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IFI27 is a potential therapeutic target for HIV infection
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ABSTRACT
Background: Therapeutic studies against human immunodeficiency virus type 1 (HIV-1) infec-
tion have become one of the important works in global public health.
Methods: Differential expression analysis was performed between HIV-positive (HIVþ) and HIV-
negative (HIV-) patients for GPL6947 and GPL10558 of GSE29429. Coexpression analysis of com-
mon genes with the same direction of differential expression identified modules. Module genes
were subjected to enrichment analysis, Short Time-series Expression Miner (STEM) analysis, and
PPI network analysis. The top 100 most connected genes in the PPI network were screened to
construct the LASSO model, and AUC values were calculated to identify the key genes.
Methylation modification of key genes were identified by the chAMP package. Differences in
immune cell infiltration between HIVþ and HIV- patients, as well as between antiretroviral ther-
apy (ART) and HIVþpatients, were calculated using ssGSEA.
Results: We obtained 3610 common genes, clustered into nine coexpression modules. Module
genes were significantly enriched in interferon signalling, helper T-cell immunity, and HIF-1-sig-
nalling pathways. We screened out module genes with gradual changes in expression with
increasing time from HIV enrolment using STEM software. We identified 12 significant genes
through LASSO regression analysis, especially proteasome 20S subunit beta 8 (PSMB8) and inter-
feron alpha inducible protein 27 (IFI27). The expression of PSMB8 and IFI27 were then detected
by quantitative real-time PCR. Interestingly, IFI27 was also a persistently dysregulated gene iden-
tified by STEM. In addition, 10 of the key genes were identified to be modified by methylation.
The significantly infiltrated immune cells in HIVþpatients were restored after ART, and IFI27
was significantly associated with immune cells.
Conclusion: The above results provided potential target genes for early diagnosis and treatment
of HIVþpatients. IFI27 may be associated with the progression of HIV infection and may be a
powerful target for immunotherapy.
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Introduction

More than 30 years after the discovery that human

immunodeficiency virus (HIV) is the causative agent of

acquired immunodeficiency syndrome (AIDS), HIV

remains a major challenge to global public health [1].

According to statistics, more than 36.9 million people

were infected with HIV in 2018 [2]. Early receipt of

antiretroviral therapy (ART) after a positive diagnosis
of HIV reduces HIV-related mortality and morbidity [3].

ART has transformed HIV-1 from a fatal disease to a
chronic disease [4]. But the persistence of HIV in poten-
tially infected cells is a major obstacle to treatment [5].
ART must be taken lifelong, with infected cells having a
half-life of 43.9months, which makes them very
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resistant to ART [6]. Because of the steady rise of drug-
resistant HIV-1 strains and the issue of treatment tox-
icity, further research into additional ways to control
HIV-1 infection is needed [7,8]. Furthermore, discontinu-
ation of therapy can certainly lead to viral rebound that
is due to cells harbouring HIV-1 DNA integrated into
the host genome [9,10]. Thus, suppressive lifelong ART
alone does not conclusively address the HIV pandemic
[11]. The long-term goal of HIV treatment is to enable
HIVþ patients to stop lifelong ART by developing strat-
egies to eradicate cells that are likely to be infected
with HIV. Therefore, a better understanding of the
mechanisms that regulate HIV-1 infection is essential
for intervention in HIV persistent state and for the
development of therapeutic strategies.

There is evidence that the initial antiviral immune
response may also regulate the establishment and per-
sistence of the viral reservoir [12,13]. CD4 T cells are
central to host immunity by providing help to other
components of the immune system [14]. CD4 T-cell
responses are protective against various pathogenic
infections including HIV [15]. With increasing reports of
severe immunodeficiencies, CD4 cell counts become a
critical part of the care of HIVþ individuals [16]. Recent
studies have found that non-HIV specific, TCR-activated
CD8þ T cells suppress HIV transcription through
immune regulatory mechanisms [17]. Tissue resident
memory CD8þ T cells predominate and may be critical
for maintaining control of HIV replication [18].

