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Abstract

When organisms perform a single task, selection leads to phenotypes that maxi-

mize performance at that task. When organisms need to perform multiple tasks,

a trade-off arises because no phenotype can optimize all tasks. Recent work

addressed this question, and assumed that the performance at each task decays

with distance in trait space from the best phenotype at that task. Under this

assumption, the best-fitness solutions (termed the Pareto front) lie on simple

low-dimensional shapes in trait space: line segments, triangles and other poly-

gons. The vertices of these polygons are specialists at a single task. Here, we

generalize this finding, by considering performance functions of general form,

not necessarily functions that decay monotonically with distance from their

peak. We find that, except for performance functions with highly eccentric con-

tours, simple shapes in phenotype space are still found, but with mildly curving

edges instead of straight ones. In a wide range of systems, complex data on

multiple quantitative traits, which might be expected to fill a high-dimensional

phenotype space, is predicted instead to collapse onto low-dimensional shapes;

phenotypes near the vertices of these shapes are predicted to be specialists, and

can thus suggest which tasks may be at play.

Introduction

Biological systems often need to perform more than one

task. A given design or shape – that is, a phenotype –
cannot usually be optimal at all tasks at the same time.

This situation gives rise to a fundamental trade-off

(Arnold 1983). Such trade-offs have been widely studied

in ecology; examples include life history aspects such as

fertility versus offspring survival (Stearns 1992), and

performance measures such as speed versus endurance in

lizards (Vanhooydonck et al. 2001), foraging scale versus

precision (Campbell et al. 1991) and growth versus shell

robustness in snails (Trussell 2000). The broad context of

this study is to ask how such trade-offs affect the range of

phenotypes found in nature.

Recently, Pareto optimality was used to understand the

range of phenotypes that best resolve such trade-offs

(Shoval et al. 2012). To define Pareto optimality, consider

a system with n traits (quantitative traits such as size and

shape parameters). A phenotype v is a vector of trait

values, and can be described as a point in morphospace –
the space of trait values.

Assume that the system needs to perform k different

tasks. The phenotype’s performance pi(v) at each task i is a

function of its trait values, v. The fitness of the organism, F

(v), is an increasing function of its performance at each

task F(v) = fh(p1(v), p2(v), …, pk(v)) (Arnold 1983). The

function fh describes the relative importance of the perfor-

mance of each task in determining the fitness in niche h. In

the following, we do not need to know the explicit form of
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fh, only that it increases with performances. Note the differ-

ence between performance and fitness: the fitness function

fh is associated with a given niche and determines which

phenotype will be selected at that niche. The fitness com-

bines the different performances in a way that is relevant to

that given niche. The performance functions are global and

do not depend on the niche. It is usually easier to experi-

mentally measure performances in the lab than fitness in

the wild (Arnold 1983).

Pareto optimality is usually defined in performance

space (schematically shown in Fig. 1). If phenotype v has

higher performance at all tasks than phenotype v’, one can

erase v’. Eliminating all such v’ phenotypes results in the

Pareto front. Moving along the front leads to improve-

ment in some tasks at the expense of others. The front is

the set of best compromises. Note that natural selection

tends to select phenotypes on the Pareto front (or close to

the front, the closer the higher the selection pressure),

rather than phenotypes that are off the front (Oster and

Wilson 1979; Farnsworth and Niklas 1995; El Samad et al.

2005; Kennedy 2009; Warmflash et al. 2012). This is due

to the fact that fitness is an increasing function of each of

the performances. Each niche h corresponds to a different

point on the front, determined by the relative importance

of the different tasks in that niche, as defined by the par-

ticular form of the fitness function fh.

Most studies of Pareto optimality in economics and engi-

neering focus on performance space (Steuer 1986). Few

studies explore the trait space (morphospace), as we do in

this article. An exception is location theory that studies opti-

mizing functions of a distance from given points (Kuhn

1967; Thisse et al. 1984; Durier and Michelot 1986).

Shoval et al. (2012) calculated the shape of the Pareto front

in morphospace. To do so, three assumptions were made.

