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Abstract Aging individuals exhibit a pervasive decline in adaptive immune function, with 
important implications for health and lifespan. Previous studies have found a pervasive loss of 
immune-repertoire diversity in human peripheral blood during aging; however, little is known about 
repertoire aging in other immune compartments, or in species other than humans. Here, we perform 
the first study of immune-repertoire aging in an emerging model of vertebrate aging, the African 
turquoise killifish (Nothobranchius furzeri). Despite their extremely short lifespans, these killifish 
exhibit complex and individualized heavy-chain repertoires, with a generative process capable 
of producing millions of distinct productive sequences. Whole-body killifish repertoires decline 
rapidly in within-individual diversity with age, while between-individual variability increases. Large, 
expanded B-cell clones exhibit far greater diversity loss with age than small clones, suggesting 
important differences in how age affects different B-cell populations. The immune repertoires 
of isolated intestinal samples exhibit especially dramatic age-related diversity loss, related to an 
elevated prevalence of expanded clones. Lower intestinal repertoire diversity was also associated 
with transcriptomic signatures of reduced B-cell activity, supporting a functional role for diversity 
changes in killifish immunosenescence. Our results highlight important differences in systemic vs. 
organ-specific aging dynamics in the adaptive immune system.

Editor's evaluation
This study introduces the killifish as a short-lived vertebrate model for immune aging and immunose-
nescence and characterizes the changes in the immune-repertoire during aging. This work provides 
an important first step in understanding how aging impacts the immune system in this model 
organism and will set the stage for many future studies.

Introduction
The adaptive immune system undergoes a severe and systemic decline in proper function with age, 
resulting in higher susceptibility to a wide range of infections and decreased efficacy of vaccination 
in elderly individuals (Ademokun et al., 2010; Kogut et al., 2012; Dunn-Walters and Ademokun, 
2010). In the humoral immune system, aging is accompanied by a decline in naïve B-cell output from 
the primary lymphoid organs; impaired production of specific antibodies in response to antigenic 
challenge; and a decline in antibody quality (Ademokun et al., 2010; Kogut et al., 2012; Sasaki 
et  al., 2011; Aberle et  al., 2013), as well as impairments in the establishment of novel immune 
memory (Aberle et al., 2013). These changes are major contributors to a generalized immunosenes-
cent phenotype that significantly impairs health and quality of life in the elderly.
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The efficacy of the humoral immune system rests on its ability to generate an enormous array 
of different antibody sequences, with a correspondingly vast range of antigen specificities, and to 
progressively adjust the composition of this antibody population in response to antigen exposure 
(Schatz and Swanson, 2011; Di Noia and Neuberger, 2007; Magor, 2015; Elhanati et al., 2015). 
Sampling the resulting repertoire of antibody sequences in an individual using high-throughput 
sequencing can yield important insights into the diversity, clonal composition, and history of antibody-
mediated immunity in that organism, as well as the effect of age, antigen exposure, and other factors 
on the diversity and functionality of the adaptive immune system (Weinstein et al., 2009; de Bourcy 
et al., 2017; Miho et al., 2018).

In humans, antibody-repertoire sequencing has uncovered a number of important age-related 
changes, including reduced numbers of clones and unique sequences, increased baseline mutation, 
more frequent and larger clonal expansions, impaired B-cell selection, and a shift toward the memory 
compartment (de Bourcy et al., 2017; Jiang et al., 2013; Wang et al., 2014). The responsiveness of 
the peripheral repertoire to vaccination is also impaired during aging (de Bourcy et al., 2017; Wang 
et al., 2014). While within-individual repertoire diversity declines with age, between-individual vari-
ability increases, with repertoires from older individuals differing more from one another than those 
from young individuals (de Bourcy et al., 2017).

Previous work in humans, however, has been limited by small sample sizes, a lack of temporal 
resolution, or a restriction to peripheral blood samples, which are known to systematically under-
represent the majority of B-cells resident in other organs and tissues (Siegrist and Aspinall, 2009; 
Tabibian-Keissar et al., 2016). Very little is known about how repertoire aging differs between distinct 
organs; in particular, almost nothing is known about how aging affects antibody repertoires at mucosal 
surfaces, which represent a crucial interface between the body and its microbial environment (Belkaid 
and Hand, 2014; Magadan et al., 2019). Even less is known about how aging might affect the anti-
body repertoires of vertebrates other than mice and humans.

In this study, we introduce the naturally short-lived turquoise killifish (Nothobranchius furzeri) (Brad-
shaw and Valenzano, 2020; Hu and Brunet, 2018; Poeschla and Valenzano, 2020; Reichwald et al., 
2015) as a model for adaptive immunosenescence. Here, we perform the first immune-repertoire 
sequencing experiments in this species, demonstrating that adult killifish express diverse and individ-
ualized heavy-chain repertoires that undergo rapid loss of diversity with age. The age-dependent loss 
of the antibody-repertoire diversity primarily affects the composition of expanded clones, with small 
naïve clones exhibiting much smaller age-related changes. By sequencing the repertoires of isolated 
intestinal samples, we further find that the killifish intestinal antibody repertoire exhibits much more 
dramatic age-dependent diversity loss than the body as a whole, possibly due to a much higher 
prevalence of expanded clones in the intestine, and that this loss of diversity is associated with gene 
expression changes indicating reduced B-cell activity. Taken together, our results reveal substantial 
differences between whole-body and organ-specific immune-repertoire aging, and establish the 
turquoise killifish as a powerful model for studying adaptive immune senescence.

Results
Establishing immunoglobulin sequencing in the turquoise killifish
To investigate the effect of age on the B-cell receptor repertoire diversity and composition in 
turquoise killifish, we implemented an RNA-based repertoire-sequencing protocol based on the 
published protocol of Turchaninova et al., 2016, using template switching (Zajac et al., 2013) to 
add unique molecular identifiers (UMIs) to each RNA transcript of the immunoglobulin heavy chain 
(Figure 1; Bradshaw and Valenzano, 2020) to correct for errors and biases in abundance arising 
during PCR and Illumina sequencing (Vollmers et al., 2013). To test the validity and replicability of 
results obtained using this protocol, we performed three replicate library preps on whole-body total 
RNA samples from four adult (8-week-old) adult male turquoise killifish from the short-lived GRZ 
strain (Figure 1—figure supplement 1). Independent repertoires from the same individual showed 
a high degree of similarity in their clonal composition, with an average inter-replicate correlation in 
clone size of r = 0.89 (Figure 1—figure supplement 2). Inter-repertoire divergences computed with 
the published repertoire dissimilarity index (RDI) metric (Bolen et al., 2017) consistently identified 
replicates from the same individual as much more similar than repertoires from different individuals 
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(Figure 1—figure supplement 3), demonstrating that this protocol is capable of accurately and repro-
ducibly reconstructing the expressed heavy-chain repertoires of individual killifish.