Several epigenetic changes, particularly DNA methyla-
tion of genes, have been described in HIV transcriptional
silencing and have been explored as targets for HIV-1
latency reversal strategies [19]. DNA methylation is a syn-
thetic, reversible, and heritable epigenetic mark, and DNA
methylation of CpG dense zones at gene promoters is
often associated with direct or indirect transcriptional
repression, termed CpG islands [20]. Clinical features,
such as timing of infection and duration of antiretroviral
therapy, have all been positively associated with accumu-
lation of HIV-1 promoter methylation [21,22].

To further understand the role of gene expression
and methylation modifications in HIVþ patients, we
performed bioinformatics analysis of HIV-associated
sequencing data from public databases. Identification
of potential targets relevant for diagnosis and treat-
ment of HIVþ patients.

Materials and methods

Data sources

The HIV data were collected from gene expression
omnibus (GEO) databases. GSE29429 included gene

expression profiles of whole blood from acute HIV-posi-
tive individuals and uninfected controls patients. The
samples were sequenced on two platforms by array,
GPL6947 and GPL10558. In the GPL6947, there were
147 HIV-positive individuals (87 un-treatment and 60
ART) and 38 uninfected controls. In the GPL10558,
there were 30 HIV-positive individuals and 17 unin-
fected controls. GSE33580 included gene expression
profiles of whole blood 43 HIV-resistant and 43 HIV-
negative women based on GPL570 by array. The data
of GSE29429 and GSE33580 were analysed using lumi R
package for normalization method. GSE119234 included
gene expression profiles of eight different B-cell subsets
which sorted from lymph nodes of 20 HIV- and 31
HIVþ individuals based on GPL21697 by high-through-
put sequencing. Raw data were background subtracted
and normalized as performed by the DEseq2 package
of Bioconductor. GSE67748 included DNA methylation
profiles of cerebellum from eight HIVþ and 12 HIV-
human subjects. We used chAMP R package to gener-
ate the normalized beta values.

Differential analysis

The differential analysis between the HIVþ patients
and controls (or ART and untreatment HIVþ patients)
was performed by the Limma R software package. The
differentially expressed genes (DEGs) were defined as
genes with a p value <.05. The Limma package was
used to obtain the differentially methylated CpG sites
with adjusted p value <.05.

Construction of networks

The coexpression network for selected DEGs was per-
formed using Weighted correlation network analysis
(WGCNA) by “WGCNA” R package. The soft-threshold-
ing power that we chose was used as the correlation
coefficient threshold. Then built a minimum number
of genes in modules. The expression pattern of eigen-
gene in each module is condensed into "module
eigengene (ME)". Genes in MEs were considered had
similar expression patterns.

Through placing module genes into The STRING
(Search Tool for Retrieval of Interacting Genes/
Proteins), the protein-protein interaction (PPI) network
was constructed by screening scores greater than 900.
PPI network was displayed through Cytoscape soft-
ware. Genes were ranked by their degree of connectiv-
ity in the network.
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Enrichment analysis

To examine Gene Ontology (GO) and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) for module
genes, the clusterProfiler R software package was used to
perform enrichment analysis. The biological process (BP)
was a kind of GO. The R package clusterProfiler was used
to obtain the background set for gene set enrichment
analysis (GSEA). GSEA runs in Java environment and con-
ducted between HIVþ and HIV- subtypes. A p value <.05
was considered statistical significance. Single-sample
GSEA (GSVA) was carried out using the GSVA package.
For each sample, a score for the enrichment of a set of
genes using gene expression profile was obtained.

Single sample gene set enrichment
analysis (ssGSEA)

The infiltration level of immune cell was calculated by
ssGSEA in GSVA R software package. We analyzed the
infiltration of immune cells between HIVþpatients
and controls (or ART and untreatment HIVþpatients).
p Value <.05 was considered significant.

LASSO regression analysis

The least absolute shrinkage and selection operator
(Lasso) Binomial regression was building using glmnet R

package [23]. When performing lasso regression, we
retained potential predictors with non-zero coefficients.
The optimal lambda value that corresponded most
accurate value of cross validation errors was determined
to identify potential predictors. The area under the curve
(AUC) were performed using pROC R package.