The main aim of this study is to explore the effects of relaxing

these assumptions. The first assumption is that for each task

i, there is a single phenotype v�i that maximizes the corre-

sponding performance function Pi. This phenotype is called

the archetype for task i. Relaxing this assumption means that

performance can be maximized at multiple points.

The second assumption is that the performance of a

phenotype is a decreasing function of its distance from

the archetype for that task: Pi(v) = pi(di(v)), where

diðvÞ ¼ jv � v�i j2 and @piðvÞ
@di

< 0. The important point here

is the existence of a distance metric, more specifically an

inner-product norm distance on the morphospace. This

distance function governs the decrease of the performance

functions. An inner-product norm is defined by

jv � v�
i
j2 ¼ ðv � v�

i
ÞT Mðv � v�

i
Þ, where M is a positive-

definite matrix. One example for such a norm is Euclid-

ian distance (given by M = I, the identity matrix). Relax-

ing this assumption means that performance decays not

with a distance metric away from its maximum.

The third assumption was that all performance func-

tions decay with the same norm from their maxima.

Relaxing this assumption means that each performance

decays with a different norm.

Under these assumptions, it was shown (Shoval et al.

2012) that the Pareto front is the convex hull of the

archetypes. In other words, phenotypes on the Pareto

front are linear combinations of the k archetypes:

m ¼ Pk
i¼1

hiv�i , with nonnegative coefficients 0� hi � 1, that

sum to one
Pk
i¼1

hi ¼ 1. The Pareto front for two tasks is a

line segment that connects the two archetypes; three tasks

result in a triangle shaped Pareto front. Four tasks result

in a tetrahedron, etc. (see Fig. 2). These results generalize

previous theorems in location theory, such as (Kuhn

1967), which considered only Euclidean norms, and did

not make a connection with biological evolution. Conse-

quently, no matter how large the number of traits in the

system – as long as they correspond to tasks that show

trade-offs – the theory predicts that naturally selected

phenotypes fall on a low-dimensional space, and within

that space on a polytope (line, triangle, etc.). The vertices

of the polytope are the archetypes. In practice, one can fit

a polytope to the data, and discover the potential arche-

types, which are the vertices of the polytope. The niches

or behaviors of the species in the dataset closest to the

archetypes give clues as to what tasks might be at play.

Evidence for such lines and triangles was presented by

Shoval et al. based on classic studies of animal morphol-

ogy, and bacterial gene expression datasets.

Here we ask what happens if we relax these assumptions.

The article is organized as follows: we first relax assump-

tion (iii), to consider a different inner-product norm for

each performance function. We then relax assumption (i)

Ta
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Task 1 performance

Figure 1. Schematic view of the Pareto front in performance space. The

Pareto front is the set of phenotypes that remain after all phenotypes are

removed that are dominated in all tasks by another phenotype. Note that

this is plotted in performance space and not trait space.
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to consider cases where performance is maximized in a

region and not at a single point. Finally, we relax all

assumptions, and consider general performance functions

that need not be monotonic or depend on a norm.

Our main conclusions are that the shape of the Pareto

front for the case of different norms is composed of

mildly curved hyperbolae. We also present a theorem that

places bounds on the Pareto front in cases of general,

non-monotonic performance functions. Generally, relax-

ing the assumptions of Shoval et al. changes the straight

edges of the polytopes to mildly curved ones. Table 1 lists

the results in this study that go beyond the study of

Shoval et al. (Shoval et al. 2012).

Results

Pareto fronts for two tasks with different
inner-product norms are hyperbolae

We start with relaxing the assumption that all perfor-

mance functions decay with the same inner-product norm

from their maxima. It is important to relax this assump-

tion, because in reality, performance at task 1 may

depend more strongly on certain traits, whereas perfor-

mance at task 2 may depend most strongly on other

traits. The result is performance contours that have differ-

ent shapes for the two performance functions.

Table 1. Findings of presence study that extend the results of Shoval et al. (2012).