Aging in whole-body killifish repertoires
To investigate the effect of age on the structure and diversity of killifish antibody repertoires, we 
performed whole-body immunoglobulin sequencing on 32 adult male turquoise killifish from the 
short-lived GRZ strain (Hu and Brunet, 2018) at four different ages from early adulthood to late life 
(Figure 2A and Supplementary file 2a-d). The repertoire of each individual comprised some number 
of unique heavy-chain sequences, each of which could be classified by clonal identity (the ‘clonal 
repertoire’) and V/J usage (the ‘VJ repertoire’).

The diversity of a population is a measure of the number (a.k.a. the richness) and relative frequency 
of different subdivisions within that population. For B-cell repertoires, diversity can be calculated over 

Figure 1. Immunoglobulin sequencing from turquoise-killifish total RNA samples. Each sample undergoes reverse transcription with template switching 
to attach a 5' adaptor sequence and unique molecular identifier (UMI), followed by multiple rounds of PCR amplification and addition of Illumina 
sequencing adaptors. Libraries are then pooled, undergo size selection, and are sequenced on an Illumina MiSeq sequencing machine.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Experimental design of the IgSeq pilot experiment in the turquoise killifish.

Figure supplement 2. Replicability of IgSeq results on total-body RNA.

Figure supplement 3. Clustering of replicates in control libraries.

https://doi.org/10.7554/eLife.65117
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Figure 2. Aging in whole-body killifish IGH repertoires. (A) Experimental design. Adult male GRZ-strain turquoise 
killifish were sacrificed at 39, 56, 73, and 128 days post-hatching, flash-frozen and homogenized. (B–E) Alpha-
diversity spectra, indicating average within-individual repertoire diversity for each age group and diversity order 
(*: 0.05 ≤ 0.01, **: 0.01≤ p ≤ 0.001, Kruskal-Wallis permutation test, Appendix 1—note 7). (B) Clonal alpha-diversity 
spectra. (C) VJ alpha-diversity spectra, all clones. (D) VJ alpha-diversity spectra, large clones (>4 unique sequences) 
only. (E) VJ alpha-diversity spectra, small clones (<5 unique sequences) only. (F) VJ alpha-diversity ratios for old vs. 
young killifish at each diversity order, for small (dashed lines) or large (solid lines) clones. Color indicates the older 
age group being compared to young (39 days) fish. (G) Normalized VJ beta-diversity spectra, indicating between-
individual variability in repertoire composition for each age group and diversity order. (H) Distributions of pairwise 
repertoire dissimilarity index (RDI) distances between individuals in each age group (***: p ≤ 0.001, Mann-Whitney 
U tests for pairwise age differences), based on the VJ composition of each individual’s repertoire. (I) Principal 
coordinate analysis (PCoA) of pairwise RDI distances for each age group, visualizing the progressively greater 
dispersion seen at later ages. Each curve in (B–G) represents the mean across 2000 bootstrap replicates (Appendix 
1—note 7); shaded regions indicate 95% confidence intervals over the same.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Clonal and V/J diversity in antibody repertoires.

Figure supplement 2. Individual diversity spectra in killifish whole-body repertoires.

Figure supplement 3. p-Values of Kruskal-Wallis permutation tests for an age effect (Appendix 1—note 7) in 
whole-body killifish IGH repertoires at different Hill diversity orders.

Figure supplement 4. Clone size distributions in killifish whole-body repertoires.

https://doi.org/10.7554/eLife.65117
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the different clonal lineages detected in a sample, or over different variable-region gene segment 
combinations.

To quantify immune-repertoire diversity in killifish heavy-chain repertoires, we computed Hill diver-
sity spectra (Appendix 1—note 1), which provide a holistic overview of the diversity structure of a 
population (in this case, a repertoire) (Miho et al., 2018; Hill, 1973; Jost, 2006; Jost, 2007). Briefly, 
each Hill spectrum reports the ‘effective richness’ of a repertoire across a range of diversity orders; 
higher effective richness corresponds to a more diverse repertoire. At low diversity orders, species 
of different sizes are weighted more equally in the diversity calculation, while at higher orders, less-
abundant species are progressively downweighted relative to more-abundant groups (Appendix 1—
note 1). For the clonal repertoire, each clonotype (set of unique sequences descended from a single 
naïve ancestor B-cell) was designated a separate species; for the VJ repertoire, clonotypes with the 
same V/J identity were grouped together.

Separate spectra were computed for the clonal and VJ repertoires of each individual, and these 
individual spectra were used to compute averaged alpha-diversity spectra for each age group and 
repertoire type. For each diversity order, we tested for a significant age effect on repertoire diversity 
using a permutation test on the Kruskal-Wallis H statistic (Materials and methods).

The clonal diversity (Figure 2—figure supplement 1) of the whole-body killifish repertoire exhib-
ited a significant decline with age (p < 0.05) at high diversity orders (Figure 2B, Figure 2—figure 
supplements 2–3), indicating a significant and extremely rapid age-related decline in the diversity 
of the largest B-cell clones. In contrast, lower-order clonal diversity exhibited no significant change 
with age, suggesting that the overall composition of the whole-body repertoire remains relatively 
unchanged. Since the B-cell clonal repertoire is overwhelmingly dominated by small, predominantly 
naïve clones (Figure 2—figure supplement 4A), low-order clonal diversity measurements are primarily 
driven by changes in the diversity of small clones. As such, these results indicate that the composition 
of small clones in the killifish antibody repertoire is much less sensitive to the effects of aging than that 
of large, expanded clones.

In contrast with the rapid age-related declines observed in high-order clonal diversity, the VJ 
diversity of the killifish repertoire exhibited no significant age-related change at any diversity order 
(Figure 2C). Examining the clone-size distribution of each V/J combination (Figure 2—figure supple-
ment 4B) revealed that even the largest V/J combinations in each age group are overwhelmingly 
dominated by small clones, suggesting that the observed lack of an age effect on VJ diversity was 
due to the observed age-insensitivity of small clones (Figure 2B). To test this hypothesis, we filtered 
the repertoire dataset to separate sequences from small and large clones and computed VJ diversity 
repertoires for each subset (Figure 2D–E). While both small and large clones in isolation showed a 
significant age effect on VJ diversity, the relative reduction in VJ alpha diversity with age was dramati-
cally stronger for large clones, an effect observed across all diversity orders (Figure 2F). As suggested 
by the clonal-diversity results, therefore, the repertoire diversity of large (expanded) clones in the 
killifish whole-body repertoire appears to be far more age-sensitive than that of small (predominantly 
naïve) clones.