Sample collection

Peripheral blood samples of 10 persons with primary
HIVþ, 10 patients under ART and 10 age-matched
healthy controls were collected from the Fourth People’s
Hospital of Nanning and peripheral blood samples of 10
persons with primary HIVþ, 10 patients under ART and
10 age-matched healthy controls were collected from
Guiping People’s Hospital. All patients gave written
informed consent. The human study was approved by
the local research ethics committees of Nanning Fourth
People’s Hospital and Guiping people’s Hospital. The
study conformed to the Declaration of Helsinki principles.

Quantitative real-time PCR (qRT-PCR)

The total RNA was extracted from peripheral blood
using TRIzol reagent (Invitrogen). Total RNA was reverse
transcribed into cDNA using RevertAid RT kit (Thermo
Fisher). The cDNA was amplified qRT-PCR using Applied

Figure 1. The flowchart of this study.
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BiosystemsTM PowerUpTM SYBRTM Green mix (Thermo
Fisher). The primer sequences were shown in Table S1.
Relative gene expression was calculated using the
2�DDCT method, with b-actin as the reference gene.

Results

Differentially expressed genes in HIVþand HIV-

The flowchart of this study is shown in Figure 1. To
obtain gene expression signatures associated with

HIVþ patients, we performed differential analysis of
sequencing data in GPL6947 and GPL10558 in
GSE2942, respectively. A total of 7195 differentially
expressed genes (DEGs) were obtained in GPL6947
and 5723 DEGs were obtained in GPL10558 (Figure
2(A)). Among them, we found 3610 common genes
that were up- or down-expressed simultaneously in
both sets of DEGs (Figure 2(B)). Further, WGCNA was
utilized to explore the coexpression behaviour of com-
mon genes. We identified nine coexpression modules
(Figure 2(C)). Correlation analysis between modules

Figure 2. Synergistic expression behaviour of HIV-associated genes. (A) Volcano plot of differentially expressed genes in GPL6947
or GPL10558. (B) Common genes that were up – or down-regulated simultaneously in both sets of DEGs. (C) Clustering tree of
coexpression module genes. (D) Eigengene adjacency heatmap of the strength of correlation between modules and clinical trait.
(E) Heatmap of correlation between module and clinical phenotype. Red represents positive correlation and blue represents nega-
tive correlation. Each row represents a module and each column represents a clinical trait. (F) Module expression changes with
time of enrolment after HIV infection. Module expression changes with time of enrolment after HIV infection.
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and clinical traits was performed using Pearson’s cor-
relation method, and modules were clustered into two
subclasses (Figure 2(D)). Of these, MEyellow (module
7) had the strongest positive correlation with HIVþ
(Figure 2(E)). The modules showed different trends of
up- or down-regulation with increasing time after
enrolment (confirmed acute) of HIV infection
(Figure 2(F)).

Biological functions of module genes enrichment

Enrichment analysis of module genes indicated that they
were mainly involved in upregulated biological progres-
sion of “response to type III interferon”, “regulation of
RNA interference”, and “interferon-b secretion”; downre-
gulated “Toll signalling pathway”, “Th 2 cell differ-
entiation”, and “Th1 type immune response” (Figure
3(A)). As well as the up-regulated “cell cycle”, “NOD-like

Figure 3. Biological functions and signalling pathways in which module genes participate. (A) Module genes significantly involved
in the main up- or down-regulated biological processes. (B) Module genes significantly involved in the main up – or down-regu-
lated KEGG pathways. (C) KEGG in GSEA of module gene involvement.
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receptor signalling pathway”, and “primary
immunodeficiency” KEGG pathways; the down regulated
“autophagy animal”, “Th17 cell differentiation”, and “HIF-
1 signalling pathway” KEGG terms (Figure 3(B)). GSEA
results also exhibited module genes involved up- or
down-regulated KEGG terms (Figure 3(C)). Including up-
regulated human immunodeficiency viral 1 infection,
NOD-like receptor signalling pathway, and Epstein–Barr
viral infection. Down-regulated PI3K�Akt-signalling path-
way, autophagy-animal, and Rap1-signalling pathway.