Shoval et al. 2012 Present study

Shape of Pareto fronts for two tasks in a

2-dimensional morphospace with different

inner-product norms

Numerical calculation showed that shape

can be curved (Figs. 3D and S2)

The curve is analytically solved,

found to be a hyperbola

(Appendix S2)

Shape of Pareto fronts for two tasks in an

N-dimensional morphospace with different

inner-product norms

Not discussed Is calculated along with 2D projections.

Axes can be rotated such that all

projections on principal planes are

hyperbolae. (Appendix S3)

The maximal deviation of the Pareto front

from a straight line

Was calculated numerically (Fig. S3) Is calculated analytically. Bounds are

provided. (Appendix S4)

Pareto fronts for three tasks with different

norms are curved triangles or

multi-connected regions

Mentioned. Proved (Appendix S7)

Relaxing the assumption that the Pareto

front is maximized at a single point

Discussed for the case of two tasks and

performance that decays with Euclidean

norm

The case of three tasks is

discussed (Appendix S8)

Inverse problem of deducing the norms

from the shape of the Pareto front

Not studied Studied for 2 and 3 tasks in 2D

(Appendices S5 and S6)

Bounds for the Pareto front in the case of

general performance functions

(not decaying with a norm,

not necessarily monotonic)

Not studied Proved to be restricted to a region near

the archetypes (Appendix S9)

2 tasks 3 tasks 4 tasks
(A) (B) (C)

Figure 2. Pareto fronts are simple shapes in trait space according to the assumptions of Shoval et al. Under the assumptions of (1), the Pareto

front is the convex hull of the archetypes – the phenotypes that maximize performance of one of the tasks. For two tasks, the front is the line

segment connecting the two archetypes. For three tasks, it is the full triangle whose vertices are the three archetypes. Tetrahedrons are found for

four tasks. Archetypes are denoted by red circles. Note the difference between the morphospace depiction in this figure, where axes are traits,

and the performance space description in Fig. 1, where axes are performances.
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Shoval et al. found that for two tasks with perfor-

mance functions that decay with the same inner-product

norm, the Pareto front is the straight-line segment that

connects the two archetypes. In this section, we relax the

assumption that the norms for the two tasks are the

same.

We use inner-product norms for two reasons: first, one

can obtain analytical results that are relatively easy to

interpret. Second, performance functions generally decay,

close to their maximum, with an inner-product distance

metric. To see this, consider the second order Taylor

expansion of a function Pi(v) near its maximum v�i ,
namely PiðvÞ ¼ Piðv�i Þ þ ðv � v�i ÞTHðv � v�i Þ, where H is

the Hessian matrix (matrix of second order partial deriva-

tives evaluated at v�i ) which is negative definite (unless

Det(H) = 0). Thus, near the maximum, the function

decays according to an inner-product metric with posi-

tive-definite matrix M = �H.

An example of performance functions with different

inner-product norms is shown in Figure 3. The contours

of these functions are concentric parallel ellipses; they are

circles in the case of of Euclidean norm (Fig. 3B). These

contour families can be defined by two parameters, the

angle h between the major axis of the ellipse and the

y-axis of morphospace, and k the ratio between the minor

and major axes of the ellipse (Fig. 3D).

To calculate the Pareto front, we note that the front is

the locus of all points at which contours of the two perfor-

mance functions are externally tangent to each other (for

a proof see Appendix S2). The proof shows, briefly, that if

a point x is not on this locus, there exist nearby points,

which have higher performance in both tasks–and thus x

is not on the Pareto front.

When the two norms are different, we find that the Pareto

front in a two-dimensional morphospace is a hyperbola seg-

ment that connects the two archetypes (Fig. 4C, Appendix

S2 for proof). The parameters of the hyperbola can be calcu-

lated from the parameters of the norms h and k. We find

that in specific cases, the hyperbolic Pareto front becomes a

straight line even when the norms are different – namely

when one of the axes of each ellipse aligns with the line con-

necting the archetypes (Fig. 4D).

