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In this review, by evaluating the responses during freezing, rapid eye movement (REM)
sleep, and treadmill exercise, we discuss howmultiple baroreflex loops arranged in parallel
act on different organs to modulate sympathetic nerve activity (SNA) in a region-specific
and coordinated manner throughout the body. During freezing behaviors, arterial pressure
(AP) remains unchanged, heart rate (HR) persistently decreases, renal SNA (RSNA)
increases, and lumbar SNA (LSNA) remains unchanged. The baroreflex curve for
RSNA shifts upward; that for LSNA remains unchanged; and that for HR shifts to the
left. These region-specific changes in baroreflex curves are responsible for the region-
specific changes in RSNA, LSNA, and HR during freezing. The decreased HR could allow
the heart to conserve energy, which is offset by the increased RSNA caused by decreased
vascular conductance, resulting in an unchanged AP. In contrast, the unchanged LSNA
leaves the muscles in readiness for fight or flight. During REM sleep, AP increases, RSNA
and HR decrease, while LSNA is elevated. The baroreflex curve for RSNA during REM
sleep is vertically compressed in comparison with that during non-REM sleep. Cerebral
blood flow is elevated while cardiac output is decreased during REM sleep. To address this
situation, the brain activates the LSNA selectively, causing muscle vasoconstriction, which
overcomes vasodilation of the kidneys as a result of the decreased RSNA and cardiac
output. Accordingly, AP can be maintained during REM sleep. During treadmill exercise,
AP, HR, and RSNA increase simultaneously. The baroreflex curve for RSNA shifts right-
upward with the increased feedback gain, allowing maintenance of a stable AP with
significant fluctuations in the vascular conductance of working muscles. Thus, the central
nervous system may employ behavior-specific scenarios for modulating baroreflex loops
for differential control of SNA, changing the SNA in a region-specific and coordinated
manner, and then optimizing circulatory regulation corresponding to different behaviors.
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INTRODUCTION

The body is a system of many organs, and each of these organs
performs its independent function while coordinating with other
organs to achieve an integrated function as a whole body. The
parallel arrangement of each organ to the aorta has significant
implications: this allows organs to regulate their blood flow
independently without being affected by other organs. However,
while each organ performs its metabolic activities with its specific
organ blood flow, the organs cooperate to maintain an optimal
perfusion pressure for organs, namely the arterial pressure (AP),
under any change in the physiological states. Sympathetic nerve
activity (SNA) plays a primary role in regulating organ blood flow.
This review aims to discuss how SNA differently and cooperatively
alters the blood flow to each organ and creates the optimal AP for the
entire body. In this regard, recent studies have revealed the following
three aspects of SNA regulation.

Multiple Arterial Baroreflex Loops Arranged
in Parallel
Multiple arterial baroreflex loops are likely arranged in parallel for each
organ. Sagawa proposed the theoretical framework for the parallel
arrangement of arterial baroreflex loops and their involvement in AP
regulation (Sagawa, 2011). However, there has been a lack of direct
evidence supporting this hypothesis. Meanwhile, fragmentary evidence
has been reported in anesthetized animals that the neuronal nuclei
comprising the baroreceptor reflex pathway respond in a regionally
different manner to drug administration. This suggests that the
baroreflex pathway has discrete routes for distinct organs and that
these pathways act on organs individually and in parallel. It is,
therefore, reasonable to assume that the arterial baroreflex system
has multiple individually discrete loops, which are arranged in parallel
in an organ-specific manner. To experimentally examine this
hypothesis, we have generated a full range of arterial baroreflex
curves in conscious rats under various conditions (Miki et al., 2003;
Nagura et al., 2004; Miki and Yoshimoto, 2018; Kondo et al., 2021).

Acute Shifts in Arterial Baroreflex Curves
The acute shifts in the input-output relationship of the baroreflex have
been consistently induced by changes in daily behaviors such as sleep,
exercise, mental stress (Miki and Yoshimoto, 2005), and pathological
conditions such as heart failure (Xing et al., 2014). Input-out data of
the arterial baroreflex has generally been fitted to a sigmoid curve to
assess the shifts in the baroreflex loop. Kent’s sigmoid curve has been
widely used for this purpose (Kent et al., 1972). This model is used to
quantify the feedback gain of the arterial baroreflex and changes in the
maximum capacity of feedback regulation, AP threshold, etc. (Potts
et al., 1993; Nagura et al., 2004); the changes in these variables have
served as the basis for the discussion of the involvement of the central
nervous system (CNS) above the medulla in the shift.