Genes with persistent expression changes

As the time after enrolment of HIV infection, the
expression of genes may become persistently dysregu-
lated. Using STEM software analysis, we obtained 142

genes from coexpression module genes with consist-
ently dysregulated expression (p< .05). These genes
clustered into distinct modules according to changes in
expression trends (Figure 4(A,B)). SubtypeGSEA results
showed that MAPK-signalling pathway, complement
and coagulation cascades, and starch and sucrose
metabolism were consistently up-regulated; homolo-
gous recombination, Fanconi anaemia pathway, and
butanoate metabolism were consistently down-regu-
lated in the period after HIV infection (Figure 4(C)).

Identification of key genes

To identify the significant genes in the module genes,
we performed PPI network analysis. The top 100 genes
with the highest degree of connectivity in the PPI

Figure 4. Persistent changes in genes and pathways after HIV enrolment. (A) Heatmap of gene with persistent up- or down-
expression from enrolment to 24weeks of HIV infection. (B) The box plots of STEM genes in four clusters. (C) Signalling pathways
that are consistently up- or down-regulated from enrolment to 24weeks of HIV infection. E: enrolment; W1-24: weeks at 1, 2, 4,
12, and 24 after enrolment.
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network were identified as important genes (Figure
5(A)). We randomly selected one-fourth of the
HIVþ samples in GPL6947 as training set and the
remaining three-fourth as validation set for LASSO
region analysis. We then construct a diagnostic model
based on 12 signature genes: PSMB8 (proteasome 20S
subunit beta 8), POLR2K (RNA polymerase II, I and III
subunit K), PSMB9 (proteasome 20S subunit beta 9),
PPP2R5D (protein phosphatase 2 regulatory subunit
B’delta), PSME1 (proteasome activator subunit 1),
CCNE1 (cyclin E1), BRCA1 (BRCA1 DNA repair associ-
ated), RPL15 (ribosomal protein L15), XAF1 (XIAP-asso-
ciated factor 1), IFI27 (interferon alpha inducible
protein 27), MCM7 (minichromosome maintenance

complex component 7), and UBE2L6 (ubiquitin conju-
gating enzyme E2 L6) (Figure 5(B,C)). Signature genes
had an AUC value of 0.937 in the training set (Figure
5(D)). The AUC value was 0.997 in the validation set
(Figure 5(E)). Importantly, the potential diagnostic role
of these signature genes was validated by an external
dataset, GPL10558 (AUC value was 0.949) (Figure 5(F)).
These genes were considered key HIV-associated
genes. On the other hand, we obtained genes with
AUC values greater than 0.9 in both GPL6947 and
GPL10558 (Figure 5(G)). Among them, PSMB8 and
IFI27 were also signature genes. Surprisingly, IFI27 was
present in STEM results and became progressively dys-
regulated genes as HIV progresses. In addition, PSMB8

Figure 5. PPI network analysis of module genes identifies key genes. (A). Top 100 most connected genes in the PPI network. The
larger the node, the greater the degree. (B). Selection of optimal parameter (k) in the LASSO model. The log(k) value of 12 is
used for further analysis. (C) LASSO coefficient profiles of 12 signature genes. (D) AUC values of the signature genes in the train-
ing set. (E) AUC values of the signature genes in the validation set. (F) AUC values of the signature genes in GPL10558. (G) AUC
values of important genes. (H) Expression levels of PSMB8 and IFI27 in ART or HIV-positive individuals of GPL6947. (I) Relative
expression levels of PSMB8 and IFI27 in blood samples of controls, HIV-positive individuals, and ART patients detected by qRT-
PCR. ��p Value <.01. Ctrl: controls; ART: antiretroviral therapy. (J) Correlations between key genes and clinical features.
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and IFI27 showed decreased expression levels after
ART (Figure 5(H)). This was also confirmed by the
results of qRT-PCR experiments in clinical blood sam-
ples (Figure 5(I)). Correlation analysis showed opposite
levels of correlation between viral load and CD4 count
with key genes (Figure 5(J)). Suggesting that key
genes may be relevant for the treatment of HIV.