(A)

(B)

(C)

(D)

Figure 3. Performance functions that decay with inner-product norms and their contours. Performance functions with a single maximum and

which decay with an inner-product norm distance away from that maximum have contours in the shape of circles or ellipses. (A) A 3D plot of a

performance function that depends on two traits and decays with Euclidean distance from its maximum. (B) The contours of the performance

function shown in (A) on the plane defined by the traits. The contours are concentric circles. (C) A 3D plot of a performance function that

depends on two traits, and decays with a non-Euclidean, inner-product norm from its maximum. (D) The contours of the function shown in (C)

are concentric ellipses, whose shape is determined by the parameters k and h defined in the figure. In (A–D) maximum points are marked by red

dots, contours by solid lines.
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We next studied the maximal deviation of the Pareto

front from a straight line, measured as the maximal

Euclidean distance h from the straight line connecting the

archetypes divided by the distance between the arche-

types, D (Fig. 5A). When one norm is Euclidian (circular

contours) and the other has elliptic contours, the maxi-

mal deviation occurs when the ellipse is at an angle of

45° relative to the line between archetypes, and is given

by h
D ¼ 1�k

2ð1þkÞ. The Pareto front makes only small devia-

tions from a line when the ellipse is mildly eccentric – for

example, when the ellipse axis ratio is 2:1, the Pareto

front deviates from a line by about h
D ¼ 0:15 (Fig. 5B).

The deviation grows with ellipse axis ratio and is

bounded by h
D ¼ 1

2 (as k ? 0).

When contours of both performance functions are highly

eccentric, larger deviations can occur. These deviations are

bounded by h
D � 1

k2
in the limit where both ellipses have

equal k and are very eccentric, k ? 0 (proofs in Appendix

S4). Thus, deviations from a straight line are generally mild,

except in the case of highly eccentric norms.

In higher dimensions, the Pareto front for two tasks is

a one-dimensional curve between the two archetypes. The

projections of this curve are hyperbolic in the following

sense: there exists a coordinate system in which the pro-

jection of this curve on every principal plane (plane

spanned by two of the axes) is a hyperbola (or, in specific

cases, a line)—see Fig. 6 (proof in Appendix S3).

Pareto fronts for three tasks with different
norms are curved triangles or
multi-connected regions

We next consider the case of three tasks. For equal norms,

Shoval et al. showed that the Pareto front is the full triangle

(A) (B)

(C) (D)

Figure 4. The Pareto front in a 2D morphospace resulting from two tasks with two different norms is a hyperbola or a straight line. (A, B) When

the two norms are equal, either Euclidean (A) or with a general elliptical contour (B), the front is a straight-line segment. (C, D) When the two

norms are different the Pareto front is a hyperbola that connects the two archetypes, except in special cases such as (D) in which the two

different inner-product norms have a main axis that is perpendicular to the line between the archetypes. In this case, the Pareto front is a straight

line connecting the two archetypes. In (A–D), the front is a marked by a red line, and the archetypes are denoted by red dots. The contours of

the performance functions are plotted in black and gray. Notice that the Pareto front is given by the locus of points at which the contours of the

two performance functions are externally tangent.
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whose vertices are the archetypes. We consider the case

where the norms are different. We begin with a 2D morpho-

space. Each performance function has its own set of elliptical

contours, with differently shaped ellipses for each task.

We calculated the shapes of the Pareto front analytically

(Appendix S1). We find that the Pareto front is a region

bounded by hyperbolae segments that connect the arche-

types. These hyperbolae are identical to the Pareto fronts

associated with the three pairs of tasks (Appendix S7).

The hyperbolic edges can form four topological classes

of Pareto front shapes. The first class of Pareto fronts

resembles curved triangles, with three hyperbolic edges

(Fig. 7A). The other classes have two, three, and four

components (Fig. 7B–D). These last three classes occur

when the hyperbola segments intersect at points other

than the archetypes. Such intersections may happen when

at least one of the norms has high eccentricity (i.e., a trait

combination that is significantly more influential on one

performance than on others).

We demonstrate this by using a morphological dataset

analyzed by Shoval et al., regarding bat wing shape of 108

bat species (Norberg and Rayner 1987). The dataset can

be fit quite well by a hyperbolae-edged triangle (Fig. 8).

