China Asian Arg399Gln PCR-RFLP PB Age/sex/ethnicity

XRCC1 & XRCC3 Association with Lung Cancer Risk
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Table 1. Cont.

First author/year Country Ethnicity SNPS GM SC Matching

Hao [50] 2006 China Asian Arg194Trp PCR-RFLP PB Age/sex/ethnicity

Hao [50] 2006 China Asian Arg280His PCR-RFLP PB Age/sex/ethnicity

Hao [50] 2006 China Asian 277T.C PCR-RFLP PB Age/sex/ethnicity

Landi [51] 2006 Europe Caucasian Arg399Gln PCR HB Age/sex/center/area

Landi [51] 2006 Europe Caucasian Arg194Trp PCR HB Age/sex/center/area

Landi [51] 2006 Europe Caucasian Arg280His PCR HB Age/sex/center/area

Landi [51] 2006 Europe Caucasian T241M PCR HB Age/sex/center/area

Ryk [52] 2006 Swede Caucasian Arg399Gln PCR PB Age/sex/smoking

Ryk [52] 2006 Swede Caucasian T241M TaqMan PB Age/sex/smoking

De Ruyck [53] 2007 Belgium Caucasian Arg399Gln PCR-RFLP HB Age/sex

De Ruyck [53] 2007 Belgium Caucasian Arg194Trp PCR-RFLP HB Age/sex

De Ruyck [53] 2007 Belgium Caucasian Arg280His PCR-RFLP HB Age/sex

De Ruyck [53] 2007 Belgium Caucasian 277T.C PCR-RFLP HB Age/sex

Pachouri [54] 2007 India Asian Arg399Gln PCR-RFLP PB No clear

Pachouri [54] 2007 India Asian Arg194Trp PCR-RFLP PB No clear

Yin [55] 2007 China Asian Arg399Gln PCR-RFLP HB Age/gender/ethnicity

Yin [55] 2007 China Asian Arg194Trp PCR-RFLP HB Age/gender/ethnicity

Yin [55] 2007 China Asian Arg280His PCR-RFLP HB Age/gender/ethnicity

Lopez-Cima [56] 2007 Spain Caucasian Arg399Gln PCR-RFLP HB Age/gender/ethnicity

Lopez-Cima [56] 2007 Spain Caucasian T241M PCR-RFLP HB Age/gender/ethnicity

Zhang [57] 2007 China Asian T241M PCR HB No clear

Improta [58] 2008 Italy Caucasian Arg399Gln PCR-RFLP HB Age/sex

Improta [58] 2008 Italy Caucasian Arg194Trp PCR-RFLP HB Age/sex

Improta [58] 2008 Italy Caucasian T241M PCR-RFLP HB Age/sex

Li [59] 2008 China Asian Arg399Gln PCR-RFLP HB Age

Li [59] 2008 China Asian Arg194Trp PCR-RFLP HB Age

Li [59] 2008 China Asian Arg280His PCR-RFLP HB Age

Li [59] 2008 China Asian 277T.C PCR-RFLP HB Age

Hsieh [61] 2009 China Asian 277T.C PCR HB No clear

Cote [62] 2009 USA Caucasian Arg399Gln PCR PB Age/race

Cote [62] 2009 USA African Arg399Gln PCR PB Age/race

Qian [63] 2010 China Asian T241M PCR HB Age/gender

Qian [63] 2010 China Asian Arg399Gln PCR HB Age/gender

Tanaka [64] 2010 Japan Asian Arg194Trp PCR HB Age/sex/ethnicity

Kim [65] 2010 Korea Asian Arg399Gln PCR HB No clear

Kim [65] 2010 Korea Asian Arg280His PCR HB No clear

Osawa [66] 2010 Japan Asian T241M PCR-RFLP HB No clear

Osawa [66] 2010 Japan Asian Arg399Gln PCR-RFLP HB No clear

Huang [67] 2011 China Asian T241M PCR-RFLP HB Age/sex

Janik [68] 2011 Poland Caucasian Arg399Gln PCR-SSCP HB Age/sex/smoking/diet

Janik [68] 2011 Poland Caucasian Arg194Trp PCR-SSCP HB Age/sex/smoking/diet

Janik [68]2011 Poland Caucasian Arg280His PCR-SSCP HB Age/sex/smoking/diet

Li [69] 2011 China Asian Arg399Gln PCR-CTTP HB Age/sex/area

Wang [70]2012 China Asian Arg194Trp PCR-RFLP HB Age/sex/area

Wang [70]2012 China Asian Arg280His PCR-RFLP HB Age/sex/area

Wang [70]2012 China Asian Arg399Gln PCR-RFLP HB Age/sex/area

Chikako [71] 2012 Japan Asian Arg399Gln PCR-RFLP HB Age/sex

Chikako [71] 2012 Japan Asian T241M PCR-RFLP HB Age/sex

Sreeja [72] 2008 India Asian Arg399Gln PCR-RFLP HB Age/sex
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Discussion