Identification of methylation marks

To identify methylation modifications during HIV
development, we performed differential analysis of
GSE67748. Then, 216136 differentially methylated posi-
tions (DMPs) were found between HIVþ and HIV-
patients (Figure S1). Which included 85.65% hypome-
thylated DMPs and 14.35% hyermethylated DMPs.
Genes were considered as methylation marks when
their deltabeta values and logFC values were in
opposite directions. After comparison with common
genes, we found 2647 methylation marks (Figure 6).
PSMB8, POLR2K, PSMB9, PPP2R5D, PSME1, CCNE1,
BRCA1, RPL15, MCM7 and UBE2L6 of key genes were
all subject to methylation modification.

Immune cell infiltration in HIV infection

Immune cell expression was calculated for each sam-
ple by ssGSEA and compared for differences in
immune cell infiltration between HIVþ and HIV-
patients in GPL6947, GPL10558, GSE119234, and
GSE33580. Th1 cells and activated dendritic cells
(aDCs) showed significantly up-regulated expression in

all three datasets, Eosinophils, iDC, Mast cells,
Neutrophils and B cells were significantly down-regu-
lated (Figure 7(A)). The infiltration of immune cells
was altered when HIVþpatients received ART (Figure
7(B)). This showed that ART was associated with infil-
tration of immune cells. We then calculated the correl-
ation between key genes and immune cells in
HIVþ patients (Figure 7(C)). There was a significant
positive correlation between Th1 cells, Th2 cells, and
aDC with IFI27.

Discussion

The aim of this study was to investigate gene expres-
sion patterns in HIVþpatients, identify candidate
gene biomarkers, and complex mechanisms during
the course of the disease. Attempts were made to
screen for potential therapeutic targets to halt exacer-
bations in HIV-positive individuals. We constructed a
coexpression network by taking advantage of gene
expression differences between HIVþ and HIV-
patients in the GEO database. Identified gene sets
associated with the course of HIVþ patients, as well as
persistently dysregulated signalling pathways. Further
utilization of the PPI network and LASSO model identi-
fied key genes, potentially involved in the control of
viral replication. In addition, the expression of some
key genes is modified by methylation, which may be
an important means of regulating the progression of
HIV infection.

We performed differential analysis of the sequenc-
ing data from the two data platforms and obtained

Figure 6. Methylation and expression levels of methylation marks.
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DEGs that were up- or down-regulated simultaneously,
so that the obtained gene sets might be more rele-
vant to HIV. WGCNA builds network models that rely
on statistical methods, improves simple correlation
networks, and quantifies the extent to which these
genes have identical neighbours [24,25]. WGCNA pro-
vides an effective method to identify gene sets with
similar expression for correlation with phenotype [26].
In the results of our analysis, the expression trends of
different modules differed with longer time after
enrolment of HIV infection. This implies that module
genes may be associated with the course of HIV.
Further using STEM software, we obtained consistently
expressed dysregulated genes significantly associated
with HIV progression. These genes may influence HIV
exacerbation.

Based on the enrichment analysis of module genes,
we obtained the biological functions that were grad-
ually up- or down-regulated as the time after HIV

infection was extended. Interferons (IFNs), which con-
trol HIV-1 replication, produce a marked and transient
reduction in plasma viral load [27]. Post-HIV-1 expos-
ure elicits a defensive role of the innate immune sys-
tem, including interferon signalling, one of the main
effectors [28]. Studies have confirmed that Th1/17
polarization enriched CD4 T cells have higher suscepti-
bility to HIV-1 infection in in vitro and in vivo experi-
ments [29]. Studies have reported the ability of
nucleotide binding oligomerization domain (NOD)-like
receptors (NLRs) in platelets to sustain viral infection
and replication, including HIV-1 [30]. On the other
hand, NLRP3 is an NLR family member whose activa-
tion within microglia is an important mechanism by
which cells exert anti-HIV [31]. The regulation of HIV-1
infection by NLRs needs more in-depth study. The viral
protein Vpr of HIV promotes HIF-1 a expression by
activating cellular oxidative stress, which in turn pro-
motes the transcription of viral genes [32]. In the

