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Abstract: We screened natural resources for estrogen receptor (ER)-activating and bone metabolism-
promoting activities with the aim of finding potential treatments for osteoporosis. A screen of
1531 extracts from Ryukyu Arc plants using a luciferase reporter assay identified an 80% MeOH
extract of Scutellaria rubropunctata var. rubropunctata (SRE) with dose-dependent ER transcription-
promoting activity. Importantly, SRE had no proliferative effect on human breast cancer cells. SRE
enhanced the ALP activity of pre-osteoblast MC3T3-E1 cells after 72 h in culture and slightly enhanced
mineralization at 14 and 21 d. SRE did not significantly affect the TRAP activity of RAW264.7
cells. Gene expression analysis in MC3T3-E1 cells by quantitative real-time PCR revealed that SRE
upregulated the mRNA levels of Runx2, Osterix (Osx), Osteopontin (Opn), Osteocalcin (Ocn), Smad1,
Smad4, and Smad5 at 72 h, and those of Runx2, Osx, Smad1, Smad4, and Smad5 at 21 d of osteogenic
induction. Analysis of the expression levels of osteogenic markers suggested that SRE may promote
osteogenic differentiation by acting at the early stage of differentiation rather than at the late stage of
differentiation. These results indicate that SRE activates ER and induces osteoblast differentiation by
activating Runx2 and Osx through the BMP/Smad pathway, suggesting that SRE may be useful for
the prevention and treatment of postmenopausal osteoporosis.

Keywords: estrogen receptor; osteoporosis; osteogenesis; Scutellaria rubropunctata var. rubropunctata

1. Introduction

Estrogen secretion rapidly declines in women in their late 40s and decreases even
further after menopause as ovarian function declines [1]. This decline can cause hot flashes,
mood swings, urogenital atrophy, and other unpleasant symptoms. Estrogen-decline-
related onset of postmenopausal osteoporosis due to bone loss causes chronic pain, bone
deformity, and increased susceptibility to severe fractures, and is considered one of the most
significant causes of reduced quality of life and mobility in postmenopausal women [2,3].

According to the WHO diagnostic classification, osteoporosis causes decreased bone
mass and bone mineral density and deterioration of the bone structure, leading to an
increased risk of fracture. Bone is maintained via bone formation by osteoblasts and bone
resorption by osteoclasts. Estrogen regulates bone resorption through estrogen receptors α
(ERα) and β (ERβ) by acting directly and indirectly on osteoclasts, is involved in the prolif-
eration of osteoblast precursor cells and mesenchymal stem cells, and helps maintain bone
tissue and matrix balance by inducing the expression of TGF-β [4–9]. Estrogen depletion
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can be treated with hormone replacement therapy (HRT), which alleviates symptoms in
menopausal women and reduces osteoporosis [10]. However, long-term HRT is known to
increase the risk of breast cancer and other cancers [10,11]. Therefore, selective estrogen
receptor modulators (SERMs) with tissue-selective estrogen action have recently attracted
attention for the treatment of postmenopausal osteoporosis, as they have minimal effect on
reproductive organs.

Some plants and natural bioactive compounds exhibit SERM-like effects, such as phy-
toestrogens [12]. For example, isoflavones, such as daidzein and genistein, phytoestrogens
in soybeans, and puerarin in the root of Pueraria lobata, have been used as supplements
and in health foods for their estrogenic effects to promote bone mass maintenance and
relieve menopausal symptoms, including osteoporosis, in postmenopausal women [13–15].
Therefore, natural resources that activate ER and affect bone metabolism may be useful
for the treatment of postmenopausal osteoporosis. The genus Scutellaria, in the family
Lamiaceae, comprises 17 species native to Japan [16]. S. rubropunctata var. rubropunctata
(SR) is a plant that grows naturally only in the region known as the Ryukyu Arc, which
includes the Amami Oshima and Okinawa Islands. However, there have been no reports
on its constituents and their bioactivity.

In this study, we screened a library of 1531 extracts of Ryukyu Arc plants (10 µg/mL)
and detected ER transcription activity in an 80% MeOH extract of the whole plant of
SR (SRE). We then examined its effects on bone metabolism in vitro using osteoblasts
and osteoclasts.