We also considered morphospaces of higher dimension

(Appendix S1). We find that three tasks give rise to

Pareto fronts that are curved two-dimensional surfaces.

An example is shown in Fig. 9 for a 3D morphospace. In

3D, each task has equi-performance contours shaped as

ellipsoids, centered on the archetype. The Pareto front in

this case resembles a curved triangle.

The Pareto front remains connected and of low

dimension even when considering a wider class of

performance functions – strongly concave functions

(Appendix S10).

It is interesting to consider what happens when one

measures only some of the traits, for example two of the

three traits that make up a 3D morphospace. This

amounts to projecting the data on one of the principal

planes. The projections of the curved Pareto front on

principal planes resemble curved triangles in some cases,

and more complex shapes in other cases. This means that

when norms are different for each task, data on only two

(A) (B)

(C)

Figure 5. The maximal deviation of the Pareto front from a straight line is mild for most norms. (A) The deviation of the Pareto front (red curve)

from the straight line connecting the archetypes (red dots) is defined by the maximal height h of a point on the front relative to that line, divided

by the distance between the archetypes, D. The point that maximizes the deviation is plotted as a blue dot. (B) When one of the performance

functions depends on a Euclidean norm and the second performance function depends on a general inner-product norm with parameters h, k as

defined in Fig. 2, h
D is bounded by 1�k

2ð1þkÞ. When setting h ¼ p
4, this maximum is obtained. The graph shows the maximal deviation as a function of

k. (C) Only when the two norms are very eccentric can the front show large deviations from a straight line.
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out of the three relevant traits might not fall within

shapes predicted by a two-dimensional model.

In contrast, if the norms are equal for all tasks, one can

safely measure only a subset of the traits: because in this

case the front is a convex polygon, its projections are also

convex polygons. Projecting a triangle in 3D on a 2D

plane gives rise to a triangle (except in singular cases

which give a line). Thus, two-dimensional data in this case

give fronts that can be predicted from 2D models, even if

there exist additional traits that are not measured. In sum-

mary, when norms are different, it may be difficult to

interpret data that are missing important traits; when

norms are approximately the same, interpretation of such

data is easier.

We also studied the inverse problem of deducing the

different norms from the shape of the Pareto front. For

two tasks, this inverse problem is not possible without

additional information: a one-dimensional family of norm

pairs can explain a given hyperbolic front (Fig. 10,

Appendix S5). For three or more tasks, in 2D, the inverse

problem is solvable in principle (Appendix S6). In prac-

tice, data must be very precise to differentiate between

alternative norms that give very similar hyperbolic edges.

Relaxing the assumption that the Pareto
front is maximized at a single point

We now relax the assumption that the Pareto front is maxi-

mized at a single point (assumption i). We consider perfor-

mance functions maximized in a region of morphospace

rather than at a single point. This phenomenon, called many-

to-one mapping or performance ridges, has been suggested to

occur in biological systems (Schluter and Nychka 1994;

Wainwright et al. 2005).

We begin with two tasks. As found in Shoval et al.

(2012) for performance functions that decay with Eucli-

dean distance away from the maximizing region, the

Pareto front connects the point on each region that is

closest to the other archetype. We considered inner-pro-

duct norms, and a maximizing region which is bounded

in one of the elliptical contours. We find that, the Pareto

front connects the points in which the highest possible

performance contour of task i touches the archetype

region of task j (Fig. 11, Appendix S8).

In this way, multiple tasks break the symmetry of

points within the archetype region. If only one task was

required, evolution can drift within the archetype region,

because all points have the same fitness (Wainwright

et al. 2005).The multi-objective nature of multiple tasks

leads to a differentiation between points of equivalent

performance, and selects a particular point on the bound-

ary of the archetype region that is closest to the other

archetype.

