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Abstract

Applying state-of-the-art machine learning techniques to medical images requires a thorough selection and normalization of input
data. One of such steps in digital mammography screening for breast cancer is the labeling and removal of special diagnostic
views, in which diagnostic tools or magnification are applied to assist in assessment of suspicious initial findings. As a common
task in medical informatics is prediction of disease and its stage, these special diagnostic views, which are only enriched among
the cohort of diseased cases, will bias machine learning disease predictions. In order to automate this process, here, we develop a
machine learning pipeline that utilizes both DICOM headers and images to predict such views in an automatic manner, allowing
for their removal and the generation of unbiased datasets. We achieve AUC of 99.72% in predicting special mammogram views
when combining both types of models. Finally, we apply these models to clean up a dataset of about 772,000 images with
expected sensitivity of 99.0%. The pipeline presented in this paper can be applied to other datasets to obtain high-quality image

sets suitable to train algorithms for disease detection.
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Introduction

Considerable attention in biomedical image research has been
devoted towards applying deep learning to digital mammog-
raphy [1]. However, most research focuses on readily avail-
able, manually curated datasets of limited size (on the order of
magnitude of hundreds to thousands of images) [2, 3]. In
contrast to for example cardiological imaging, where progress
has been made in applying deep learning for curation of im-
aging datasets [4], the task of automating construction of ro-
bust mammography datasets from existing medical records
remains largely unaddressed in the literature. Developing
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new datasets would expand the number of relevant clinical
questions that could be answered, enable testing of existing
models on different patient populations, and increase their
accuracy. Given about 40 million mammograms are per-
formed annually in the USA [5], accurate and automatic nor-
malization of these data remains a large-scale problem for
deep learning precision mammography interpretation.

We began by extracting 772,367 mammographic images
that were obtained at our institution between 2000 and 2016,
with the goal of assembling this raw clinical data into a large
and unbiased research dataset suitable for training machine
learning models for mammography. Our mammography ma-
chine learning efforts focus on full-field digital mammograms;
thus, we needed a methodology to separate out special diag-
nostic views, such as stereotactic, spot, magnified, and wire
localizations. This is important because special diagnostic
views contain a disproportionate number of cancers compared
to full-field views which severely biases any deep learning
algorithm towards identifying artifacts of specialized views
rather than features of any malignancy itself. Therefore, these
specialized views must be eliminated from the dataset before
model development. Although many mammograms contain
explicit DICOM headers identifying the type of view, we
learned that these were not reliable as a sole indicator.
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Therefore, we developed a novel method combining imaging
and DICOM header data to reliably classify the views of
mammographic images in our dataset. We believe that this is
an essential contribution to the field of deep learning precision
mammography interpretation, opening the door to automatic
cleaning of large scale datasets.

Materials and Methods
Dataset

In order to build a clean and non-biased dataset, we use two
approaches to identify special diagnostic views: (1) by using
DICOM headers and (2) by using images directly. From our
database of 772,367 images, we first manually labeled 4000
randomly selected images. Resulting subset contained 3406
full-field mammograms and 594 special views (24 stereotac-
tic, 6 wire localization, 9 specimen views, and the remainder
being spot or magnification views). We split the dataset into
training, validation, and holdout sets in a ratio of 4:1:1,
respectively.

Header-Based Prediction

For DICOM-based prediction, the headers were extracted
using a script based on the “dicom” Python package. Fields
with more than 10% missing values and fields indicating
date/time, device identifiers or demographic information were
omitted. The values were normalized by filling in missing
values of numeric fields (such as KVP, BodyPartThickness,
DetectorActiveDimension) with their median values and stor-
ing a flag variable for missing entries. The categorical variables
(such as Grid, ViewCodeValue, Manufacturer) were one-hot
encoded (i.e., each categorical variable was transformed into a
sub-table with columns corresponding to its possible values).
We leveraged three implementations of gradient boosting ma-
chines (“gbm” and “xgbTree” from “caret” package [6] and
“gbmt” from “gbm3” package), RPART (from “caret”), and
Elastic Net logistic regression model (from “glmnet” R pack-
age [7]). The header-based model selection was based on grid
search of L1/L2 penalty ratio and built-in search for overall
penalty strength (A). The hyperparameters were tuned in five-
fold cross-validation within the train set.