2. Results
2.1. SRE Has ER Transcription-Promoting Activity

The ER-activating effect of SRE (1–10 µg/mL) was examined using a luciferase reporter
assay in HEK293 cells. SRE, at 3 and 10 µg/mL, significantly increased ER transcription
activity (p < 0.01; Figure 1). To confirm that activation in the reporter assay was mediated
by ER, we conducted the assay using the concentration of SRE with the strongest ER
transcription-promoting activity (10 µg/mL) and an ER antagonist (ICI182, 780). In this
assay, the ER activation effect of SRE was significantly inhibited by ICI182, 780 (Figure 2),
suggesting that SRE activates ER.
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Figure 1. Estrogen receptor (ER) transcription-promoting activity of an 80% MeOH extract of Scu-
tellaria rubropunctata var. rubropunctata (SRE). The ER transcription-promoting activity of SRE was 
examined using a luciferase reporter assay in HEK293 cells. The control (cont.), which contained 
vehicle only (DMSO), was set to 1. Data are the mean ± SE of three independent experiments (n = 3). 

 
Figure 2. Effect of the ER antagonist ICI 182, 780 on the ER transcription-promoting activity of SRE. 
The activity was assessed using a luciferase reporter assay in HEK293 cells. The control (first col-
umn) contained vehicle only (DMSO). Data are the mean ± SE of three independent experiments (n 
= 3). 

2.2. SRE Does Not Affect MCF7 Cell Proliferation 
The effect of SRE (0.1–30 µg/mL) on the growth of the MCF7 breast cancer cell line 

was evaluated using the MTT assay. No significant proliferation was detected at any 
tested concentration, suggesting that SRE has estrogen-like effects but no proliferation-
promoting effects on breast carcinoma cells (Figure 3). 
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Figure 1. Estrogen receptor (ER) transcription-promoting activity of an 80% MeOH extract of Scutel-
laria rubropunctata var. rubropunctata (SRE). The ER transcription-promoting activity of SRE was
examined using a luciferase reporter assay in HEK293 cells. The control (cont.), which contained
vehicle only (DMSO), was set to 1. Data are the mean ± SE of three independent experiments (n = 3).
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Figure 2. Effect of the ER antagonist ICI 182, 780 on the ER transcription-promoting activity of SRE.
The activity was assessed using a luciferase reporter assay in HEK293 cells. The control (first column)
contained vehicle only (DMSO). Data are the mean ± SE of three independent experiments (n = 3).

2.2. SRE Does Not Affect MCF7 Cell Proliferation

The effect of SRE (0.1–30 µg/mL) on the growth of the MCF7 breast cancer cell line
was evaluated using the MTT assay. No significant proliferation was detected at any tested
concentration, suggesting that SRE has estrogen-like effects but no proliferation-promoting
effects on breast carcinoma cells (Figure 3).
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Figure 3. SRE has no proliferation-promoting effect on human breast carcinoma cells. The prolifera-
tion of MCF7 cells was assessed using the MTT assay. The control contained DMSO only. Data are
the mean ± SE of three independent experiments (n = 3).

2.3. Effect of SRE on Osteoblastic Differentiation

To determine the effects of SRE on the early and late stages of osteoblastic differen-
tiation, an alkaline phosphatase (ALP) activity assay and mineralization staining were
performed in MC3T3-E1 osteoblast-like cells. Its effects on genes involved in osteoblast
differentiation were examined using quantitative real-time PCR.
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2.3.1. SRE Increased ALP Activity and the mRNA Expression of Alpl

MC3T3-E1 cells were incubated with SRE (0.1–1 µg/mL) in the presence of differen-
tiation inducers, and ALP activity and the mRNA expression level of Alpl were assessed.
Significant ALP activity was observed in the presence of 0.3 and 1 µg/mL SRE (p < 0.01;
Figure 4a) without cytotoxicity (Figure S1). In addition, SRE significantly increased the
mRNA expression level of Alpl (p < 0.01; Figure 4b) in a dose-dependent manner, suggesting
that SRE may promote the early stage of osteoblast differentiation.
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Figure 4. Effect of SRE on (a) alkaline phosphatase (ALP) activity and (b) the mRNA expression
level of Alpl in the MC3T3-E1 mouse osteoblastic cell line. The “non” sample was incubated without
differentiation inducer but with vehicle (DMSO), and the control (cont.) was incubated with a
differentiation medium and DMSO. The mRNA expression level of Alpl was measured by quantitative
real-time PCR and normalized to the level of the reference gene β-actin. Data are the mean ± SE of
three independent experiments (n = 3).
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2.3.2. SRE Increased Mineralization