Regional Differences in Sympathetic Nerve
Activity
Regional differences in SNA have been observed in many
species, including rats, rabbits, sheep, and humans where

experiments were carried out either in anesthetized or
conscious states (Morrison, 2001; Park et al., 2008;
Yoshimoto et al., 2011; Xing et al., 2014; Kondo et al.,
2021). While there are many interesting issues to address
regarding methods for measuring SNA (Malpas, 2010;
Stocker and Muntzel, 2013; Hart et al., 2017), this review
will focus primarily on the regional differences in SNA
measured simultaneously at multiple sites in the same
preparation. To assess regional differences in SNA,
simultaneous measurement of the SNA in multiple regions
in the same preparation is essential. Considering the
difficulty in evaluating the absolute value of SNA,
comparisons of changes in SNA by region should be made
only when there is a clear difference between SNAs. However,
comparing the degree of change in SNAs measured in
different animals is challenging. Moreover, anesthesia has
a profound effect on SNA (Stock et al., 1978; DeLalio and
Stocker, 2021). Suppression of the higher CNS by anesthesia
may affect the response of regional differences in SNA.
Therefore, simultaneous measurement of SNA at multiple
sites in conscious animals may have some advantages in
studying the mechanism of regional differences in SNA.

In this review, we are discussing the functional diversity of
the RSNA and LSNA, but what we are measuring is the
extracellular potential of sympathetic fiber bundles, which
also have even more diverse functions. For instance, RSNA is
a recording of the extracellular potential of a mixture of the
sympathetic fibers; it mediate vasoconstriction, Na+

reabsorption, and renin release (DiBona and Kopp, 1997).
The diverse functions of RNSA and LSNA itself need to be
recognized, but this issue is out of the scope of the present
review.

Central Scenarios Modulating Baroreflex
Loops and Sympathetic Nerve Activity in a
Region-specific and Coordinated Manner
To summarize the above three points, the arterial baroreflex has
multiple pathways, and these are arranged in parallel to change
the SNA in a regionally different manner, creating region-
specific changes in the SNA of organs. We have been
evaluating the arterial baroreflex by simultaneously and
continuously measuring renal SNA (RSNA), lumbar SNA
(LSNA), HR, and AP in conscious rats (Miki et al., 2003;
Nagura et al., 2004; Kondo et al., 2021). We found that
RSNA, LSNA, and HR changed in the same way in some
cases, and in other cases, they changed in a region-specific
manner. These data indicate that the CNS can modify SNA in an
essentially region-specific manner and that these changes are
coordinated and strategic in regulating AP. The following three
examples, which pertain to freezing, rapid eye movement
(REM) sleep, and treadmill exercise, illustrate how the
arterial baroreflex loop can alter SNA in a region-specific,
coordinated, and strategic manner. These examples highlight
sophisticated control scenarios operated through arterial
baroreflex loops to optimally regulate AP under different
physiological situations.
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FREEZING: INNATE STRATEGIES FOR
INCREASING THE CHANCE OF SURVIVAL
AGAINST THREATS AND POTENTIAL
DANGER

The freezing behavior is one of the innate responses of animals
and can be classified as a preparatory reflex for threats and
potential danger (Dampney, 2015; Kozlowska et al., 2015).
When encountering unmanageable stresses, including
predators, animals will freeze to conserve energy and create a
state of readiness for fight or flight, thereby increasing the
probability of survival. In humans, when exposed to
unmanageable stresses such as natural disasters, individuals
become apathetic and exhibit behaviors like freezing
(Hagenaars et al., 2014). During freezing behavior, SNA plays
a dominant role in modulating cardiovascular functions
strategically to make the entire body ready for fight or flight.