Image-Based Prediction

Additionally, we leveraged a convolutional neural network
model based on Inception v3 [8] to predict views from images.
In order to accelerate training, we used an abridged version
with only the first four inception modules and a global average
pooling, dropout, and one densely connected layer.
Mammograms were downscaled to 99 x 99 pixels (general

image model) or 299 x 299 (wire localization detection) with-
out preserving aspect ratio. Weights were initialized either
randomly (using default Keras settings) or with ImageNet
pre-trained weights [8]. For general prediction, we trained all
layers, and for prediction of wire localization view, we trained
only the last fully connected layer. In order to increase model
performance, we applied test-time data augmentation by scor-
ing original and images flipped in horizontal plane. The sa-
liency maps were generated using the LIME module [9].

Model Selection and Performance Reporting

Hyperparameter tuning for header-based models was per-
formed using fivefold cross-validation within the training
set. We report performance of the models on the validation
set for further model selection. The performance of our final
ensembled model was assessed on the holdout set. We report
auROC (area under the receiver operator curve), auPRC (area
under the precision-recall curve, also known as average pre-
cision score), precision, recall, F1, and accuracy by setting the
threshold of 0.5 on prediction score. Significance tests and
confidence intervals for auROC were obtained using
DeLong’s method as implemented in pPROC CRAN package
[10]. For comparison of classifier results based on contingen-
cy tables, we used exact McNemar’s test as implemented in
exact2x2 CRAN package [11].

Source Code

The source code is available at https://github.com/DSLituiev/
mammoviews

Results
Header-Based Model

We began by training DICOM header-based models.
Although all models taken for comparison performed similar
within the validation set in terms of accuracy, precision, and
recall, the GBMT implementation of gradient boosting ma-
chine algorithm performed the best in terms of auROC
(96.59%), see Fig. la; no significant difference to other
header-based models based on the same set of fields). Out of
18 fields picked by the model (see Fig. 2), the
“ViewModifierCode” was the most important header field
for this model. Thus, we compared the prediction on this field
alone to more complex models (Fig. 1) and saw that this field
alone performs significantly worse in terms of auROC
(92.23%) than all other models except RPART and GBM
(Bonferroni-adjusted p-value < 0.05), and predictions differ
from other header-based models according to McNemar’s
chi-squared test (p-value = 3.2e-4).
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Fig. 1 Performance of models
and model ensembles.
Comparison of machine learing
models and their ensembles
(rows) is shown according to
various metrics (columns). The
“wire” row demonstrates
performance of the WL model to
detect all special views, while
“wire (vs other views)” row
shows performance of the model
to specifically detect WL views.
In the last two rows, the
performance of the final
ensembled model is shown on the
validation set and on the holdout
set, respectively
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Image-Based Model

The image model initialized with random weights achieves
cross-entropy loss on the validation set of 0.0986 after 25
training epochs and the model initialized with ImageNet pre-
trained weights 0.0630 after 55 training epochs. Thus, we
further analyzed the model that was initialized with
ImageNet weights. In order to increase model performance,
we applied test-time data augmentation as described in
“Materials and Methods.” Augmented scores were combined
by taking their average or maximum, which led to similar
auROC results, with averaging performing slightly better.
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Fig. 2 Relative feature influence in GBMT model trained on DICOM
headers
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The resulting model achieved an auROC of 99.52%, which
is comparable to the highest-scoring header-based model. The
saliency maps of three typical model predictions are shown in
Fig. 3.

Image Model for Wire Localization Detection

Analysis of the error patterns for header and image-based
models revealed that all of misclassified cases were wire lo-
calization (WL) views. This is due to the fact that wire local-
izations are, technically speaking, a subset of full-field mam-
mograms, and thus, a no distinct view type is recorded in the
DICOM headers. Similarly, the CNN model performs poorly
on WL images, possibly due to the facts that (1) the wire is a
relatively subtle feature and, thus, is harder to detect, and (2)
that wire localization DICOMs are underrepresented in the
dataset (only 4 WL views out of 4000 total). Therefore, we
created a separate image-based classifier for WL views. To
this end, we mined 53 images with WL in addition to four
images present in the original set (up to 57 total WL images)
by matching the keyword “wire” in radiology reports and
inspecting obtained matches; these were split proportionally
between training, validation, and holdout sets. Next, we
trained a separate full inception network with higher resolu-
tion input (299 x 299 pixels) to discriminate WL views from
regular views. In our final model, only the last fully connected
layer was trained, as training all layers resulted in a slight
performance degradation. We performed test-time data aug-
mentation by flipping the images in horizontal direction. We
compared two ways of combining the augmented scores: by
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Fig. 3 Saliency maps. Two
correctly classified spot views and
one correctly classified normal
view are presented. The region of
highest contribution to the
“special view” class are
highlighted in green and the areas
of highest contribution to the
“normal view” are highlighted in
red
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taking mean and maximum of the two scores. We observed
that taking maximum of two scores (as compared to taking
their mean) improved recall (100.00% vs 92.98%) and the
average precision score (100.00% vs 91.05%) in WL detec-
tion within the validation set, with the same precision of
100.00% and auROC of 100.00%.