In addition to the average within-individual diversity of a population (alpha diversity), the between-
individual variation in composition (beta diversity) can provide important insights into repertoire 
development and evolution. Previous studies of human peripheral blood repertoires have suggested 
a decrease in alpha diversity but an increase in beta diversity with age (Gibson et al., 2009; de Bourcy 
et  al., 2017). In our dataset, VJ beta-diversity spectra (Appendix 1) indicated a large age-related 
increase in beta diversity across a wide range of diversity orders (Figure  2G), indicating a similar 
pattern of progressive individualization in repertoire composition with age. Concordantly, older killi-
fish also exhibited significantly greater pairwise RDI distances (Bolen et al., 2017), indicating progres-
sive divergence in repertoire composition (Figure 2H–I). As in humans, therefore, younger killifish 
exhibit antibody repertoires that are significantly more similar to one another, which then become 
increasingly distinct and individualized as the cohort increases in age.

The killifish generative repertoire
The naïve sequence diversity of the antibody heavy-chain repertoire depends on the molecular 
processes underlying the generation of novel sequences in developing B-cells: random selection of 
V, D, and J segments during VDJ recombination; deletions and palindromic (P-) insertions at the ends 

https://doi.org/10.7554/eLife.65117
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of conjoined segments; and nonpalindromic (N-) insertions between segments (Schatz and Swanson, 
2011; Schroeder and Cavacini, 2010). Each of these contributes diversity to the overall genera-
tive process, increasing the variety of sequences that can be generated. Excluding nonfunctional 
sequences, the human generative process has an estimated Shannon entropy of roughly 70 bits, 
corresponding to a first-order Hill diversity of roughly 1021 possible unique sequences (Elhanati et al., 
2015). However, little is known about how this generative diversity varies across species, or how it 
changes during aging.

To gain insight into these generative processes in the turquoise killifish, we used IGoR (Marcou 
et al., 2018) to infer models of sequence generation from killifish repertoire data. In training these 
models, we restricted the dataset to nonfunctional naïve sequences, in order to avoid distortions 
introduced by positive and negative selection in the primary lymphoid organs (Elhanati et al., 2015; 
Marcou et al., 2018). As is often the case with RNA data, the number of naïve nonfunctional sequences 
available per individual was frequently low; hence, to better capture low-probability events in the 
generative process, we inferred models from pooled data from multiple individuals in the same age 
group. As the parameters of the generative model are typically very similar across conspecific individ-
uals (Figure 3—figure supplements 1–2), especially in an inbred line, pooling data like this is a useful 
way to infer more robust generative models using IGoR (Marcou 2019, personal communication).

To model the generative process in its baseline state, we first inferred a model of the killifish gener-
ative repertoire from the four 8-week-old adult male individuals used in the pilot study (Figure 1—
figure supplement 1). Using this model, we estimated a total raw entropy for the killifish generative 

Figure 3. The killifish generative repertoire. (A) Entropy composition of the generative process from four 8-week-
old GRZ-strain adult male turquoise killifish. (B) Probability distributions of junctional N-insertions in the same 
dataset. (C) P-insertions and deletion distributions inferred from the same dataset, with P-insertions modeled as 
negative deletions. (D) Boxplots of total recombination entropy values for models inferred separately for each 
individual in the 32-individual aging cohort (p = 0.43, Kruskal-Wallis one-way analysis of variance [ANOVA] for an 
age effect).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual IGoR-inferred insertion/deletion distributions (Figure 3A) for individuals in the 
pilot dataset (Figure 1—figure supplement 1).

Figure supplement 2. Individual IGoR-inferred segment-usage distributions (Figure 3B) for individuals in the pilot 
dataset (Figure 1—figure supplement 1).

Figure supplement 3. Individual IGoR-inferred insertion/deletion distributions (Figure 3A) for all individuals in the 
whole-body killifish dataset (Figure 2A and Supplementary file 2c).

Figure supplement 4. Individual IGoR-inferred segment-usage distributions (Figure 3B) for all individuals in the 
whole-body killifish dataset (Figure 2A and Supplementary file 2c).

Figure supplement 5. Boxplots of the entropy contributions of (A) gene choice, (B) N-insertions, and (C) P-
insertions and deletions to the generative repertoires of individual turquoise killifish at different ages (Figure 2A 
and Supplementary file 2c).

https://doi.org/10.7554/eLife.65117
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repertoire of roughly 33 bits (Figure 3A). Of these 33 bits, roughly 8 arise from variability in VDJ 
segment choice, 12 from variability in the number and composition of junctional N-insertions, and 
11 from P-insertions and deletions. Accounting for convergent production of identical sequences via 
different recombination events, and for events that give rise to nonfunctional nucleotide sequences 
(e.g. due to frame shift) reduced this initial raw estimate by 10 bits.

Before initial selection in the primary lymphoid organs, therefore, the killifish generative process 
has an estimated Shannon entropy of roughly 23 bits (Figure  3A), corresponding to a first-order 
Hill diversity of roughly 107 possible unique sequences. While, as in humans, only a small fraction of 
potential diversity will actually be generated in any single individual, this nevertheless represents a 
highly complex and sophisticated system capable of generating highly individualized IGH repertoires.

While impressive, the potential generative diversity of the killifish repertoire is nevertheless vastly 
lower than in humans, with a difference in productive generative entropy of almost 50 bits (Elhanati 
et al., 2015). While all components of the generative process exhibit lower entropies in killifish than 
in humans, by far the greatest difference lies in the junctional N-insertions, which contribute almost 
40 bits more to the generative entropy of the human repertoire than that of killifish. The difference 
in the productive generative entropy between killifish and human arises from the distributions of 
N-insertions inferred from killifish and human data: in humans, these distributions peak at around 
5 nt per junction and often yield insertions of 10–20 nt (Elhanati et al., 2015), while in killifish the 
insertion distribution peaks at 0 nt per junction, and sequences with more than 5 nt of insertions at 
either junction are very rare (Figure 3B and Figure 3—figure supplement 1). Since N-insertions are 
the dominant source of sequence diversity in human repertoires, the large reduction in N-insertions 
in killifish relative to humans unsurprisingly results in a much lower overall generative diversity for the 
killifish adaptive immune system.

The relative lack of change in the small-clone antibody repertoire in older turquoise killifish 
(Figure 2B–F) suggested to us that the diversity of the generative process in the primary lymphoid 
organs might remain relatively intact throughout the killifish lifespan. To test this hypothesis, we 
trained separate IGoR models for each individual in the 32-fish aging cohort (Figure 2A, Figure 3—
figure supplements 3–4) and tested for an effect of age on the generative diversity inferred for each 
individual. As expected, no age effect was found in either total generative diversity (Figure 3D) or 
the contributions of different diversification processes (Figure 3—figure supplement 5). It therefore 
appears that, while some aspects of the killifish antibody repertoire certainly decline with age, the 
entropy of the generative process is not among them.