We also explored the case of three tasks, not considered

in Shoval et al. (2012). For simplicity, we present the case

of a task with a circle-shaped archetype region A1, and

two other tasks with point-like archetypes a2 and a3, and

assume that performances decay away from the maximal

regions with Euclidean norm. We find that the Pareto

front is bounded by the line between a2 and a3, the lines

between the closest point on A1 and each of the arche-

types, and an arc on the boundary of A1 (Fig. 12).

More generally, the Pareto front is composed of

points on the boundary of the archetype regions,

together with points on the Pareto front calculated as

if the archetype was maximized at a single point

within the archetype region- more details are given in

Appendix S8.

Bounds for the Pareto front in the case of
general performance functions

We finally relax the assumption that the performance

functions decay according to norms, and thus consider

x y

z

Figure 6. The two-task Pareto front in an n-dimensional

morphospace is a one-dimensional curve connecting the two

archetypes. There exists a basis for the morphospace such that the

projection of the Pareto front on every plane spanned by two

basis vectors is a hyperbola, or in special cases, a line. Here, a

3D example is shown with the norms given by the matrices

M1 ¼
0:38 0:15 �0:28
0:15 0:66 �0:26

�0:28 �0:26 0:53

0
@

1
A;M2 ¼

0:34 �0:09 0
�0:09 0:96 0:16
0 0:16 0:2

0
@

1
A.

The Pareto front is plotted in black; the projections on the XY, YZ and

XZ planes are in gray. The archetypes and their projections are plotted

as red circles. Note that generally the front itself does not lie on any

2D plane. X,Y and Z axes are linear combination of the traits.

Specifically here, X,Y and Z are chosen as the orthogonal basis in

which the projections of the Pareto front on the planes spanned by

each two basis vectors are hyperbolae.
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the case of general, continuous performance functions.

These functions have a global maximum, the archetype,

but need not be monotonically decreasing. We provide

bounds on the Pareto front.

We begin with two tasks. We construct a special con-

tour for each performance function- the contour that

passes through the archetype of the other task. Thus, we

construct the contour of performance function 1 that

passes through archetype 2, denoted by C1
2, and the con-

tour of performance function 2 that passes through arche-

type 1, denoted by C2
1 (Fig. 13). Define the interior Bi

j of

a special contour Ci
j as the set of points in which perfor-

mance i is greater or equal to its value on the contour.

We find that the Pareto front is in the intersection of

these interiors B2
1 \ B1

2 (see also Appendix S9).

This bound does not require that the performance

functions be monotonic or have a single maximum. If

local maxima of performance exist away from the arche-

type, there is a possibility that the special contour will be

multiply connected: one piece of contour surrounding the

archetype, and another piece surrounds each local maxi-

mum (as shown in Fig. 13). In this case, the bound sug-

gests the possibility that parts of the Pareto front lie in

distant regions in trait-space. However, such an occur-

rence requires a coincidence, namely that the local max-

(A) (B)

(C) (D)

Figure 7. The three-task Pareto front in a 2D morphospace is a region enclosed by three hyperbolae. The result is a triangle-like shape with

hyperbolic edges (A), or multiple connected regions, depending on the intersections between the hyperbolae. There thus exist classes of fronts,

with two (B), three (C) or four (D) connected components. These three classes can occur when one or more of the norms have high eccentricity.

Norm parameters are shown in the figure.

Figure 8. Wing aspect ratio versus mass of 108 bat (Microchiroptera)

species. A Pareto front bounded by three hyperbolae (red) was

manually fitted to the data (blue dots). The front is generated by

three different inner-product norms, one for each task. Note that

there is a one-dimensional family of other norms that can give the

same front shape.
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ima of the two performance functions lie close to each

other in morphospace. In the generic case, the present

bound suggests that the Pareto front is localized to a

restricted region in morphospace that lies between, and

includes, the two archetypes. The size of the bound region

is determined by the precise shape of the performance

contours. Inside the bound region, the Pareto front is not

necessarily connected. One can find performance func-

tions in which the Pareto front is composed of several

disjoint pieces (Appendix S5).