BER and DSBR play an important role in repairing the DNA

damage resulting from chemical alterations of a single base, such

as methylated, oxidized, or reduced bases. BER includes two

major processes (excision of damaged base residues and core BER

reaction, including strand incision at the abasic site, one nucleotide

gap-filling reaction, and sealing of the remaining nick). It is well

known that a number of proteins are involved in these steps, of

which XRCC1 play key roles. XRCC1 acts as a facilitator or

coordinator in BER, through its interaction with poly (ADP-

ribose) polymerase, DNA polymerase b, and DNA ligase III

[15,95]. Four coding polymorphisms were identified in the

XRCC1 gene at the codons 194 (Arg to Trp), 280 (Arg to His),

399 (Arg to Gln), and 277 T.C. Whereas the functional effects of

these polymorphisms in XRCC1 have not been well known,

amino acid changes at evolutionary conserved regions may alter its

function. In particular, the 399Gln polymorphism resulting from a

guanine to adenine nucleotide occurs in the poly (ADP-ribose)

polymerase binding domain and may affect complex assembly or

repair efficiency. The XRCC3 gene codes for a protein involved in

homologous recombinational repair (HRR) for double strand

breaks of DNA (DBSs) and cross-link repair in mammalian cells

[20]. During HRR, the XRCC3 protein interacts with Rad51

protein and likely contributes to maintain chromosome stability. A

common polymorphism in exon 7 of the XRCC3 gene results in

an amino acid substitution at codon 241 (Thr241Met) that may

affect the enzyme function and/or its interaction with other

proteins involved in DNA damage and repair [20]. Many

molecular epidemiological studies have reported the role of

XRCC1 Arg399Gln, Arg194Trp, Arg280His, 277T.C, and

XRCC3 T241M in lung cancer risk [25–73], but the results

remain conflicting rather than conclusive. In order to resolve this

conflict, meta-analysis was performed to examine the association

between XRCC1 and XRCC3 polymorphisms and lung cancer risk,

by critically reviewing 41 studies on XRCC1 Arg399Gln, 23 studies

on Arg194Trp, 16 studies on Arg280His, 5 studies on 277T.C,

and 19 studies on XRCC3 T241M.

Overall, our meta-analysis indicates that XRCC1 277T.C

polymorphism is associated with increased lung cancer risk when

all eligible studies were pooled into the meta-analysis. In further

stratified and sensitivity analyses, significantly decreased lung

cancer risk was observed in Caucasians for XRCC3 T241M, but

not in Asians. It should be considered that the apparent

inconsistency of these results may underlie differences in ethnicity,

lifestyle and disease prevalence as well as possible limitations due

to the relatively small sample size. The current knowledge of

carcinogenesis indicates a multi-factorial and multistep process

that involves various genetic alterations and several biological

pathways. Thus, it is unlikely that risk factors of cancer work in

isolation from each other. And the same polymorphisms may play

different roles in cancer susceptibility, because cancer is a

complicated multi-genetic disease, and different genetic back-

grounds may contribute to the discrepancy. And even more

importantly, the low penetrance genetic effects of single polymor-

phism may largely depend on interaction with other polymor-

phisms and/or a particular environmental exposure.

Present meta-analysis results were not consistent with a previous

meta-analysis [81–86] on XRCC1 and XRCC3 polymorphisms with

lung cancer risk. Kiyohara et al. [81] included 18 case–control

studies on XRCC1 Arg399Gln, 9 studies on Arg194Trp, and 7

studies on Arg280His. Their results suggested that XRCC1

Arg399Gln polymorphism was associated with increased lung

cancer risk among Asians (OR = 1.34, 95% CI = 1.16–1.54) and

Arg194Trp and Arg280His polymorphisms were not associated

with lung cancer risk. However, at any case, their results about

Arg399Gln and lung cancer risk essentially remains an open field

in Asians, as the number of studies (n = 6) is considerably smaller

than that needed for the achievement of robust conclusions [96].