Effect of age and microbiota transfer on killifish intestinal repertoires
The populations of B-lymphocytes associated with mucosal epithelia play a crucial role in defending 
the body from pathogenic threats (Magadan et al., 2019), as well as in regulating the composition of 
resident microbial populations (Belkaid and Hand, 2014). Despite the importance of these distinc-
tive B-cell compartments, relatively little is known about the structure of their antibody repertoires 
(Magadan et al., 2019), and still less about how these repertoires change with age.

As the site of the greatest microbiota diversity, the intestine is of particular relevance as an important 
and distinctive immune environment. Previous work on the killifish gut microbiota (Smith et al., 2017) 
has shown that it declines in alpha diversity and increases in beta diversity with age, patterns that 
mirror the changes seen in the whole-body composition of the killifish antibody repertoire (Figure 2). 
Transfer of intestinal content from young to middle-aged fish has also been shown to extend lifespan 
(Smith et al., 2017). Given these findings, and the intimate relationship between intestinal lympho-
cytes and gut bacteria (Belkaid and Hand, 2014), we investigated the effect of aging and microbiota 
transfer on the immune repertoires of gut-resident B-cell populations.

Using intestinal total RNA isolated by Smith et al., 2017, we sequenced the intestinal IGH reper-
toires of eighteen male GRZ-strain individuals, including four untreated 6-week-old individuals and 
fourteen 16-week-old individuals from various microbiota-transfer treatment groups (Supplementary 
file 2b), and investigated the effect of age and treatment condition on repertoire diversity in the 
killifish intestine.

Contrary to our expectations, neither the alpha nor beta diversity of the killifish intestinal repertoire 
were significantly affected by microbiota transfer, with no significant difference in clonal diversity, VJ 
diversity, or RDI distance measures (Figure 4—figure supplements 1–3). In sharp contrast to the 

https://doi.org/10.7554/eLife.65117
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whole-body data, however, there was a strong and significant decline in both clonal and VJ alpha 
diversity with age across all diversity orders (Figure 4B–C, Figure 4—figure supplements 2–3), even 
without partitioning by clone size. This age-related decline in alpha diversity was consistently far more 
dramatic than that observed in the whole-body samples at any diversity order. The B-cells of the killi-
fish intestine, therefore, exhibit a much stronger age-dependent decline in repertoire diversity than is 
seen in the killifish body overall.

While results from beta-diversity spectra showed large increases in beta diversity with age at some 
diversity orders but not at others (Figure 4D), the median pairwise RDI distance between individual 
gut repertoires increased substantially and significantly with age (Figure 4E and Figure 4—figure 

Figure 4. Aging in killifish intestinal repertoires. (A) Experimental design. Adult male GRZ-strain turquoise killifish 
were sacrificed at 6 and 16 weeks’ post-hatching, and total RNA was extracted from the dissected intestine. (B–C) 
Alpha-diversity spectra, indicating average within-individual repertoire diversity for each age group and diversity 
order (*: 0.05 ≤ 0.01, **: 0.01≤ p ≤ 0.001, Kruskal-Wallis permutation test, Appendix 1—note 7). (A) Clonal alpha-
diversity spectra. (B) VJ alpha-diversity spectra, all clones. (D) Normalized VJ beta-diversity spectra, indicating 
between-individual variability in repertoire composition for each age group and diversity order. (E) Distribution of 
pairwise repertoire dissimilarity index (RDI) distances between killifish intestinal repertoires at different ages (***: p 
≤ 0.001, Mann-Whitney U tests for pairwise age differences). Each curve in (A–C) represents the mean across 2000 
bootstrap replicates (Appendix 1—note 7); shaded regions indicate 95% confidence intervals over the same.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of microbiota transfer on the intestinal repertoires of 16-week-old turquoise killifish.

Figure supplement 2. Individual diversity spectra in killifish intestinal repertoires.

Figure supplement 3. p-Values of Kruskal-Wallis permutation tests (Appendix 1—note 7) for (left) an effect 
of microbiota transfer treatment group or (B) an age effect in intestinal killifish IGH repertoires at different Hill 
diversity orders.

Figure supplement 4. Principal coordinate analysis (PCoA) of pairwise repertoire dissimilarity index (RDI) distances 
for each age group in the killifish intestinal dataset (Figure 4E, Supplementary file 2b).

https://doi.org/10.7554/eLife.65117
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supplement 4), suggesting that, as in the whole body, killifish intestinal repertoires become increas-
ingly distinct and individualized as they age.

One potential explanation for the stronger age-related drop in alpha diversity of intestinal samples 
is as a consequence of the constant strong antigen exposure experienced by intestinal B-cells, as a 
result of their interaction with the gut microbiota. This exposure could drive high levels of antigen-
dependent clonal expansion, resulting in a greater loss in repertoire diversity (Caruso et al., 2009). 
Another explanation, not mutually exclusive with the first, is that the gut has different clone-size 
distribution relative to the whole body. Unlike the whole-body repertoire, the gut does not include 
the primary lymphoid organs, and so would be expected to be far less dominated by small, naïve 
clones. Since the population of large clones appears to be more prone to reductions in diversity with 
age than that of small clones (Figure 2), the stronger overall age-related diversity loss found in the gut 
repertoire could be a consequence of this greater relative prevalence of large clones.

Rarefaction analysis of clonal counts in whole-body and intestinal repertoires showed that the 
latter indeed contained far fewer small clones, resulting in a much higher proportion of large clones 
(Figure 5A). If this difference in clonal composition, rather than some functional difference between 
intestinal and other B-cells, is primarily responsible for the apparent difference in aging phenotypes 
between whole-body and intestinal repertoires, we would expect to find a faster rate of clonal diversity 
loss during aging in intestinal repertoires at low diversity orders (which are dominated by small clones 
in whole-body samples), but not at high orders (which are dominated by large clones in both sample 
types). Similarly, we would expect to find faster loss in intestinal samples of V/J diversity considered 
over all clones, but not when the V/J diversity calculation is restricted to large clones alone.