The effect of SRE on mineralization in MC3T3-E1 cells in long-term culture (14 or 21 d)
with differentiation inducers was examined. The cells were incubated with differentiation
inducers and various concentrations of SRE. SRE significantly enhanced mineralization at
14 d (1 µg/mL, p < 0.05; Figure 5) and 21 d (0.1 µg/mL, p < 0.05; Figure 6). However, the
effect of SRE was lower than that of the positive control, BMP-2. These results suggest that
SRE may have a weak effect on the late stage of osteoblast differentiation.
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Figure 5. Effect of SRE on mineralization in MC3T3-E1 cells incubated for 14 d. The “non” sample
was incubated in a growth medium with DMSO, and “cont.” was incubated in a differentiation
medium with DMSO. Data are the mean ± SE of three independent experiments (n = 3).
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Figure 6. Effect of SRE on mineralization in MC3T3-E1 cells incubated for 21 d. The “non” sample was
incubated in a growth medium with DMSO, and the cont. sample was incubated in a differentiation
medium with DMSO. Data are the mean ± SE of three independent experiments (n = 3).

2.3.3. Effect of SRE on the Expression of Osteoblast-Differentiation-Related Genes

To elucidate the mechanism underlying the osteoblastic differentiation-promoting
effect of SRE at the gene expression level, we used quantitative real-time PCR to examine
the expression of osteoblast-differentiation-related genes in MC3T3-E1 cells incubated in
a differentiation medium with different concentrations of SRE (0.1–1 µg/mL) for 72 h or
21 d. SRE significantly increased the expression levels of Runx2, a master regulator of
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bone formation, at 72 h (0.3 and 1 µg/mL, p < 0.01) and 21 d (0.3 and 1 µg/mL, p < 0.01
and p < 0.05; Figures 7a and 8a). The expression levels were comparable to those in cells
incubated with BMP-2. These results indicate that SRE may promote the early stage of
osteoblast differentiation, which is similar to the results of the ALP activity assay. Since
Runx2 promotes the early stage of osteogenesis but inhibits the late stage when osteoblasts
mature, SRE may attenuate bone formation in the late stage [17].
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Figure 7. Effect of incubation with SRE for 72 h on the mRNA expression of osteoblast-differentiation-
related genes in MC3T3-E1 cells. The mRNA expression levels of (a) Runx2, (b) Osterix, (c) Osteopontin,
(d) Osteocalcin, (e) Smad1, (f) Smad4, and (g) Smad5 were measured by quantitative real-time PCR
and normalized to the levels of the reference gene β-actin. The “non” sample was incubated in an
ordinary medium with DMSO, and the “cont.” sample” was incubated in a differentiation medium
with DMSO. Data are the mean ± SE of three independent experiments (n = 3).
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Figure 8. Effect of incubation with SRE for 21 d on the mRNA expression of osteoblast-differentiation-
related genes in MC3T3-E1 cells. The mRNA expression levels of (a) Runx2, (b) Osterix, (c) Osteopontin,
(d) Osteocalcin, (e) Smad1, (f) Smad4, and (g) Smad5 were measured by quantitative real-time PCR
and normalized to the levels of the reference gene β-actin. The “non” sample was incubated in an
ordinary medium with DMSO, and the “cont.” sample was incubated in a differentiation medium
with DMSO. Data are the mean ± SE of three independent experiments (n = 3).
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Osterix is an essential transcription factor for osteoblast differentiation and bone
formation that is downstream of Runx2. SRE significantly upregulated the expression
levels of Osx mRNA at 72 h (0.1 and 0.3 µg/mL, p < 0.01) and 21 d (0.1 µg/mL, p < 0.01;
Figures 7b and 8b), but SRE-promoted Osx expression levels were lower than the BMP-
2-promoted levels at 72 h and 21 d. These data show that SRE induces osteoblast dif-
ferentiation via transcriptional activation of Osx, but the effect is not as strong as that
of BMP-2.

Osteopontin is a target gene of Runx2 and Osterix, and is a bone formation marker that
is produced during early-to-mid-stage osteoblastic differentiation [18]. SRE significantly
elevated the mRNA expression of Osteopontin at both 72 h (0.1–1 µg/mL, p < 0.01) and
21 d (1 µg/mL, p < 0.05; Figures 7c and 8c). Osteopontin expression levels increased more
in the presence of SRE than in the presence of BMP-2 at 72 h, but increased less in the
presence of SRE than in the presence of BMP-2 at 21 d. These results indicate that SRE may
promote osteoblast differentiation in the early stage and may have a weaker effect in the
later stages. SRE significantly increased the mRNA expression levels of Osteocalcin at 72 h
in a dose-dependent manner (0.1–1 µg/mL, p < 0.01), which was higher that the expression
induced by BMP-2 (Figure 7d). In contrast, SRE did not affect the mRNA expression
of Osteocalcin at 21 d (Figure 8d). Osteocalcin is also a target gene of Runx2 and Osterix
and is a bone formation marker produced during the early-to-mid-stage of osteoblastic
differentiation [18]. These results support the hypothesis that SRE promotes osteoblast
differentiation in the early stage and weakly promotes late-stage differentiation.