Combining Models

As a final step, we ensembled the models described above: the
header-based model, the general image-based model, and the
WL detection model. First, for the purpose of comparison, we
combined the general and WL image-based model predictions
by taking the maximum of either WL score (obtained by tak-
ing maximum score among original and flipped images), or
average general image model score (further referred to as

E‘H
SR
N

“combined image model” or “max(img, wire)” in Fig. 1),
which resulted in auROC of 99.98%, thus improving over
its predecessors. Next, we combined the image-based model
and the GBMT header-based model by taking the mean of the
models’ probability scores, denoting the combined prediction
as “image + GBMT” (auROC =99.29%, see Fig. 1 and Fig.
S1 and S2 in Online Resource, p value =0.023 and 0.081 in
DeLong’s significance test comparison to image-based and
GBMT auROC, respectively). Next, we combined this
ensembled model with the WL model by taking a maximum
score between the “image + GBMT” model and WL model,
denoting it as “max(wire, image + GBMT).” The final
ensembled model achieved an auROC of 100.00% in the val-
idation set (confusion matrix differs significantly from predic-
tions of GBMT model, but not from the combined image-
based model according to McNemar’s test with p value =
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5.546e-3 and 0.2482, respectively; DeLong’s significance test
is undefined for auROC of 100%). Next, the resulting model
demonstrated excellent generalization with an auROC of
99.72% on the holdout set, with only 5 out of 715
misclassified cases. Out of five misclassified cases, three were
false negatives and two were false positives (see Fig. S3 in
Online Resource). Three misclassified special views included
one stereotactic view, one WL view, and one specimen view.
Out of two misclassified regular views, one had scar markers,
thus strongly resembling wire localization view, and the other
was a rare auxiliary tail view. Finally, we applied our
ensembled model to the unlabeled portion of the dataset
(768,178 images). In order to achieve high sensitivity, we used
a low threshold of the prediction score of 0.17, which allows
to achieve sensitivity of 99.0% on the holdout set and resulted
in 10% of images being removed (78,327, including 6114
wire localization views) from the entire image set, leaving
689,851 images of regular mammographic views.

Discussion

The commoditization of convolutional neural networks and
other deep learning architectures and their repeated ability to
outperform humans on visual recognition tasks since 2015
[12] makes the availability of training data the most restrictive
bottleneck in realizing more precise medical Al
Paradoxically, modern healthcare generates massive volumes
of data that can be used to train more precise Al, but it exists
largely in unorganized form making it difficult to curate for
unbiased large-scale training sets. Here, we demonstrate how
we can leverage a range of machine learning techniques and a
relatively small labeled set of 4000 images to automatically
classify and, thus, pre-filter mammography views in order to
facilitate development of a curated imaging dataset from the
772,367 mammography images.

Our analysis of the header-based models showed that most
of the fields selected by the model appeared reasonable, as
they either explicitly indicate a specific diagnostic protocol
such as in “View Modifier Code Sequence,” or physical de-
vice parameters such as “Estimated Radiographic
Magnification Factor,” “Grid,” “Exposure Time,” and
“Relative X-Ray Exposure” which are altered for specialized
views. However, we note that some of the weights picked by
the header-based model might be specific to this dataset. For
example, the predictive value of “Manufacturer” field might
be contingent on the processes of the institutions from which
our data originates. Mammograms obtained at our institution
were taken from only three different manufacturers. However,
our dataset also contains referrals from outside institutions
which tend to be positive. This leads to a significantly dispro-
portionate representation of outside manufacturers for positive
cases. This important caveat suggests that models trained to
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predict based upon a single institution’s data might perform
poorly at another institution whose referral patterns or manu-
facturer selection differs.