To test these hypotheses, we normalized the diversity measurements from each dataset by the 
mean diversity of the youngest group in that dataset, then fit generalized linear models for different 
diversity orders and methods of measuring diversity (Figure 5B and Figure 5—figure supplement 
1), testing for a significant interaction between sample type (i.e. gut vs. whole body) and the effect 
of age on repertoire diversity. Gut samples exhibited significantly higher rates of age-dependent 
diversity loss under low-order clonal-diversity or total VJ-diversity measures, that is, those metrics for 
which clones of all sizes were included in the diversity calculation. Conversely, there was no significant 
difference in rate of diversity loss between sample types for higher-order clonal-diversity measures, 
nor for V/J-diversity measures restricted to only large clones, indicating that large clones undergo 
similar rates of age-dependent diversity loss in both sample types. These results closely match the 
predictions of the clonal-composition model: large clones in both gut and whole-body samples exhibit 
similarly strong aging phenotypes, but the higher proportions of large clones in gut samples result 
in these strong phenotypes manifesting more strongly in the behavior of the repertoire as a whole. It 
therefore appears that, as in whole-body samples, age-dependent diversity loss in killifish intestinal 
repertoires is primarily a phenomenon of mature, expanded clones.

Functional correlates of repertoire diversity in killifish
Early work in killifish identified a number of age-associated phenotypes suggestive of immune decline, 
including thymic degeneration and increased incidence of lymphoma (Cooper et al., 1983). More 
recently, comparison of young vs. old killifish intestines found a marked age-related increase in the 
pathogenicity of the killifish gut microbiome, alongside an increase in expression of inflammatory 
markers, suggesting a decline in the intestinal immune system’s ability to maintain a healthy microbial 
community (Smith et al., 2017).

These results suggest that the turquoise killifish undergoes rapid functional immune decline with 
age. Since repertoire diversity also declines with age, this indicates that markers of functional immune 
decline are coincident with a reduction in repertoire diversity. These results are consistent with similar 
findings in humans (de Bourcy et al., 2017). However, in the absence of repertoire diversity data, 
these results do not necessarily imply a direct association between diversity and immune function in 
aging killifish.

To investigate the relationship between repertoire diversity and immune function more closely, 
we utilized previously collected intestinal RNA-seq data from the same cohort of killifish used in our 
intestinal antibody-repertoire analysis (Smith et al., 2017). Using these data alongside our repertoire 
diversity calculations, we carried out a differential expression analysis of transcript abundance with 
respect to repertoire diversity for six different diversity orders, controlling for age (Materials and 

https://doi.org/10.7554/eLife.65117
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methods). We then performed gene set enrichment analysis (GSEA) to identify gene ontology (GO) 
terms associated with higher or lower repertoire diversity, across a variety of diversity orders.

The GSEA identified a number of GO terms related to immune function that were significantly 
associated with increased repertoire diversity (Figure 6, Figure 6—figure supplements 1–3). Most 
strikingly, ‘B-cell receptor signaling pathway’ was the most strongly enriched term for all six diver-
sity orders analyzed, often by a substantial margin. ‘B-cell proliferation’ was also consistently highly 

Figure 5. Relative clonal composition and aging phenotypes of whole-body and intestinal repertoires. (A) 
Rarefaction analysis of clonal composition of antibody repertoires from whole-body and intestinal samples, 
showing the average number of small (left, <5 unique sequences) and large (middle, 5 unique sequences) clones 
for each individual across 20 independent replicates at each sample size, as well as the average proportion of 
all clones in each repertoire which are large (right). Shaded regions around each line show the region within one 
standard deviation of the mean value. (B) Boxplots of individual diversity measurements of repertoires from each 
age group in the whole-body and intestinal datasets, divided by the mean diversity of the youngest age group in 
each dataset. Fitted curves show the maximum-likelihood prediction of a gamma-distributed generalized linear 
model of diversity vs. age and sample type for the whole-body and intestinal dataset, relative to the average 
diversity of the youngest age group in each experiment, testing for a significant effect of sample type on the rate 
of diversity change with age (Student’s t-test,*: 0.01< p 0.05; ***: p 0.001).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Extended boxplots of individual diversity measurements of repertoires from each age 
group in the whole-body and intestinal datasets, divided in each case by the mean diversity of the youngest age 
group in that dataset.

https://doi.org/10.7554/eLife.65117
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enriched, showing significant positive enrichment for five diversity orders (all except 1.0) and falling 
in the top 10 most positively enriched terms for four (Figure  6). Other immune terms that were 
significantly positively associated with repertoire diversity across at least four diversity orders include 
‘leukocyte migration’, ‘lymphocyte activation’, ‘leukocyte differentiation’, and ‘regulation of interleu-
kin-6 production’ (Supplementary file 3a). A decline in repertoire diversity is thus associated with a 
decline in B-cell immune activity in killifish intestine, supporting a functional role for diversity changes 
in killifish immunosenescence.

Discussion
The turquoise killifish is the shortest-lived vertebrate that can be bred in captivity (Cellerino et al., 
2016; Harel and Brunet, 2015), with a median lifespan in the short-lived GRZ strain of about 4 
months. Despite this, our findings show that the life of a turquoise killifish provides ample time both 
to develop a complex, diverse, and individualized IgM heavy-chain repertoire (Figure 3A, Figure 1—
figure supplements 2–3), and for that repertoire to decline significantly in diversity with age.

These age-associated diversity changes appear to be driven primarily by expanded, antigen-
experienced clones, with little observed change in either the diversity of small naïve clones or the 
entropy of the heavy-chain sequence generation process. This lack of change in small-clone diver-
sity, however, does not necessarily imply that B-cell development is unchanged in aging killifish: it 
is possible, for example, that a decline in efficiency of B-cell output from primary lymphoid organs 

Figure 6. Top 10 most positively enriched gene ontology (GO) terms associated with each diversity order in turquoise killifish, controlling for age, 
ranked by normalized enrichment score in descending order (Materials and methods). Immune terms are highlighted in blue. Terms that are significantly 
positively enriched for a given diversity order, but not in the top 10, are not shown, even if they fall in the top 10 terms for other orders.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Top 10 most negatively enriched gene ontology (GO) terms associated with each diversity order in turquoise killifish, controlling 
for age, ranked by normalized enrichment score in ascending order (Materials and methods).

Figure supplement 2. Plot of all significantly positively enriched gene ontology (GO) terms (FDR-adjusted p-value ≤ 0.05) associated with each diversity 
order in turquoise killifish, controlling for age, ranked by normalized enrichment score in descending order (Materials and methods).

Figure supplement 3. Plot of all significantly negatively enriched gene ontology (GO) terms (FDR-adjusted p-value ≤ 0.05) associated with each 
diversity order in turquoise killifish, controlling for age, ranked by normalized enrichment score in ascending order (Materials and methods).

https://doi.org/10.7554/eLife.65117
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is offset by the continuous growth in body size observed throughout the killifish lifespan. Further 
research into killifish lymphopoiesis will shed light on the relationship between age and the naive 
B-cell repertoire.