Figure 7. Immune cell infiltration levels in HIVþ patients. (A) Differences in immune cell infiltration between HIV+ and HIV-
patients in the four datasets. (B) Differences in immune cell infiltration between ART and HIV+ patients. (C) Correlation between
immune infiltrating cells and key genes.
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results of our analysis, up- or down-regulation of bio-
logical functions, both related to the host immune
inflammatory response after HIV infection.

The results of our analysis reconfirmed the differen-
ces in immune cell infiltration levels between
HIVþ and HIV- patients [33,34]. Dendritic cells (DCs)
are the first HIV virus-exposed immune cells linking
innate and adaptive immune responses, holding prom-
ise for functional treatment of HIV-1 infection [35].
Physiological proliferation of HIV-1-infected Th1 cells
plays a crucial role in supporting the persistence of
HIV-1 [36]. Extensive communication of mast cells with
other types of cells during viral infection may provide
more opportunities to halt viral spread [37,38].
Intriguingly, mast cells are thought to contribute to
persistent HIV-1 infection [39,40].

The key genes that we identified had elevated
expression in patients with HIV infection and
decreased expression in patients on ART. Suggesting
that these genes may be relevant for the treatment of
HIV. Among them, IFI27 was found to be strongly cor-
related with Th1 cells, Th2 cells and aDC, positively
correlated with viral load, and also negatively corre-
lated with CD4 count. These results suggested that
IFI27 expression may be involved in exacerbation of
HIVþ patients and was a potential therapeutic target.
Up-regulation of interferon (IFN) – alpha inducible pro-
tein 27 (IFI27) may be associated with inflammatory
events [41]. It has been confirmed that IFI27 was
expressed in higher amounts in HIVþpatients than in
HIV- patients and positively correlated with the viral
load of HIV-1 [42,43]. Suggested that IFI27 may con-
tribute to the mechanism of immunodeficiency, HIV
replication, in HIV-1 disease.

In addition, we found that 10 key genes were sub-
jected to low-level methylation modification. DNA
methylation of HIV-1 promoter/enhancer sequences
plays an important role in its maintenance [21]. Most
significant CPGs are hypomethylated in
HIVþ individuals compared to HIV- individuals [44].
Study has shown that HIV viral proteins are highly
involved in the complex interplay of chromatin rear-
rangements and that methyltransferases are involved
in this process [45]. DNA methylation, as a regulatory
mechanism of host genes involved in immune HIV-1
control, may have effectiveness in interfering with
therapeutic strategies [46,47].

This study has several limitations. First, our results
must be confirmed in a larger sample before they can
be applied to the clinic. Second, the sample informa-
tion of data obtained from public databases was still
limited, which may have limited the accuracy of

results interpretation to some extent. In addition, we
only screened key genes for their association with the
timing of HIV infection, with immune cells and viral
load, but there is a paucity of relevant studies on how
key genes regulate the disease course of HIV.
Especially, the data of the effect of IFI27 on HIV-1 rep-
lication experiment in cells will be performed in the
future. In conclusion, there is still a long way to go to
fully unravel the biological processes and potential tar-
gets of HIV using bioinformatics methods.

Conclusion

In summary, in this study, WGCNA was used to screen
key genes associated with HIV infection using a com-
bination of enrichment analysis and LASSO modelling.
IFI27 was identified to be associated with the timing
of HIV infection and ART, revealing its importance in
the alteration of the immune environment during HIV
infection, suggesting that IFI27 may be a potential
therapeutic target for HIV. The results of our analysis
provided new markers for understanding the molecu-
lar mechanisms underlying the progression of HIV
infection and for facilitating the exploration of thera-
peutic targets.
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