One of the signaling pathways that induces the expression of Runx2 and Osterix is
the BMP/Smad signaling pathway. Therefore, we assessed the mRNA expression levels of
Smad1, Smad4, and Smad5, three transduction factors that promote bone formation, using
quantitative real-time PCR to determine whether the osteoblastic differentiation effect of
SRE extract was related to this signaling pathway. SRE significantly enhanced the mRNA
expression levels of Smad1 at 72 h and 21 d (0.1 and 0.3 µg/mL, p < 0.01; Figures 7e and 8e),
and the expression levels were close to those induced by BMP-2 at both time points. SRE
significantly elevated the mRNA expression of Smad4 at 72 h and 21 d (0.1–1 µg/mL,
p < 0.01; Figures 7f and 8f), and the expression levels were as high as or higher than those
induced by BMP-2. SRE significantly increased the mRNA expression of Smad5 at 72 h (0.3
and 1 µg/mL, p < 0.01) and 21 d (0.1–1 µg/mL, p < 0.05; Figures 7g and 8g). The Smad5
expression levels were as high or higher than those induced BMP-2 at both 72 h and 21 d.
These results, showing that SRE increased the mRNA expression levels of Smads 1, 4, and 5,
indicate that SRE may promote bone formation via the BMP/Smad signaling pathway.

2.4. Effect of SRE on Osteoclastic Differentiation

To evaluate the effect of SRE on bone resorption, a tartrate-resistant acid phosphatase
(TRAP) activity assay was performed on osteoclast-like cells (RAW264.7 cells differentiated
with RANKL). TRAP activity was significantly suppressed by SRE at 10 and 30 µg/mL
(p < 0.05 and p < 0.01; Figure 9); however, it was also cytotoxic at these concentrations.
This result suggests that the inhibitory effect of SRE on osteoclastic differentiation may be
caused by cytotoxic effects at these concentrations.
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Figure 9. Effect of SRE on tartrate-resistant acid phosphatase (TRAP) activity and viability in
osteoclastic cells. The “non” sample was incubated in a growth medium with DMSO, and the “cont.”
sample was incubated with sRANKL and DMSO. Cell viability was measured by the MTT assay.
Data are the mean ± SE of three independent experiments (n = 3).

3. Discussion

We aimed to identify natural products that help prevent and treat postmenopausal
osteoporosis by stimulating estrogen receptors (ER) and promoting osteogenesis. A screen-
ing of 1531 extracts of Ryukyu Arc plants using a luciferase reporter assay in HEK293
cell showed that SRE had dose-dependent ER transcription-promoting activity. The effect
of SRE was significantly inhibited by the ER antagonist ICI182, 780, suggesting that SRE
activates ER. Substances exhibiting estrogen-like effects often exert proliferative effects on
estrogen-sensitive cancers, such as breast carcinoma [10,11]. Therefore, we tested SRE for
growth-promoting effects on MCF7 breast cancer cells, and no significant cell proliferation
was observed. These results show that SRE may selectively stimulate ER. Next, we evalu-
ated the effects of SRE on bone metabolism using the MC3T3-E1 osteoblast-like cell and
RAW264.7 cell induced to differentiate with RANKL, which is an osteoclast-like cell.

Osteoblasts differentiate from mesenchymal stem cells in a stepwise manner into
osteoprogenitor cells, pre-osteoblasts, and osteoblasts, which eventually become osteocytes
through mineralization [19]. Bone-specific ALP, a biochemical marker of bone formation, is
an enzyme that converts pyrophosphate to phosphoric acid on the surface of matrix vesicles
released from osteoblast [19,20]. Pyrophosphate is a substrate for ALP and is an inhibitory
factor in the crystallization of calcium and phosphorus. After conversion of pyrophosphate
to phosphoric acid by ALP, the minerals crystallize to hydroxyapatite, which penetrates
matrix vesicles and is deposited in the bone matrix, promoting bone mineralization [21].
SRE significantly upregulated ALP activity and the mRNA expression of Alpl in MC3T3-
E1 cells, suggesting it has a positive effect on the differentiation of osteoprogenitor and
pre-osteoblast cells into osteoblasts. When MC3T3-E1 cells were cultured in the presence
of differentiation inducers, they began to form calcified nodules after about 14 d, and the
matrices matured after about 21 d [22]. To examine the effect of SRE at these time points,
cells were stained alizarin red, which showed that SRE increased the mineralization rate at
14 and 21 d, but its influence on mineralization was weaker than that of the positive control,
BMP-2. Therefore, SRE may have a slight promoting effect at the late stage of osteoblast
differentiation.