As early as 2009, Caruso et al., 2009, hypothesized that the mucosal adaptive immune system 
might exhibit particularly strong loss of diversity with age. In what is, to our knowledge, the first 
published test of this hypothesis, we sequenced the heavy-chain repertoires of isolated killifish gut 
samples, finding that they do indeed exhibit particularly strong diversity changes with age. However, 
this difference between the gut and whole-body repertoires appears to result from a difference in 
clonal composition, rather than in the behavior of any particular clonal subset, suggesting this differ-
ence may have less to do with the specifics of the mucosal environment than the location of the 
primary lymphoid organs. Whatever its source, this age-dependent loss of mucosal repertoire diver-
sity could have important consequences for the gut’s capacity to respond to novel antigens. Future 
investigation of immune-repertoire aging in a wider variety of mucosal and non-mucosal organs will 
help disentangle the effects of spatial context on adaptive immunosenescence and provide a clearer 
picture of the impact of mucosal microbiota.

While our results demonstrate that killifish repertoire diversity declines rapidly with age, the effects 
on immune function are less clear. Gene expression data from our intestinal cohort indicates that 
greater intestinal repertoire diversity is associated with gene expression changes indicating greater 
B-cell receptor signaling activity, lymphocyte activation, and defense responses, suggesting that the 
decline in diversity seen with age is associated with a decline in immune function. While not neces-
sarily causal, these associations support the biological relevance of repertoire diversity as a metric of 
immune function. Nevertheless, future experiments should directly investigate the causal association 
between repertoire diversity and immune function in killifish.

Apart from the nervous system itself, no other system in the vertebrate body exhibits such complex 
learning and memory behavior as the adaptive immune system. The age-related decline in the func-
tionality of this system is a major cause of mortality and morbidity in the elderly. Our results firmly 
establish the value of the turquoise killifish as a model for investigating this important and complex 
process, and demonstrate the importance of studying immune aging in compartments other than 
peripheral blood. Future experiments in this system have the potential to greatly expand our knowl-
edge of the mechanisms, spatial distribution, and temporal progression of immune-repertoire aging, 
with potentially vital implications for the future treatment of immunosenescent phenotypes.

Materials and methods
Fish husbandry and sample preparation
Male turquoise killifish (N. furzeri, GRZ-AD strain) from a single hatching cohort were raised under 
standard husbandry conditions (Dodzian et al., 2018) and housed from 4 weeks’ post-hatching in 
individual 2.8 l tanks connected to a water-recirculation system. Fish received 12 hr of light per day on 
a regular light/dark cycle, and were fed bloodworm larvae and brine shrimp nauplii twice a day during 
the week and once a day during the weekend (Smith et al., 2017; Dodzian et al., 2018).

After being sacrificed in 1.5 g/l tricaine solution at room temperature tank water (Carter et al., 
2010), fish (Supplementary file 2c) were flash-frozen in liquid nitrogen and ground to a homogenous 
powder with a pestle in a liquid-nitrogen-filled mortar. The powder was mixed thoroughly and stored 
at –80°C prior to RNA isolation. Intestinal total RNA for the gut experiments was provided by Smith 
et al., 2017.

Immunoglobulin sequencing
Total RNA from whole-body killifish samples was isolated using QIAzol lysis reagent (QIAGEN, 1 ml of 
reagent per 0.1 g of homogenized tissue) and isopropanol precipitation; gut RNA from microbiota-
transfer experiments (Smith et al., 2017) was already prepared and available. Quantification of RNA 
samples was performed with the Qubit 2.0 fluorometer (Thermo Fisher), while quality control and 
integrity measurement was performed using the TapeStation 4200 (Agilent).

Reverse transcription and template switching for library preparation was performed on total RNA 
samples using SMARTScribe Reverse Transcriptase, in line with the protocol specified in Turchani-
nova et al., 2016; Appendix 1—note 7. The reaction product was purified using SeraSure SPRI beads 

https://doi.org/10.7554/eLife.65117
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(Appendix 1—note 7), then underwent three successive rounds of PCR, each of which was followed 
by a further round of bead purification. The first of these PCR reactions added a second strand to 
the reverse-transcribed cDNA and amplified the resulting DNA molecules; the second added partial 
Illumina sequencing adapters and further amplified the library, and the third added complete Illumina 
adapters, including i5 and i7 indices.

The concentration of each library was then quantified and the libraries were pooled in equimolar 
ratio, concentrated using SeraSure beads, and size-selected with the BluePippin (Sage Science) to 
obtain a purified amplicon band. Finally, following a final round of quality control, the pooled and size-
selected libraries were sequenced on an Illumina MiSeq System (MiSeq Reagent Kit v3, 2 × 300 bp 
reads, 30% PhiX spike-in), either at the Cologne Center for Genomics (whole-body libraries) or with 
Admera Health (intestinal libraries).

Data processing and analysis of repertoire data
Pre-processing of raw sequencing data (including quality filtering, consensus-read generation, and 
clonotyping) was performed using the pRESTO (Vander Heiden et al., 2014) and Change-O (Gupta 
et  al., 2015) suites of command-line tools (Appendix 1—note 7, Appendix  1—figure 1). Down-
stream analysis of processed data, including diversity-spectrum inference (Appendix 1—note 7), RDI 
computation, GLM fitting and rarefaction, was performed in R, as was figure generation and all statis-
tical tests. Generative model inference was performed using IGoR (Marcou et al., 2018). Snakemake 
(Köster and Rahmann, 2012) was used to design and run data-processing pipelines.

Functional analysis of RNA-seq data
Intestinal RNA-seq data for gut cohort killifish (Smith et al., 2017) were obtained from SRA (BioProject 
accession PRJNA379208, Supplementary file 2d). Reads were mapped to the turquoise-killifish 
genome (Reichwald et  al., 2015) with STAR (Dobin et  al., 2013), using standard parameters, to 
compute raw read counts for each transcript and each individual. Read counts were normalized using 
DESeq2’s default median-of-ratios method (Love et al., 2014). DESeq2 was then used to carry out 
differential expression analysis based on a generalized linear model, predicting abundance of each 
transcript in each individual given that individual’s age and repertoire diversity (as calculated above). 
This analysis was repeated for each of six diversity orders (0, 1, 1.5, 2, 3, and 4).