Wang et al. [82] included 30 case–control studies on XRCC1

Arg399Gln and 16 studies on Arg194Trp. Their results indicated

that certain XRCC1 codon 399 and 194 variant may affect the

susceptibility of lung cancer. Dai et al. [83] included 39 studies on

XRCC1 Arg399Gln, 22 studies on Arg194Trp, and 12 studies on

Arg280His. Their meta-analysis had demonstrated that codon

194, codon 399 and 277 T.C polymorphisms of XRCC1 gene

might have contributed to individual susceptibility to lung cancer.

However, in further subgroup and sensitivity analyses, we found

XRCC1 Arg399Gln and Arg194Trp polymorphisms were not

associated with lung cancer risk when one study was excluded,

hence, we thought XRCC1 Arg399Gln and Arg194Trp polymor-

phisms may be not associated with lung cancer risk. Sun et al. [84]

in 2010 included 14 case–control studies on XRCC3 T241M,

their meta-analysis found that there was no evidence showing a

significant association between XRCC3 Thr241Met polymorphism

and lung cancer risk. Zhan et al. [85] in 2013 included 17 case–

control studies on XRCC3 T241M, their meta-analysis indicated

that there was no evidence showing a significant correlation

between XRCC3 Thr241Met polymorphism and lung cancer risk

stratified analysis by ethnicity, histology and smoking status. Xu et

al. [86] in 2013 included 17 case–control studies on XRCC3

T241M, their meta-analysis all available data did not support any

appreciable association between the XRCC3 Thr241Met poly-

morphism and lung cancer risk in any populations. However, in

further subgroup and sensitivity analyses, we found XRCC3

T241M polymorphism was associated with lung cancer risk in

Caucasians. Vineis et al. [97] in 2009 only included 3 case–control

studies on XRCC1 polymorphism, their found XRCC1 277T.C

Table 1. Cont.

First author/year Country Ethnicity SNPS GM SC Matching

Chang [73] 2009 USA Caucasian Arg399Gln PCR-RFLP PB Age/sex/area

Chang [73] 2009 USA Caucasian Arg194Trp PCR-RFLP PB Age/sex/area

Chang [73] 2009 USA Caucasian Arg280His PCR-RFLP PB Age/sex/area

Chang [73] 2009 USA African Arg399Gln PCR-RFLP PB Age/sex/area

Chang [73] 2009 USA African Arg194Trp PCR-RFLP PB Age/sex/area

SNPS Single-nucleotide polymorphism studied, GM Genotyping method, SC Source of controls, SSCP Single-strand conformation polymorphism, CTPP Contronting two-
pair primers, SNPS Single-nucleotide polymorphism studied, PB Population-based study, HB Hospital-based study.
doi:10.1371/journal.pone.0068457.t001
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polymorphism was associated with lung cancer risk. Having

analyzed an almost twofold larger number of studies than the

previous meta-analysis [81–86], our results seem to confirm and

establish the trend in the meta-analysis of XRCC1 Arg399Gln,

Arg194Trp, Arg280His, 277T.C, and T241M polymorphisms

that the data by the previous meta-analysis [81–86] had indicated.

Table 2. Results of meta-analysis for XRCC1 and XRCC3 polymorphisms and lung cancer risk.

Variables
No. comparisons
(SZ case/control) Dominant model Recessive model Additive model

OR (95% CI) Ph/I2 OR (95% CI) Ph/I2 OR (95% CI) Ph/I2

XRCC1 Arg399Gln

Overall 41 (14,156/16,667) 1.00 (0.94–1.07)* 0.009/37.9% 1.05 (0.94–1.18)* 0.017/36.4% 1.05 (0.93–1.19)* 0.003/43.3%

Caucasian 19 (7,308/9,140) 0.98 (0.92–1.04) 0.560/0.0% 1.00 (0.87–1.16)* 0.054/38.4% 0.99 (0.89–1.10) 0.120/29.7%

Asian 19 (6,324/6,883) 1.06 (0.94–1.20)* ,0.001/60.5% 1.17 (0.96–1.41)* 0.038/40.7% 1.16 (0.93–1.46)* 0.002/56.3%

African 3 (524/644) 1.04 (0.81–1.35) 0.682/0.0% 0.79 (0.39–1.62) 0.603/0.0% 0.80 (0.39–1.64) 0.645/0.0%