Next, the effects of SRE on the expression of osteogenic-related genes were also ana-
lyzed using quantitative real-time PCR. Runx2 is a master regulator of osteogenesis that
induces the differentiation of immature osteoblasts. In contrast, Runx2 suppresses the differ-
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entiation of mature osteoblasts and is generally assumed to prevent bone hyperplasia [17].
Osterix, which acts downstream of Runx2, is an essential transcription factor for bone for-
mation that contributes at all stages of differentiation. These transcription factors promote
the production of enzymes and non-collagenous proteins, such as ALP, Osteopontin, and
Osteocalcin, which are bone formation markers [23]. The mRNA expression levels of Runx2,
Osx, Opn, and Ocn after 72 h of differentiation induction were significantly induced by
treatment with SRE. These data support the hypothesis that SRE promotes the early stage
of osteoblast differentiation. After 21 d of differentiation culture, SRE increased the mRNA
expression levels of Osx and Opn at low concentration, but the expression levels were less
than those induced by BMP-2. In addition, SRE did not affect the mRNA expression of
Osteocalcin. These expression analyses and alizarin red staining data suggest that SRE may
promote late-stage osteogenesis to a slight degree. The cause of the slight effect of SRE on
mature osteoblasts might be related to its weaker induction of Osx mRNA expression than
that attributable to BMP-2, even though the extract induced mRNA expression in Runx2,
an inhibitor of mature osteoblasts, to similar levels as BMP-2. In the alizarin red staining
assay, the concentration that best promoted mineralization shifted from 1 µg/mL at 14 d
to 0.1 µg/mL at 21 d. One possible reason for this phenomenon is that the function of
Runx2 changes as differentiation progresses. SRE increased Runx2 mRNA expression in the
early and late stages of osteoblast differentiation; therefore, the extract might significantly
promote osteoblast differentiation until calcified nodules begin to form at 14 d and then
change to slight promotion of osteoblast differentiation until matrix maturation at 21 d.

One of the intracellular signal pathways that activates the transcription of Runx2 and
Osterix is the BMP/Smad signaling pathway. BMP-2 is related to the production of bone
matrix proteins that turn on three cytoplasmic proteins, Smads 1, 5, and 8, via BMP receptors,
and the activated Smads 1/5/8 form a complex with Smad4. After the complexes translocate
into the nucleus, they bind to Smad-binding elements, which are in the transcriptional
regulatory domain and regulate the transcription of Runx2 [24]. Smads are classified into
three groups: receptor-regulated Smads (R-Smads), common-partner Smads (Co-Smads), and
inhibitory Smads (I-Smads). Smads 1 and 5 are R-Smads that specifically transduce BMP
signaling, and Smad4 is a Co-Smad involved in signaling transduction by forming a complex
with R-Smads [25]. SRE increased the mRNA expression levels of Smads 1, 4, and 5 at 72 h
and 21 d of culture, indicating that Smads 1, 4, and 5 were activated from the early phase
through the late stage, and SRE may promote osteogenesis via BMP/Smad signaling. 17β-
Estradiol promotes osteoblastic differentiation but does not affect the mRNA expression of
Runx2. Thus, the effect of SRE on MC3T3-E1 cells may be mediated by activation of the
BMP/Smad signaling pathway rather than by ER ligand activity [26,27].

When monocytic and macrophagic cells are stimulated by the receptor activator
of NF-κB ligand (RANKL), they differentiate into mononuclear osteoclasts, which fuse
with multinuclear osteoclasts that have bone resorption ability [28]. Tartrate-resistant
acid phosphatase (TRAP) is an enzyme produced when progenitor cells differentiate into
osteoclasts and is a marker of bone resorption [29]. SRE significantly inhibited TRAP
activity but also had a cytopathic effect. Therefore, suppression of TRAP activity may
be caused by cytotoxicity, and SRE may have no specific effect on bone resorption. This
lack of a bone resorption effect may seem to be a negative for osteoporosis treatment;
however, strong bone resorption inhibitors, such as bisphosphonates, may increase the risk
of atypical femur fractures resulting from abnormal bone remodeling [30,31]. Consequently,
we consider agents that promote bone formation without inhibiting bone resorption could
improve osteoporosis while maintaining normal bone remodeling.