Figure 9. An example of a three-task Pareto front in a 3D morphospace. In this case the Pareto front is a 2D manifold that resembles a

distorted triangular shape, whose vertices are the three archetypes. Note that the 2D projections (plotted in the figure on the XY, YZ and XZ

planes) do not generally have hyperbolic edges, and can have relatively complicated shapes. The three norms in this case are given by the

matrices M1 ¼ I;M2 ¼
0:38 0:15 �0:28
0:15 0:66 �0:26

�0:28 �0:26 0:53

0
@

1
A;M3 ¼

0:34 �0:09 0
�0:09 0:96 0:16
0 0:16 0:2

0
@

1
A

(A) (B)

Figure 10. The norms cannot be uniquely deduced from the two-task hyperobla-shaped Pareto front. For two tasks in a 2D morphospace, the

same hyperbola-shaped front can result from many pairs of norm (a 1D family of norm pairs). (A) and (B) show two different norm pairs

(parameters given in the figure) that generate the same hyperbola, whose equation is shown in the figure. The archetypes are marked by red

dots, the Pareto front is plotted in red, and the contours of the performance functions are in black and gray.
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(A) (B)

(C)

Figure 11. Pareto front when performance function is maximized in a region rather than a point. When performance at task 1 is maximal in a

region of space (A1) rather than at a single point, the front is a curve connecting the second archetype a2 with the point on A1 that has maximal

performance of task 2 – the point where a performance contour of task 2 first touches A1. (A) A plot of performance function 1 that is

maximized in a region A1 (in red). (B) A plot of performance function 2 maximized at a point a2. (C) The Pareto front (red curve) connects a2 (red

dot) to the point with maximal performance of task 2 on A1 (red region). Contours of performance 1 are in thin black, contours of performance

2 are in thick black.

(A)

(B) (C)

Figure 12. The Pareto front for three tasks, one maximized in a circle-shaped region, the others at points. (A) An example of a case where

performance 1 is maximal in a region A1, and performance 2 and 3 are maximized by the points a2, a3, respectively. (B) When the two archetype

points a2, a3 are connected by a line that does not intersect the archetype region of the third task (A1), the front includes the triangle whose

third vertex is the center of the circle, minus the interior of the circle, but including an arc on its circumference. (C) A similar situation results

when the line a2, a3 intersects the circle.
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For the case of k tasks, the Pareto front is bounded in

the region defined by P:F: � Tk
j¼1

Sk
i¼1
i6¼j

Bi
j. Again, in the

generic case, this means that the Pareto front is usually

localized to a restricted region that lies between and

includes the archetypes.

Discussion

This study extends the findings of Shoval et al. that biologi-

cal systems with trade-offs display variation that falls within

a Pareto front shaped as a line, triangle or other polytope.

These findings were based on three assumptions – perfor-

mances have a single global maximum, decay with a norm

distance away from their maximum, and that the same

norm applies to all performances. Here we explored the

effect of relaxing these assumptions. We first relaxed the

assumption that norms for all tasks are equal, by analyzing

the Pareto fronts obtained for performance functions with

non-equal inner-product norms. We find that for two

tasks, fronts are hyperbolic, and for three tasks fronts can

resemble curved triangles or multi-connected regions with

hyperbolic edges. We next relaxed the assumption that per-

formance is maximized at a single point. With performance

maximized in a region, we find that the Pareto front selects

points on each region closest to the other archetypes, and

connects them. Finally, we provide bounds on the Pareto

front for the general case of performances not governed by

norms, and not necessarily monotonically decreasing. We

find that, in the generic case, the front is located between

the archetypes, in a region bounded by certain performance

contours.