When rats are exposed to loud noise, they exhibit freezing
behavior in which the AP remains the same while HR decreases
persistently, RSNA increases, and LSNA remains unchanged
(Yoshimoto et al., 2010). The baroreflex curves for RSNA,
LSNA, and HR are shifted in a region-specific manner during
freezing behavior, as shown in Figure 1 (Kondo et al., 2021). The
rats remained still during freezing because they showed no
change in muscle activity, which allows us to generate an
entire range of baroreflex curves by administrating vasoactive
drugs, because without any other disturbance, including
spontaneous moving (Kondo et al., 2021). In conscious rats,
artificial changes in AP sometimes produce spontaneous

movements, which may alter SNA and HR. Therefore, it is not
likely that muscle ergoreceptors would cause an increase in
RSNA, as seen during exercise (Fisher et al., 2015).
Consequently, it is highly possible that the region-specific
changes in RSNA, LSNA, HR, and AP observed during
freezing behavior are attributable to the survival strategy
scenario in the CNS. The different shifts in the baroreflex
curves for RSNA, LSNA, and HR are elicited by CNS,
including the defense area (Coote et al., 1979; Hilton, 1982;
Kozlowska et al., 2015) and the medullary baroreflex pathway
(Dampney, 2015).

Region-specific Shifts in Baroreflex Curves
First, the baroreflex curve for RSNA shifted upward with a
significant increase of 150% in the upper plateau and with no
changes in the lower plateau (Kondo et al., 2021), while RSNA
increased significantly during freezing. Thus, the CNS increases
the maximal drive of RSNA to the kidney by 1.5-fold during
freezing behavior, potentiating the baroreflex ability.

Second, the baroreflex curve for LSNA remained the same in
comparison with the control state (Kondo et al., 2021), while
LSNA did not change significantly during freezing. This
suggests that the SNA drive to the muscle is not altered
during freezing behavior over the entire range of AP
changes. LSNA shows a negative correlation with muscle
blood flow (Miki et al., 2004). Since freezing behavior is a
state of readiness for fight or flight, the CNS may encounter
a scenario where increased LSNA and suppressed muscle blood
flow are not desirable in the same way that the increased RSNA
suppressed renal blood flow.

FIGURE 1 | Shifts in the baroreflex curves for renal sympathetic nerve activity (RSNA) in panel (A), lumbar sympathetic nerve activity (LSNA) in panel (B), and heart
rate (HR) in panel (C) during the control and freezing periods. AP, arterial pressure. Symbols and bars indicate the mean and standard error of mean, respectively. The
image was obtained with permission from the study by Kondo et al. (2021).
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Third, the baroreflex curve for HR shifted leftward during
freezing behavior in a parallel manner, with significant reductions
in the midpoint and threshold pressure (Kondo et al., 2021). This
implies that the HR is set to lower levels across the entire range of
AP changes. The reduction in HR offsets the reductions in renal
vascular conductance due to the increase in RSNA, resulting in no
change in AP during the freeze behavior. Furthermore, the
decrease in HR allows myocardial energy to be conserved for
the transition from freezing to the fight-or-flight state, when the
heart’s performance is rapidly activated.

These region-specific changes in baroreflex curves seem to
represent a highly sophisticated strategy for survival. The heart
conserves energy by decreasing cardiac function, and the
resulting reduction in cardiac output is offset by a reduction
in vascular conductance due to increased SNA in the kidneys and
possibly the visceral system, leaving AP unchanged.
Simultaneously, the LSNA remains unchanged, and muscles
can be left in a state of readiness to be active at any time.

In summary, the CNS can modulate the baroreflex curves in a
region-specific manner, resulting in regionally variable changes in
SNA and causing changes in the function of each organ
independently, while they are coordinately operated for
survival during freezing behavior.

RAPID EYE MOVEMENT SLEEP: A
PARADOX OF OPPOSITE DIRECTIONAL
CHANGES IN SYMPATHETIC NERVE
ACTIVITY

Sleep is classified primarily into non-rapid eye movement (NREM)
sleep and REM sleep. During NREM sleep, the RSNA, LSNA, and
HR are all decreased, and the AP is low and stable. REM sleep is
also known as the autonomic storm period and paradoxical sleep.
During REM sleep, AP rises and becomes unstable. RSNA
decreases while LSNA increases during REM sleep, thus
undergoing opposite changes. SNA and AP regulation during
REM is unique and paradoxical compared to that in other
physiological states, as shown in Figure 3 (Nagura et al., 2004;
Yoshimoto et al., 2011). The possible reasons why SNA and AP
regulation during REM sleep are unique are discussed below.