Comparison of the best DICOM header-based model,
GBMT to the combined image-based model, showed that
the GBMT model performs significantly worse than com-
bined image-based model. Also, the final model incorporating
both image- and header-based predictions performs signifi-
cantly better than the GBMT alone, but only marginally better
than combined image-based model. This suggests that the
contribution of the header-based model towards performance
of'the final combined classifier is minor. This is seemingly due
to the fact that images carry more reliable and robust informa-
tion, on which ground truth labels are based.

Although overall performance metrics of our final model
were high, several cases were misclassified in the holdout set
for some rare views (stereotactic, WL, specimen, and auxiliary
tail views). Additionally, we observed a case with scar
markers being classified as a special view (due to a high score
returned by the WL model), seemingly due to resemblance of
the markers to the localization wires. Thus, additional labeled
training data might be needed to achieve higher accuracy with
these underrepresented image classes. Alternatively, in practi-
cal applications, more conservative thresholds can be used to
maximize recall by sacrificing precision.

Using the combined model based on both DICOM headers
and images allows us to immediately extract and leverage all
772,367 digital mammograms that have been routinely gener-
ated at our institution over many years to develop more accurate
models of cancer detection that may ultimately help to improve
the interpretive performance of breast radiologists. While the
generalizability of this approach to other institutions’ data re-
mains unclear, our methods and pipeline can be duplicated
elsewhere to allow other large institutions to train their own
algorithms towards the direct benefit of patients and ultimate
realization of precision mammography for millions of women.

Funding Information Research reported in this publication was support-
ed by the National Institute of Heath through the National Cancer Institute
under Award Number UH2CA203792 and the National Library of
Medicine under Award Number 1U01LMO012675.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Berkman Sahiner: Digital Mammography DREAM Challenge
Overview (Conference Presentation), Proc. SPIE 10134, Medical
Imaging 2017: computer-Aided Diagnosis, 1013441 (25 April
2017); doi: https://doi.org/10.1117/12.2280375


https://doi.org/10.1117/12.2280375

J Digit Imaging (2019) 32:228-233

233

Sawyer Lee R, Gimenez F, Hoogi A, Rubin D. Curated Breast
Imaging Subset of DDSM. The Cancer Imaging Archive. DOI:
https://doi.org/10.7937/K9/TCIA.2016.7002S9CY 2016

Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ,
Cardoso JS: INbreast: toward a full-field digital mammographic
database. Acad Radiol 19:236-248, 2012

Madani A, Arnaout R, Mofrad M, Arnaout R: Fast and accurate
classification of echocardiograms using deep learning. ArXiv e-
prints. 2017; (arXiv:1706)

Mammography Quality Standards Act and Program. 2017
Scorecard statistics. (Accesed on June 5, 2018) https://www.fda.
gov/Radiation-EmittingProducts/
MammographyQualityStandardsActandProgram/
FacilityScorecard/ucm539394.htm

Kuhn M: Building Predictive Models in R Using the caret Package.
J Stat Softw 28:5, 2008. https://doi.org/10.18637/jss.v028.105
Friedman J, Hastie T, Tibshirani R: Lasso and elastic-net regular-
ized generalized linear models. R package version, 2011

10.

11.

12.

Szegedy C, Liu W, Jia Y, et al.: Going Deeper With Convolutions.
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-9, 2015

Ribeiro MT, Singh S, Guestrin C.: Why Should I Trust You?:
Explaining the Predictions of Any Classifier. arXiv:1602.04938,
2016

Robin X, Turck N, Hainard A et al.: pROC: an open-source pack-
age for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics 7:77, 2011. https://doi.org/10.1186/1471-2105-12-
77

Dietterich TG: Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation 10:
1895-1923, 1998

Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S.,
Huang Z., Karpathy A., Khosla A., Bemnstein M., Berg A. C., Fei-
Fei L: ImageNet Large Scale Visual Recognition Challenge. arXiv:
1409.0575, 2015

@ Springer


https://doi.org/10.7937/K9/TCIA.2016.7O02S9CY
https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityScorecard/ucm539394.htm
https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityScorecard/ucm539394.htm
https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityScorecard/ucm539394.htm
https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityScorecard/ucm539394.htm
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77

	Automatic Labeling of Special Diagnostic Mammography Views from Images and DICOM Headers
	Abstract
	Introduction
	Materials and Methods
	Dataset
	Header-Based Prediction
	Image-Based Prediction
	Model Selection and Performance Reporting
	Source Code

	Results
	Header-Based Model
	Image-Based Model
	Image Model for Wire Localization Detection
	Combining Models

	Discussion
	References