PB 18 (5,943/7,925) 0.94 (0.87–1.01) 0.116/29.5% 1.01 (0.90–1.14) 0.145/27.1% 0.97 (0.86–1.10) 0.119/29.8%

HB 23 (8,213/8,742) 1.07 (0.98–1.16)* 0.062/33.4% 1.15 (0.98–1.34)* 0.015/44.7% 1.17 (0.98–1.40)* 0.004/50.9%

AC 11 (1,821/5,536) 1.13 (0.92–1.39)* 0.002/64.4% 1.31 (0.92–1.87)* 0.001/66.7% 1.34 (0.89–2.03)* ,0.001/73.3%

SC 6 (1,688/4,014) 0.97 (0.75–1.26)* 0.006/69.4% 1.06 (0.89–1.27) 0.225/29.5% 1.10 (0.77–1.57)* 0.058/56.1%

SCLC 3 (112/879) 0.75 (0.37–1.55)* 0.088/58.8% 0.67 (0.32–1.43) 0.642/0.0% 0.62 (0.28–1.37) 0.997/0.0%

Non-smokers 15 (1,300/2,874) 1.09 (0.83–1.43)* 0.001/62.4% 1.57 (1.02–2.42)* 0.026/49.4% 1.63 (0.99–2.68)* 0.007/57.6%

Smokers 16 (5,081/4,525) 1.02 (0.94–1.11) 0.536/0.0% 1.02 (0.89–1.18) 0.886/0.0% 1.04 (0.89–1.21) 0.743/0.0%

Male 3 (441/414) 1.08 (0.83–1.42) 0.559/0.0% 1.02 (0.39–4.31)* 0.087/65.8% 1.02 (0.60–1.72) 0.159/49.7%

Female 5 (773/826) 0.96 (0.58–1.60)* 0.001/78.1% 1.94 (0.73–5.14)* 0.014/71.8% 1.86 (0.55–6.27)* 0.001/80.6%

XRCC1 Arg194Trp

Overall 23 (7,426/9,603) 0.96 (0.86–1.07)* 0.042/36.5% 1.23 (1.05–1.44) 0.216/18.8% 1.22 (1.04–1.44) 0.107/28.9%

Caucasian 10 (3,926/5,639) 0.88 (0.78–1.01) 0.472/0.0% 1.32 (0.78–2.23) 0.104/41.2% 1.29 (0.76–2.18) 0.102/41.5%

Asian 11 (3,091/3,441) 1.02 (0.88–1.19)* 0.065/42.6% 1.22 (1.03–1.45) 0.277/17.5% 1.22 (1.02–1.45) 0.111/36.0%

PB 11 (2,610/4,446) 0.98 (0.87–1.11) 0.356/9.2% 1.17 (0.93–1.49) 0.359/9.1% 1.16 (0.91–1.48) 0.264/19.5%

HB 12 (4,816/5,157) 0.94 (0.80–1.11)* 0.015/53.1% 1.28 (1.03–1.59) 0.141/32.2% 1.29 (0.90–1.86)* 0.077/40.8%

AC 5 (880/3,276) 0.97 (0.80–1.18) 0.634/0.0% 1.43 (0.86–2.40) 0.587/0.0% 1.41 (0.82–2.41) 0.682/0.0%

SC 3 (1,147/2,876) 0.86 (0.70–1.05) 0.850/0.0% 1.38 (0.68–2.80) 0.558/0.0% 1.35 (0.63–2.88) 0.554/0.0%

Non-smokers 7 (618/1,666) 1.07 (0.86–1.34) 0.242/24.6% 1.40 (0.38–5.17)* 0.030/62.8% 1.12 (0.26–4.79)* 0.031/66.1%

Smokers 6 (2,886/2,476) 0.83 (0.71–0.98) 0.141/39.7% 0.93 (0.44–1.99) 0.804/0.0% 0.74 (0.30–1.85) 0.681/0.0%

XRCC1 Arg280His

Overall 16 (6,211/6,763) 1.04 (0.83–1.29)* ,0.001/74.7% 1.30 (0.71–2.37)* 0.065/39.3% 1.46 (0.99–2.15) 0.146/29.0%

Caucasian 9 (4,030/4,464) 1.06 (0.92–1.22) 0.133/35.6% 0.96 (0.50–1.87) 0.161/34.9% 1.37 (0.68–2.78) 0.721/0.0%

Asian 7 (2,181/2,299) 0.97 (0.64–1.48)* ,0.001/86.3% 1.48 (0.68–3.21)* 0.072/48.2% 1.45 (0.60–3.48)* 0.023/58.9%