Vertical Suppression of the Baroreflex
Curve for Renal Sympathetic Nerve Activity
During Rapid Eye Movement Sleep
We reported that AP increased by 5 mmHg, and RSNA decreased
by 45% during REM sleep (Nagura et al., 2004). While this might
imply that the reduction in RSNA was caused by simple
baroreflex, the reduction is more likely attributable to the
change in the baroreflex curve for RSNA, which is vertically
suppressed during REM sleep in comparison with NREM sleep.
Vertical compression is characterized by a significant decrease in
the maximum level (upper plateau) and maximum gain (Nagura
et al., 2004). This shift in the baroreflex curve causes a reduction
in RSNA even though the AP does not change. A similar shift in

the baroreflex curve for RSNA has been observed after treadmill
exercise when the RSNA decreases by 25% even with no change in
AP (Miki et al., 2003). Thus, the CNS actively reduces RSNA
during REM sleep, thereby increasing the vascular conductance of
the kidneys (Yoshimoto et al., 2004).

In contrast to the reduction in RSNA, LSNA increased
significantly in a stepwise manner during REM sleep, as shown
in Figure 2. Unfortunately, the changes in the baroreflex curve for
LSNA have not been reported yet. Since LSNA increased in a
sustained manner during REM sleep, we may speculate that the
baroreflex curve for LSNA somehow likely shifted rightward.
Muscle atonia occurs during REM sleep, thereby reducing the
vascular conductance of muscles throughout the body. Moreover,
the increased LSNA, which mainly innervates the muscles of the
lower extremities, decreases the vascular conductance of the
muscles of the lower extremities.

Physiological Contexts for the Reversed
Sympathetic Nerve Activity Changes
Occurring in Rapid Eye Movement Sleep
It is interesting to speculate why RSNA and LSNA change in
opposite directions during REM sleep and why the vascular
conductance of the organs they also innervate changes in
different directions. REM sleep is a unique state in which brain
activity increases to the level of awake states. The brain absorbs a
large amount of the cardiac output; total cerebral blood flow at rest
is 15–20% of total cardiac output in humans (Folino, 2006). To
meet the increased metabolic demand of the brain during REM
sleep, blood flow to the brain must increase. Besides the increase in
brain blood flow, blood flow to the kidneys and splanchnic organs
is also increased (Miki et al., 2004). Paradoxically, it is important to
note that cardiac performance was the lowest during REM sleep
(Miller and Horvath, 1976). The cardiac output changes with
muscle activity but does not change in parallel with that of the
brain. However, the brain can control SNA and the baroreflex
curves. The brain activates muscle SNA selectively, causing
vasoconstriction of the muscle, which is the largest organ in the
body. This, in turn, overcomes the vasodilatation of the kidneys,
splanchnic organs, and brain, as well as the reduction in cardiac
output, such that AP can be maintained during REM sleep.

EXERCISE: SIMULTANEOUS INCREASES
IN SYMPATHETIC NERVE ACTIVITY

Exercise involves muscle contraction, which causes muscle
metabolism and requires increased muscle blood flow (Rowell,
1986). Meeting the muscle blood flow requirements to increase
the metabolic rate is crucial for the performance of the exercise.
SNA plays an essential role in adjusting muscle blood flow during
exercise. The exercise-induced increase in SNA acts on the
capacitance vessels, myocardial contractility, and cardiac
pacemaker, increasing cardiac output to increase to nearly five
times the resting level. In addition, increased SNA causes
vasoconstriction of resistance vessels in inactive muscles and
visceral organs, compensating for the increase in vascular
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conductance caused by muscle contraction. As a result, AP
increases during exercise. Maintenance of high AP during
exercise is vital to ensure stable muscle blood flow when large-
volume muscles contract and vasodilation occurs. Furthermore, a
striking variation in central venous pressure has been observed
during dynamic exercise due to the mechanical effect of the
muscle pump (Rowell, 1986). Since this leads to fluctuations in
cardiac output, maintaining an adequately high AP is crucial to
keep muscle blood flow during exercise.