To improve menopausal symptoms caused by low estrogen production, such as hot
flashes and depression, many people eat foods or take supplements with mild estrogen-
like effects, such as Vitex trifolia L., rather than seeking treatment at a hospital [32,33].
In addition to the aforementioned unpleasant symptoms, dramatic reductions in bone
mass and density are a concern, but few supplements or foods provide both menopausal
symptom relief and bone maintenance benefits.
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SERMs, the first-line treatment for postmenopausal osteoporosis, have side effects
related to low estrogen symptoms, such as hot flashes and leg cramps. Therefore, clinical
trials have recently been conducted combining SERMs and estrogen preparations in a
treatment called tissue selective estrogen complex (TSEC) [34–39]. TSEC increased bone
mineral density in the lumbar spine and the femoral neck, improved lipid profiles, and
ameliorated hot flashes and vaginal conditions better than raloxifene or bazedoxifene
alone [35,39]. It is possible that SRE, which not only has estrogen-like effects but also exerts
bone-forming effects independent of ER, may improve both postmenopausal symptoms
and osteoporosis risk and improve quality of life during menopause.

SR is an underutilized plant that has never been studied, and its constituents are still
unknown. A large number of flavonoids, such as baicalin and wogonin, have been reported
as constituents of the root of S. baicalensis Georgi (SB) [40], a plant of the same genus. HPLC
analysis of SRE was carried out under conditions that allowed analysis of compounds
of a wide range of polarity in SB extract (SBE). HPLC chromatograms of SRE (Figure S2)
showed compounds with absorption similar to flavonoids such as baicalin and wogonin in
SBE. It also showed peaks with maximum absorption around 250–270 nm and 300–350 nm
(tR: 6.14, 6.49, 7.34, 13.25 and 13.49 min) in the wide range of polarity, suggesting that it
may contain flavonoids as a major component.

4. Materials and Methods
4.1. Plant Material and Extract Preparation

The whole plant of SR was collected on Amami-Oshima (Kagoshima, Japan) in August
2019 and was identified by a taxonomist (Nobuyuki Tanaka). Voucher specimens were
deposited in the School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
(E08269) and the TNS herbarium (TNS0134184). SR was dried before extraction. SB was
purchased from Uchida Wakanyaku Ltd. (Tokyo, Japan). SR and SB (1 g each) were
pulverized, then extracted with 80% MeOH aq. (10 mL) by sonication (15 min) and
concentrated under low pressure. The obtained SRE was dissolved in DMSO (Kanto
Chemical, Tokyo, Japan) for use in subsequent experiments.

4.2. Cell Lines and Cell Culture

HEK293 human embryonic kidney cells, MC3T3-E1 mouse calvaria-derived pre-
osteoblastic cells, RAW264.7 mouse macrophage-like cells, and MCF7 human breast carci-
noma cells were obtained from the RIKEN BioResource Research Center (Ibaraki, Japan).
HEK293 and MCF7 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM;
Nacalai Tesque, Kyoto, Japan), supplemented with 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin (P/S; Nacalai
Tesque). MC3T3-E1 and RAW264.7 cells were cultured in α-minimum essential medium
(α-MEM; Nacalai Tesque) supplemented with 10% FBS and 1% P/S. All cultures were
incubated at 37 ◦C with 5% CO2.

4.3. Luciferase Reporter Assays of ER Transcription Activity

HEK293 cells grown to 70% confluence were transfected with the expression plas-
mid pBIND-ERα (50 ng/µL; Promega, Madison, WI, USA) and reporter plasmid pG5-Luc
(50 ng/µL; Promega) using PEI MAX (50 µg/mL; Polysciences, Warrington, PA, USA)
and Opti-MEM (Thermo Fisher Scientific). After incubation of the plasmids with the
transfection reagent for 20 min at room temperature, HEK293 cells were transfected with
the plasmid-reagent solution for 6 h at 37 ◦C. Transfected cells were seeded in a 96-well
plate at 2 × 104 cells/well and treated with screening sample (10 µg/mL) or various
concentrations of SRE or 1 nM 17β-estradiol (positive control; Sigma-Aldrich, St. Louis,
MO, USA) in DMSO at 37 ◦C for 24 h. After incubation, the medium was then removed,
and luminescence was measured using a luciferase assay system (Promega) with a FLU-
Ostar Omega microplate reader (BMG LABTECH, Ortenberg, Germany) according to the
manufacturer’s instructions.
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4.4. ALP Activity Assay