PB 7 (2,247/2,683) 1.06 (0.90–1.23) 0.334/12.5% 1.32 (0.41–4.20)* 0.048/52.9% 1.43 (0.77–2.63) 0.274/20.4%

HB 9 (3,964/4,080) 0.93 (0.64–1.35)* ,0.001/84.1% 1.54 (0.94–2.51) 0.244/24.2% 1.32 (0.60–2.93)* 0.097/44.1%

AC 3 (795/2,864) 0.70 (0.34–1.42)* 0.001/85.5% 0.36 (0.07–2.01) – 0.25 (0.04–1.39) –

Non-smokers 6 (715/1,340) 0.63 (0.35–1.13)* 0.001/74.7% 0.78 (0.29–2.12) 0.606/0.0% 0.64 (0.23–1.75) 0.380/0.0%

Smokers 6 (2,977/2,457) 1.04 (0.78–1.38) 0.942/0.0% 3.93 (0.44–35.3) 0.820/0.0% 4.16 (0.46–37.6) 0.851/0.0%

XRCC1 277T.C (rs3213245)

Overall 5 (2,487/2,576) 1.45 (1.27–1.66) 0.638/0.0% 1.73 (1.14–2.62) 0.469/0.0% 1.91 (1.24–2.94) 0.494/0.0%

XRCC3 T241M (rs861539)

Overall 19 (8,560/11,557) 0.93 (0.83–1.04)* 0.011/48.8% 1.09 (0.88–1.35)* 0.003/56.8% 1.06 (0.83–1.37)* ,0.001//65.5%

Caucasian 12 (6,089/8,992) 0.92 (0.80–1.06)* 0.003/60.6% 1.07 (0.84–1.36)* 0.001/67.6% 1.04 (0.79–1.37)* ,0.001/72.5%

Asian 5 (2,201/2,141) 0.96 (0.78–1.18) 0.447/0.0% 1.20 (0.60–2.39) 0.504/0.0% 1.18 (0.54–2.55) 0.302/16.5%

PB 8 (1,528/2,950) 0.91 (0.79–1.04) 0.623/0.0% 0.95 (0.75–1.20) 0.820/0.0% 0.93 (0.73–1.19) 0.775/0.0%

HB 11 (7,032/8,607) 0.96 (0.80–1.14)* 0.002/66.1% 1.25 (0.88–1.77)* ,0.001/72.3% 1.22 (0.81–1.85)* ,0.001/78.6%

Smokers 5 (698/756) 0.83 (0.67–1.03) 0.137/42.8% 1.32 (0.81–2.14) 0.749/0.0% 1.22 (0.74–2.01) 0.822/0.0%

AC Adenocarcinoma, SC Squamous cell carcinoma, SCLC Small cell lung cancer,
*Random-effect model was used when P value of heterogeneity test (Ph),0.10; otherwise, fixed-effect model was used.
doi:10.1371/journal.pone.0068457.t002
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Importantly, we carefully performed sensitivity analysis according

to sample size and leave-one-out analysis, conducted different

conclusions with the previous meta-analysis. For XRCC1 277

T.C polymorphism, the T to C mutation greatly enhances the

affinity of nuclear protein Sp1 to the XRCC1 promoter region,

which may inhibit its transcription [50]. Up to now, only five case–

control studies were conducted the association between 277 T.C

polymorphism and lung cancer risk [47,50,53,59,61]. The pooled

OR of these five studies, comparing the combined variant

genotype CT+CC to wild genotype TT, was 1.45 (95% CI

1.27–1.66). Among these five studies, four studies carried out in

Asians with large sample size all showed that 277 T.C

polymorphism was significantly associated with increased risk of

developing lung cancer and the summary OR was 1.48 (95% CI

1.28–1.70), which suggested that the 277 T.C polymorphism

may be contributed to the developing of lung cancer in Asians.

Due to the relative small sample size from the selected studies, a

case–control study with larger sample size or multiple center study

will be needed to get conclusive results. In addition, the sample

size was also too small for the XRCC3 Thr241Met polymorphism

and lung cancer risk in Asians and Africans. Hence, a case–control

study with larger sample size or multiple center study will be

needed to get conclusive results in Asians and Africans.