SNA is believed to increase throughout the body during
exercise. Figure 3 shows the relationship between RSNA and
LSNA with increasing exercise intensity in daily activity
(Yoshimoto et al., 2011). The RSNA and LSNA increase linearly
fromNREM sleep to the grooming state, except during REM sleep.
In humans, muscle SNA is slightly suppressed by light exercise but
increases linearly with exercise intensity (Saito et al., 1993). There is
substantial evidence for intensity and duration-dependent
increases in muscle SNA to both the active and inactive limbs
during isometric and dynamic exercise in humans (Fisher et al.,
2015). SNA is likely to increase in most organs in proportion to the
magnitude of the increase in muscle activity.

Exercise Shifts the Baroreflex Curve for
Renal Sympathetic Nerve Activity Upward
to the Right Compared to the Resting State
Figure 4 shows the shifts in the baroreflex curve for RSNA before,
during, after the treadmill exercise (about 70% VO2Max) in rats

(Miki et al., 2003). Full-range baroreflex curves were generated by
intravenously administering phenylephrine and nitroprusside.
This right-upward shift in the baroreflex curve for RSNA
allows AP and RSNA to increase simultaneously during
exercise and increases the feedback gain to enhance the ability
to suppress AP fluctuations. The shifts in the baroreflex curve for
RSNA can be characterized into three parts: 1) an increase in
central AP (rightward shift), 2) an increase in the minimum
response level (upward shift), and 3) an increase in the feedback
gain caused by the increase in response range of RSNA. For the
mechanism underlying the shift in the baroreflex curve, please
refer to the excellent review by Dampney (Dampney, 2017). Here,
the significance of these three points in the regulation of
circulation during exercise is addressed.

First, the rightward shift of the baroreflex curve for RSNA is
indicated by an increase in the central blood pressure of the curve.
The proximity of the prevailing AP during exercise to the central
pressure is of significance. Thus, the AP during exercise is near
the highest value of the feedback gain, providing the output of
SNA at a high gain. In addition, it can respond to SNA in the same
way even if it decreases or increases from the mean AP value.

Second, the upward shift of the baroreflex curve for RSNA is
attributed to a significant increase in the minimum response level
of SNA. At rest, when the AP rises, SNA is suppressed and reaches
almost the zero level, and the contractile effect of SNA on
peripheral blood vessels ceases. However, during exercise, even
if the AP rises to a high level, SNA maintains a certain level of
activity and can continuously maintain vasoconstriction of

FIGURE 2 | Changes in renal sympathetic nerve activity (RSNA) and lumbar sympathetic nerve activity (LSNA) during the transition from non-rapid eye movement
(NREM) sleep (pre-REM) to REM sleep and from the REM sleep to NREM (post-REM) sleep periods. Continuous drawn lines represent mean values and shaded areas
above and below show the standard error of mean. *p < 0.05 indicates a significant difference from the average level obtained during the pre-REM period. The image was
obtained with permission from the study by Yoshimoto et al. (2011).
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peripheral organs. This minimal level of SNA causes the
resistance vessels of inactive muscles and internal organs
throughout the body to constrict, thereby supporting increased
blood flow to the active muscles.

Third, the feedback gain is the first derivative of the baroreflex
curve and shows its maximum value at the central blood pressure
value of the sigmoid curve. The gain curve of RSNA shifts to the
right (hypertensive side) during treadmill exercise in rats, and the
peak value increases by 2-fold (Miki et al., 2003). Thus, the degree
of response of SNA is higher for the same AP variation, indicating
that changes in SNA increase the ability to suppress AP
fluctuations through feedback regulation, allowing for stable
AP control during exercise.

By contrast, exercise shifts the baroreflex curve for HR as well
(Ogoh et al., 2005; Raven et al., 2006), which is different from the
shift of the baroreflex curve for SNA as described above. This
difference may be due to regional differences in cardiac SNA,
involvement of cardiac vagal nerve activity, and maximum heart
rate. In particular, the changes in cardiac vagal activity during
exercise have not been measured and are not known at present
(Gourine and Ackland, 2019). Shifts in the baroreflex curve for
HR and variability of HR are sometimes used for estimating
changes in SNA (Monahan, 2007; Billman, 2013; Marmerstein
et al., 2021). However, the baroreflex curves for HR and SNA are

fundamentally different reflex loops, thus caution should be taken
when making such extrapolations.