Killifish transcripts were mapped to human orthologues with BioMart (Durinck et al., 2009; Durinck 
et al., 2005). In cases where multiple killifish transcripts mapped to a single human transcript, the indi-
vidual fold change estimates produced by DESeq2 for the killifish transcripts were replaced by a single 
mean value. Transcripts were then ranked by fold change in descending order, and this ranked list 
was used as input for GSEA using ClusterProfiler’s gseaGO function (Wu et al., 2021; Yu et al., 2012; 
Subramanian et al., 2005; Mootha et al., 2003), using the Benjamini-Hochberg method (Benjamini 
and Hochberg, 1995) to adjust for multiple comparisons and with a significance threshold of 0.05. 
This produced a list of GO terms (Gene Ontology Consortium, 2021; Ashburner et al., 2000) signifi-
cantly enriched with respect to repertoire diversity, controlling for age. Redundant GO terms were 
summarized using ClusterProfiler’s simplify function, with a similarity cutoff of 0.7.

Immune-associated GO terms were identified by descent from one of a small set of high-level 
immune-associated terms (Supplementary file 3b), which were identified manually. Terms descended 
from these manually selected ancestor terms were identified using the GO function GOBPOFFSPRING 
(Gene Ontology Consortium, 2021; Ashburner et al., 2000); any such descendant term was desig-
nated as immune-associated.

Data and code availability
Raw data used in these analyses is available via NCBI (BioProject accession PRJNA662612). Processed 
data and code are available at https://github.com/willbradshaw/killifish-igseq/, (copy archived at 
swh:1:rev:2c933de6564c1055cb363389778f86bfa3fe4ab2; Bradshaw, 2022).
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Appendix 1
Note 1: Hill diversity spectra
The Hill number or ‘true diversity’ D of a population X describes the effective species richness of that 
population: the number of equally common species that would be required to produce a population 
with the same overall diversity as X (Jost, 2006). This value will increase with the number of species 
in the population, as well as with the evenness with which these species are distributed.

The term ‘species’ here can refer to any mutually exclusive and exhaustive set of classes into 
which elements in the population can be assigned; the nature of these classes will depend on the 
nature of the populations and elements being investigated. In the context of immune-repertoire 
sequencing, a ‘population’ is an individual repertoire, an ‘element’ is a unique sequence, and a 
‘species’ will typically refer to either clones (sequences descended from a single naive ancestor B-
cell) or V(D)J gene-segment combinations. In this paper, Hill diversities computed using clones as 
species are referred to as clonal diversities, while those computed using VJ segment combinations 
as species are referred to as VJ diversities.

In addition to the species composition of, X the Hill number depends on the diversity order, 
q which denotes the degree to which less-abundant species are downweighted relative to more-
abundant species when calculating diversity. At a given value of q, the Hill number of X is given by:

	﻿‍

qD(X) =

(
∑
s∈S

pq
s

) 1
1−q

‍�
(1)

where ‍S‍ is the set of species in ‍X ‍ and ‍ps‍ is the relative frequency of a species ‍s‍ (i.e. the fraction 
of all elements that belong to ‍s‍). Note that, as higher values of ‍q‍ progressively downweight the 
contributions of less-abundant species, ‍

qD(X)‍ is monotonically decreasing with increasing ‍q‍. As each 
diversity order captures a different aspect of the diversity structure of the population, plotting the 
value of ‍

qD(X)‍ against ‍q‍ – a diversity spectrum – gives a more informative view of the diversity of ‍X ‍ 
than any single diversity order alone.

Importantly, many other common diversity metrics can be converted into Hill numbers through 
simple transformations: ‍

0D(X)‍ gives species richness, ‍
2D(X)‍ gives the reciprocal of Simpson’s 

index, ‍
limq → ∞ qD(X)‍ gives the reciprocal of the Berger-Parker index, and ‍

limq → ∞ qD(X)‍  gives the 
exponential of the Shannon entropy (Jost, 2006; Miho et al., 2018). Hill diversity measurements of 
the appropriate order can therefore be easily converted to and from these other diversity metrics 
if needed. In practice, the exponential Shannon entropy is typically substituted for ‍

1D(X)‍ (which is 
undefined) to produce a continuous function when plotting Hill diversity spectra:

	﻿‍

qD(X) =





(
∑
s∈S

pq
s

) 1
1−q

q ̸= 1

exp

(
∑
s∈S

ps · In ps

)
q = 1

‍�

(2)

Note 2: Alpha and beta diversity
In some cases, a population C can be partitioned into some number of disjoint subpopulations X1, 
X2,…, XM, each with its own set of species SX and species frequencies pX, s. The diversity of C can 
then be conceptualized in several ways (Jost, 2007):

The gamma diversity of C is the diversity across the whole population, ignoring its subpopu-
lation structure.

The alpha diversity of C is the diversity arising from differences in species identity among 
individuals within each subpopulation, and is given by a weighted generalized average of the 
diversities of those subpopulations; it can be thought of as the expected diversity of a single 
subpopulation drawn at random from C.
The beta diversity of C is the diversity arising from variability in species composition between 
subpopulations; it is lowest when all subpopulations have identical species composition and 
highest when they have no species in common.

https://doi.org/10.7554/eLife.65117
https://www.codecogs.com/eqnedit.php?latex=q#0
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In terms of Hill diversity, ‍
qDγ (C)‍ gives the effective richness of the whole population, ignoring its 

subpopulation structure; ‍
qDα(C)‍ gives the effective richness of an ‘average’' subpopulation from 

C, and ‍
qDβ(C)‍ gives the effective number of disjoint subpopulations in C (i.e. the number of 

subpopulations with no species in common that would give rise to the same gamma diversity, given 
an alpha-diversity value).

The alpha and beta diversities of a population are independent; two different structured 
populations can have identical alpha and very different beta diversities, or vice versa, depending on 
the exact species compositions of their subpopulations. The alpha and beta diversity of a structured 
population also completely determine its gamma diversity (Jost, 2007):

	﻿‍ Dγ (C) = Dα(C) × Dβ(C)‍� (3)

and therefore

	﻿‍ Dβ(C) = Dγ (C)
Dα(C)‍� (4)

This (Equation 4) is typically the easiest way of computing the beta diversity of a given structured 
population. Note that, as the quotient of two monotonically decreasing functions, Dβ(C) is itself not 
necessarily monotonically decreasing.