DNA repair is well known as a ‘‘double-edged sword’’ in cancer

studies. Epidemiological evidence supports that DNA repair

capacity is one of the determinants of genetic susceptibility to

cancer [87–89]. Liu et al. [98] found that XRCC1 277T.C

polymorphism may be a genetic determinant for developing breast

cancer. However, other cancer such as gastric cancer, colorectal

cancer and so on with XRCC1 277T.C polymorphism

remained unclear. Hence, some new studies are needed to get

conclusive results among other cancer. On the other hand, tumors

with enhanced DNA repair capacity would exhibit an intrinsic

resistance to the anti-tumour activity during chemotherapy and

radiotherapy [90]. Fluorouracil (5-FU)/oxaliplatin-based che-

motherapy induced DNA damages and causes cell death [91].

These damages are mainly repaired by the BER pathway. A 5-

fold greater incidence of failure by 5-FU/oxaliplatin therapy

had been reported for metastatic colorectal cancer patients with

XRCC1 R399Q (QQ or QR) substitution compared with that of

the RR genotype, suggesting that the polymorphism was

associated with resistance to oxaliplatin/5-FU therapy [92]. In

addition, it had been found that XRCC1 codon 194 variant was

having a significant protective effect on development of late

radiotherapy reactions in normal tissue [93]. It had also found

that interactions among XRCC1 codon 194 variant was

associated with sensitivity to platinum-based chemotherapy

[100]. Furthermore, Sak et al. [94] indicated that high levels

of XRCC1 protein expression were associated with improved

cancer-specific survival in patients following radical radiother-

apy. However, Liu et al. [99] indicated that XRCC1 T-77C

could not be genetic determinant for prognosis of advanced

Figure 2. Forest plot of XRCC1 277T.C polymorphism and lung cancer risk (dominant model).
doi:10.1371/journal.pone.0068457.g002

Figure 3. Forest plot of XRCC1 277T.C polymorphism and lung cancer risk (recessive model).
doi:10.1371/journal.pone.0068457.g003
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non-small-cell lung cancer (NSCLC) patients treated with

platinum-based chemotherapy. Therefore, XRCC1 Arg399Gln

and Arg194Trp might play important roles in the drug

sensitivity during chemotherapy and radio sensitivity during

radiotherapy and XRCC1 277 T.C may be not play

important roles in the drug sensitivity during chemotherapy.

Heterogeneity is a potential problem when interpreting the

results of all meta-analyses. As looked through our study carefully,

we found that the study of Improta et al. [58] was noted to be a

major source of heterogeneity for XRCC3 T241M and Li et al.

[59] was also noted to be a major source of heterogeneity for

XRCC1 Arg280His. The reason may be that the study of Improta

et al. [58] and Li et al. [59] were hospital-based studies.

Importantly, when Improta et al. [58] was excluded, significantly

decreased lung cancer risk was observed in overall analysis,

Caucasians, and hospital-based controls.

Some limitations of this meta-analysis should be addressed.

First, misclassifications on disease status and genotypes may

influence the results, because cases in some studies were not

confirmed by pathology or other gold standard method, and the

quality control of genotyping was also not well-documented in

some studies. Second, in the subgroup analysis may have had

insufficient statistical power to check an association, Third, our

results were based on unadjusted estimates, while a more precise

Figure 4. Forest plot of XRCC1 277T.C polymorphism and lung cancer risk (additive model).
doi:10.1371/journal.pone.0068457.g004

Figure 5. Forest plot of XRCC3 T241M polymorphism and lung cancer risk when one study was excluded (dominant model).
doi:10.1371/journal.pone.0068457.g005
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analysis should be conducted if individual data were available,

which would allow for the adjustment by other co-variants,

including environmental factors and other lifestyle. In spite of

these, our meta-analysis also had some advantages. First, it

provides pooled data on a substantial number of cases and controls

and increased statistical power of the analysis. Second, although

possible publication bias was suggested between XRCC3 T241M

polymorphism and lung cancer risk, adjusting for possible

publication bias using the Duval and Tweedie nonparametric

‘‘trim and fill’’ method showed that the results did not change,

indicating that the whole pooled results should be unbiased. Third,

our meta-analysis explores and analyzes the sources of heteroge-

neity between studies about XRCC3 T241M and Arg280His in

lung cancer risk.

In conclusion, this meta-analysis indicates that XRCC1

277T.C shows an increased lung cancer risk and XRCC3

T241M polymorphism is associated with decreased lung cancer

risk in Caucasians. However, a study with a larger sample size is

needed to further evaluate gene-environment interaction on

XRCC1 Arg399Gln, Arg194Trp, Arg280His, 277T.C, and

XRCC3 T241M polymorphisms and lung cancer risk.
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