In summary, SNA increases uniformly throughout the body
during exercise. The baroreflex curve for RSNA shifts right-
upward, and a similar shift is thought to occur in the other
SNA baroreflex curves. As a result, AP and SNA increase
simultaneously during exercise. Besides, exercise increases the
feedback gain, making it possible to maintain stable AP with a
significant fluctuation in the vascular conductance of working
muscles.

SUMMARY AND PERSPECTIVE

SNA shows regional differences in response to behavior and
external stress, and these differences are accompanied by region-
specific and behavior-specific shifts in the baroreflex curves for
SNA. This review attempted to elucidate the reasons underlying
the region-specific shifts in arterial baroreflex loops and their
implications, focusing on three examples: freezing, REM sleep,
and treadmill exercise. The shifts in the arterial baroreflex loop
are highly plausible from the viewpoint of integrating AP
regulation. Notably, the baroreflex loop acts independently and
in parallel on each organ. These parallel arterial baroreflex loops
account for regional differences in SNA. The CNS above the
medulla can modulate each parallel baroreflex curve separately,
producing context-specific changes in SNA: to prepare for battle
against an inexorable enemy and increase the chances of survival

FIGURE 3 | Relationship between renal sympathetic nerve activity
(RSNA) and lumbar sympathetic nerve activity (LSNA) across the behavioral
states. A significant (p < 0.05) linear relationship was observed between RSNA
and LSNA (y = 0.72x + 27.76) in the non-rapid eye movement (NREM)
sleep, quiet awake (Quiet), moving (Mov), and grooming (Groom) states. The
relationship between RSNA and LSNA during the REM sleep and freezing
period (Freez) was dissociated from the line obtained during other behavioral
states. Values are shown as the mean ± standard error of the mean. The gray
curved lines are the 95% confidence bands for the regression line. The image
was obtained with permission from the studies by Yoshimoto et al. (2010;
2011).

FIGURE 4 | Shifts in the baroreflex curves for renal sympathetic nerve
activity (RSNA) during the pre-exercise, treadmill exercise, and post-exercise
periods. The average oxygen consumption during treadmill exercise at a
speed of 20 m/min with a 0% gradient performed in this study was
51 ml/min/kg, which was approximately 70% of the maximum oxygen
consumption. The curves and bars indicate the mean and standard error of
the mean, respectively, estimated over each 2.5-mmHg bin of arterial
pressure (AP). The image was obtained with permission from the study by Miki
et al. (2003).
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during the freeze; to maintain cerebral blood flow during REM;
and to maintain stable muscle blood flow during exercise. The
CNS above the medulla is exposed to a number of scenarios that
would change the baroreflex curve in a region-specific manner,
and clarification of scenarios in contexts other than those
discussed here is awaited.

Figure 5 shows a conceptual diagram of a multiple parallel
arterial baroreflex loop. This view is consistent with previous
studies conducted under anesthesia, showing discrete conduits

within the central arterial baroreflex pathway, including the
nucleus tractus solitarius (Polson et al., 2007; Scislo et al.,
2008), caudal ventrolateral medulla (Miyawaki et al., 1997),
and rostral ventrolateral medulla (McAllen and May 1994;
Mueller et al., 2011; Farmer et al., 2019). Exactly how these
nuclei relate to each other to cause region-specific changes in
SNA, or whether they dynamically alter their networks, is of great
interest and remains to be studied.

The blood supply of the individual organs is regulated by a
balance between the local independent regulatory system,
including autoregulation, and the central scenario that
determines the optimal distribution of organ blood flow
adapting to various physiological states. Multilayered
redundancy of regulatory systems may work for keeping
optimal organ blood flow adapting to various physiological
states. The baroreflex is one of the control systems of central
nervous system origin and is one of the components constituting
a multilayered and redundant control system. In this review, we
discussed shifts in the baroreflex curve in normal conditions, but
the shifts may also occur in cardiovascular diseases and, in some
cases, may not function properly. Further studies are needed to
elucidate the details of the dysfunctional baroreflex curves for
SNA and how it interacts with other regulatory systems, including
the local autoregulation system in cardiovascular diseases.
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