MC3T3-E1 cells were seeded in a 24-well plate at a density of 1 × 105 cells/well. After
the cells reached 90% confluence, the culture medium was exchanged with differentiation
medium containing Osteoblast-Inducer Reagent (TaKaRa Bio, Shiga, Japan). Then, the cells
were incubated with various concentrations of SRE or 6.25 µg/mL bone morphogenetic
protein-2 (BMP-2; Bio Legend, CA, USA) for 72 h. Cell lysates were obtained by adding 1%
NP-40 (Nacalai Tesque) and were diluted with buffer [0.2 M Tris-HCl (pH 9.5) and 1 mM
MgCl2]. ALP activity was measured using the LabAssay ALP Kit (FUJIFILM Wako Pure
Chemical, Tokyo, Japan) according to the manufacturer’s instructions. The absorbance at
405 nm was measured using a FLUOstar Omega microplate reader and was compared
with the absorbance of p-nitrophenol standards. The protein concentration of the cell
lysates was determined using the TaKaRa BCA Protein Assay Kit (TaKaRa Bio). The results
are expressed as the concentration of p-nitrophenol per µg of protein as a ratio (%) of
the control.

4.5. Mineralization Assay

MC3T3-E1 pre-osteoblast cells were seeded on a 24-well plate at a density of
1 × 105 cells/well and grown until 90% confluence. The culture medium was then changed
to differentiation medium, and the cells were exposed to various concentrations of SRE or
6.25 µg/mL BMP-2 (positive control). The medium was changed every 3–4 d. After 14 and
21 d of differentiation, the supernatant was removed, and the cells were fixed with 10%
formaldehyde neutral buffer (Nacalai Tesque). The fixed cells were stained with alizarin red
solution (IWAI CHEMICALS, Tokyo, Japan) according to the manufacturer’s instructions,
and 5% formic acid was added to each well. The absorbance at 415 nm of the lysates was
measured using a FLUOstar Omega microplate reader.

4.6. TRAP Activity Assay

RAW264.7 cells were seeded in a 96-well plate at a density of 5 × 103 cells/well and
incubated for 24 h at 37 ◦C. Then, differentiation to osteoclasts was induced by adding a re-
combinant receptor activator of NF-κB ligand (sRANKL; Oriental Yeast Co., Tokyo, Japan).
The cells were treated with various concentrations of SRE at the same time. After incu-
bation for 5 d at 37 ◦C, the supernatant was removed, and the differentiated cells were
lysed and incubated in 50 mM citrate buffer (pH 4.6) containing 10 mM tartrate, 0.1%
TritonX-100, and 10 mM p-nitrophenyl phosphate hexahydrate for 30 min at 37 ◦C. The
reaction was terminated by the addition of 2 mM NaOH, and then the absorbance was
measured at 405 nm.

4.7. Measurement of Cell Proliferation by the MTT Assay

MCF7 cells and RAW264.7 cells were plated in a 96-well plate at a density of
1 × 105 cells/mL and incubated for 24 h at 37 ◦C. Then the medium was changed, and the
cells were incubated with various concentrations of SRE for 48 h or 5 d. After incubation,
0.1 mg/mL MTT was added to each well and incubated at 37 ◦C for 4 h. The supernatant
was removed, and DMSO was added to each well to dissolve the formazan crystals. The
absorbance was measured with a microplate reader at a wavelength of 570 nm and a
reference wavelength of 655 nm.

4.8. Quantitative Real-Time PCR

Total RNA was extracted from MC3T3-E1 cells that were differentiated as described in
the ALP and mineralization assays using the RNeasy mini kit (Qiagen, Valencia, CA, USA)
according to the manufacturer’s instructions. cDNA was synthesized from 250 ng of total
RNA using the Prime Script RT-PCR kit (Qiagen) and a TaKaRa PCR Thermal Cycler Dice
(TaKaRa Bio). Quantitative real-time PCR was performed using GoTaq® Green Master
Mix (Promega) according to the manufacturer’s instructions on an Applied Biosystems®