(A) (B)

(C) (D)

Figure 13. Bounds on the Pareto front for general performance functions show that it is located between the archetypes. (A) The Pareto front is

bounded in a region (shaded) defined by the intersection of two special regions. The special region Bi
j is defined by all points with performance in

task i higher than the performance in task i of the archetype of task j, aj. The boundary of the each special region is the contour of the

performance function i that crosses the archetype of performance j. (B) When performance functions are non-monotonic, the special regions Bi
j

can have multiple non-connected regions, each surrounding a local maximum point. (C) If distant regions of the special contours intersect, the

Pareto front can be localized to multiple intersection regions. (D) The same bound can apply when performance is optimized in a region, not a

single point (region A1). In this case, the special region Bi
j is defined by all points with performance at task i higher than the maximal performance

in the archetype region of task j.
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Generally, except in cases where performance contours

are very eccentric, relaxing the assumptions of Shoval

et al. results in fronts that are mildly curved, instead of

straight-edged ones. The fronts have vertices that

correspond to the archetypes. This raises the possibility

that a wide range of biological situations can be analyzed

using the Pareto front approach. One way to use this

approach is to analyze whether multi-trait data fall on

low-dimensional spaces, and within those spaces on

shapes that have pointy vertices. The shared behavior or

features of the phenotypes near each vertex can help sug-

gest which task might be optimized by the archetype cor-

responding to each vertex.

The application of the present findings to biological

systems relies on the assumption that natural selection

is the main evolutionary force at play, and that there is

sufficient genetic variation to reach the optimal pheno-

types (Orzack and Sober 2001). Other effects, such as

genetic drift due to small population sizes, lack of suffi-

cient genetic variation, lack of time to reach the opti-

mum, physical constraints that preclude certain

phenotypes, local fitness maxima that are difficult to

escape, can all lead to organisms that do not reach the

predicted front.

Of particular interest are developmental constraints – the

belief that genetic variations are channeled in particular phe-

notypic directions by developmental mechanisms. Recent

summary of experimental evidence for development

constraints (Klingenberg 2010) suggests that such bias is rel-

ative, not absolute: in breeding experiments, phenotypes that

are different from those found in nature (in the present lan-

guage – organisms off the Pareto front) can be readily

formed. Even absolute developmental constraints, if they

exist, do not preclude the present theory, because the devel-

opmental mechanism and pathways themselves evolve, and

can evolve to ‘encode’ the desired Pareto front (e.g., an

allometric curve). This learning is due to the accumulated

evolutionary experience of the parental lines of an organism:

parental lines experienced a wide range of habitats and as a

result evolved developmental mechanisms that can be tuned

to optimize phenotypes across that range. Such learning has

been demonstrated in computer simulations of evolution in

changing environments (Parter et al. 2008; Kashtan et al.

2009).

The theory concerns phenotypes and not genotypes.

Extending the analysis to genotypes, using population

genetics approaches (Hartl and Clark 1998; Eshel and

Feldman 2001; Orr 2005) will be an important step in

developing the theory.

It would be interesting to find better bounds on the

Pareto front in the case of general performance functions.

For example, one may be able to prove under certain

assumptions that the front for k tasks is a (k�1) dimen-

sional surface, and that it deviates from a straight line or

polytope by a bounded amount. Advances in methods to

fit data to the surfaces predicted in this study could help

make precise predictions about the tasks that organisms

perform and the fitness weight of each task in the natural

environment in which they evolved.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1. The Pareto front is the locus of all points

in which the gradients of the performance functions are

positive-linearly dependent.

Appendix S2. The Pareto front associated with 2 tasks in

a 2D-morphospace is a hyperbola.

Appendix S3. The Pareto front of 2 tasks in an n-dimen-

sional morphospace has hyperbolic projections.

Appendix S4. Calculation of the deviation of the Pareto

front from a straight line for 2 tasks in a 2D-morpho-

space.

Appendix S5. Each Pareto front of 2 tasks in a 2D mor-

phospace is generated by a 1-dimensional family of norm

pairs.

Appendix S6. Generally, for 3 tasks in a 2D morpho-

space, the norms can be uniquely determined by the

shape of the Pareto front.

Appendix S7. The boundary of the 3-tasks Pareto front is

composed of the three 2-tasks Pareto fronts.

Appendix S8. The resulting Pareto front when one of the

performance function is maximized in a region.

Appendix S9. Bounds on the Pareto front for general per-

formance functions show that normally it is located in a

region close to the archetype.

Appendix S10. The Pareto front of r strongly concave

performance functions is a connected set of Hausdorff

dimension of at most r-1.
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