StepOnePlus™ (Thermo Fisher Scientific). The cycling conditions were 95 ◦C for 2 min,
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followed by 40 cycles of denaturation at 95 ◦C for 15 s and annealing and extension at
65 ◦C for 1 min. The mRNA expression levels of the target genes were calculated by the
2−∆∆Ct method using StepOne Software v2.3, and were normalized to β-actin. The primers
used were as follows: Alpl sense: 5′-GCA GTA TGA ATT GAA TCG GAA CAA C-3′

and antisense: 5′-ATG GCC TGG TCC ATC TCC AC-3′, Runx2 sense: 5′-AGG GAC TAT
GGC GTC AAA CA-3′ and antisense: 5′-GGC TCA CGT CGC TCA TCT T-3′, Osx sense:
5′-CGC TTT GTG CCT TTG AAA T-3′ and antisense: 5′-CCG TCA ACG TTA TGC-3′,
Ocn sense: 5′-CAG ACA AGT CCC ACA CAG-3′ and antisense: 5′-GCA GAG TGA GCA
GAA AGA-3′, Opn sense: 5′-ACA CTT TCA CTC CAA TCG TCC CTA C-3′ and antisense:
5′-GGA CTC CTT AGA CTC ACC GCT CTT-3′, Smad1 sense: 5′-ACG GGT TCG AGA CCG
TGT AT-3′ and antisense: 5′-CAT CCT GCC GGT ATT CG-3′, Smad4 sense: 5′-TGG GTC
CGT GGG TGG AAT A-3′ and antisense: 5′-GAG GTC ATC CAC ACC GAT GC-3′, Smad5
sense: 5′-ACC GCA CAT GCC ACA AAA C-3′ and antisense: 5′-CAG GGG AAG GAG
GAT AGG G-3′, and β-actin sense: 5′-AAG GCC AAC CGT GAA AAG AT-3′ and antisense:
5′-GTG GTA CGA CCA GAG GCA TAC-3′.

4.9. HPLC Analysis

The SRE and SBE were dissolved in 80% MeOH to a final concentration of 2 mg/mL
and filtered through a 0.45 µm GL Chromato disk 13 A (GL Sciences, Tokyo, Japan) before
HPLC. HPLC analysis were performed on an X-LC system (pump: 3185PU, degasser:
3080DG, mixer: 3180MX, column oven: 3067CO, autosampler: 3159AS, detector: 3110MD;
JASCO, Tokyo, Japan). A 5C18-MS-II (4.6 mm i.d. ×150 mm, 5 µm) (Nacalai Tesque) was
used for the chromatography at a flow rate of 1.0 mL/min and a column temperature
of 40 ◦C. The injection volume was 5 µL. The mobile phase was composed of A (0.1%
TFA aq.) and B (CH3CN) using a gradient ranging from 10% to 90% mobile phase B in
a period time of 20 min. The detection wavelength was measured using a PDA range of
200–650 nm, and chromatograms at 210 nm for detecting several classes of compounds
and 200–500 nm for detecting the characteristic UV of flavonoids were selected. Reten-
tion times of baicalin and wogonin standards (FUJIFILM Wako Pure Chemical) were as
follows: baicalin: 8.12 min, wogonin: 13.32 min. All HPLC chromatograms are shown in
the Supplementary Material (Figure S2).

4.10. Statistical Analysis

The results are expressed as mean ±SE. Statistical comparisons of different treatment
groups were examined using one-way analysis of variance (ANOVA) with Dunnett’s
multiple comparison test using JMP 14 (SAS Institute, Cary, NC, USA). Differences were
considered significant at p < 0.05 and p < 0.01.

5. Conclusions

A luciferase reporter assay showed that SRE had ER transcription-promoting activity
in HEK293 cells and no proliferation-promoting activity in MCF-7 breast cancer cells. The
extract also enhanced the ALP activity of MC3T3-E1 osteoblast-like cells, and showed
weak calcification-promoting activity. These findings were supported by the results of the
gene expression analysis, which showed activation of the bone-formation-related genes
Runx2 and Osx and bone formation markers. The gene expression analysis revealed
that SRE might promote osteogenesis via the BMP/Smad signaling pathway. According
to the alizarin red stain assay and gene expression analysis by quantitative real-time
PCR, SRE acts more strongly on osteoblasts in the early stage of differentiation than
in the late stage of differentiation. On the other hand, it showed no specific effect on
osteoclast differentiation. Since SRE not only has an estrogen-like effect but also has a
bone-formation-promoting effect without inhibiting bone resorption, it has the potential to
improve both postmenopausal complaints and the risk of osteoporosis while maintaining
normal bone remodeling.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11162075/s1, Figure S1: Cytotoxicity of SRE on MC3T3-E1
cells. The proliferation of MC3T3-E1 cells was assessed using the MTT assay. The control contained
DMSO only. Data are the mean ± SE of three independent experiments (n = 3); Figure S2: HPLC
chromatograms of SRE and SBE. Detection: (a) 210 nm, (b) 200–500 nm.
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