Under this framework, the diversities of order q for a structured population C are given (Jost, 
2007) by:

	﻿‍

qDγ (C) =




∑
s∈S

(
∑

X∈C
wXpX, s

)

(
∑

X∈C
wX

)




1
1−q

‍�

(5)

	﻿‍

qDα(C) =




∑
X∈C

∑
s∈SX

(wXpX, s)q

(
∑

X∈C
wX

)




1
1−q

‍�

(6)

	﻿‍
qDβ(C) =

qDγ (C)
qDα(C)‍� (7)

where  is the relative weighting of a subpopulation X. When all the subpopulations have equal 
sizes ‍NX = N

M‍ and equal weights, ‍w = 1
M‍ as is the case with our repertoire data, these formulae 

simplify to:

	﻿‍

qDγ (C) =




∑
s∈S

(
∑

X∈C
pX, s

)q

Mq




1
1−q

‍�

(8)

	﻿‍

qDα(C) =

[ ∑
X∈C

∑
s∈SX

(pX, s)q

M

] 1
1−q

‍�
(9)

These equations are valid for all values of ‍q ∈ R‍ except 1, providing a spectrum of alpha-, beta-, 
or gamma-diversity measures analogous to the diversity spectra provided for simple populations in 
Appendix 1—note 1. As in that case, a special case needs to be made for q=1 in order to make these 
functions continuous, substituting the limit of the diversity as q→1 for the undefined value at q=1

	﻿‍

1Dγ (C) = exp

(
−

∑
s∈S

ps · In ps =

)
1D(C)

‍� (10)

https://doi.org/10.7554/eLife.65117
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	﻿‍

1Dγ (C) = exp

[
1
M

∑
X∈C

(
−

∑
s∈SX

pX, s · In pX, s

)]
= exp

[
1
M

∑
X∈C

In1D(X)

]

‍�
(11)

More detailed derivations of Equation 8 to Equation 11 are available upon request.

Note 3: Rescaling beta diversity
As discussed in Appendix 1—note 2, while alpha and gamma diversity are expressed in terms 
of an effective number of species, beta diversity is expressed in terms of an effective number of 
subpopulations. Since the effective number of subpopulations is determined in part by the actual 
number of subpopulations, this means that the beta diversity, unlike alpha and gamma diversity, is 
directly dependent on the number of subpopulations ‍ ‍. If two different structured populations 
contain different numbers of subpopulations, it is therefore not possible to compare their beta 
diversity values directly; first, the beta diversity spectra of the populations must be rescaled to a 
common range.

The minimum beta diversity of a structured population obtains when all subpopulations have 
identical species composition. In this case, the beta diversity for the structured population is equal 
to 1. The maximum beta diversity, meanwhile, obtains when there is no overlap in species between 
any pair of subpopulations in the structured population. In this case beta diversity for the structured 
population is equal to the number of subpopulations M (derivations available upon request).

The beta diversity for a structured population with M subpopulations therefore ranges between 
1 (identical composition) and M (maximally divergent composition). The beta diversities of such a 
population can thus be transformed onto a new scale from 0 (minimum beta diversity) to 1 (maximum 
beta diversity) as follows:

	﻿‍
qDβ rescales(C) =

qDβ (C)−qDβ min(C)
qDβ max(C)−qDβ min(C) =

qDβ (C)−1
M−1 ‍�

By transforming the beta-diversity spectra of different structured populations onto this common 
scale, the inter-subpopulation variability of those populations can be meaningfully compared, even 
if they differ in the number of subpopulations they contain.

Note 4: IgSeq library preparation
To reverse-transcribe antibody heavy-chain transcripts from total RNA samples, and to attach 
template-switch adapter oligos and UMIs, 750 ng of total RNA from a killifish sample was combined 
with 2 μl of 10 μmol gene-specific primer (GSP, Supplementary file 5a), homologous with the second 
constant-region exon of N. furzeri IgM (Cμ

2) (Bradshaw and Valenzano, 2020). The reaction volume 
was brought to a total of 8 μl with nuclease-free water, and the resulting mixture was incubated 
for 2  min at 70°C to denature the RNA, then cooled to 42°C to anneal the GSP (Turchaninova 
et  al., 2016). Following annealing, the RNA-primer mixture was combined with 12 μl of reverse 
transcription master-mix (Supplementary file 4a), including the reverse-transcriptase enzyme and 
template-switch adapter SmartNNNa, Supplementary file 5a and Appendix 1—figure 2, sequence 
provided in Turchaninova et al., 2016. The complete reaction mixture was incubated for 1 hr at 
42°C for the reverse transcription reaction, then mixed with 1 μl of uracil DNA glycosylase (QIAGEN, 
100 mg/ml) and incubated for a further 40 min at 37°C to digest the template-switch adapter.

Following reverse transcription, the reaction product was purified using SeraSure SPRI (solid-
phase reversible immobilization) bead preparation (Fisher et  al., 2011) (Appendix 1—note 5, 
Supplementary file 4e). The reaction mixture then underwent three successive rounds of PCR 
with 2× Kapa  HiFi HotStart ReadyMix PCR Kit (Kapa Biosystems), using the general reaction 
protocol described in Supplementary file 4b and reaction-specific volumes and parameters from 
Supplementary file 4c. Each round of PCR was followed by a further round of bead cleanups 
(Appendix 1—note 5, Supplementary file 4e) to purify the reaction product prior to the next 
reaction.

Following the final PCR and cleanup, the total concentration of each library was assayed with the 
Qubit 2.0, while the size distribution of each library was obtained using the TapeStation 4200. To 
obtain the concentration of complete library molecules in each case (as opposed to primer dimers 
or other off-target bands), the ratio between the concentration of the desired library band (c. 620–
680 bp) and the total concentration of the sample was calculated for each TapeStation lane, and the 
total concentration of each library as measured by the Qubit was multiplied by this ratio to obtain 

https://doi.org/10.7554/eLife.65117
https://www.codecogs.com/eqnedit.php?latex=M#0
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an estimate of the desired quantity. All the libraries for a given experiment were then pooled, such 
that the estimated concentration of each library in the final pooled sample was equal and the total 
mass of nucleic acid in the pooled sample was at least 240 ng. The pooled libraries underwent a final 
bead cleanup (Supplementary file 4e) to concentrate the samples, and the beads were separated 
and removed from the sample.

The pooled and concentrated samples underwent size selection with the BluePippin (Sage 
Science, 1.5% DF Marker R2, broad 400–800  bp target band) according to the manufacturer’s 
instructions. The size-selected libraries then underwent a final round of quality control with the Qubit 
and TapeStation (as above) to confirm their collective concentration (at least 1.5  nmol) and size 
distribution. Finally, the pooled and size-selected libraries were sequenced on an Illumina MiSeq 
System (MiSeq Reagent Kit v3, 2 × 300 bp reads, 30% PhiX spike-in) as described in the main text.

Note 5: Nucleic acid cleanup with SPRI beads
To prepare 50 ml of SeraSure bead suspension, a stock of SeraMag beads (GE Healthcare, 50 mg/ml) 
was vortexed thoroughly, and 1 ml was transferred to a new tube. This tube was then transferred to 
a magnetic rack and incubated at room temperature for 1 min, then the supernatant was removed 
and replaced with 1 ml TET buffer (10 mM Tris base, 1 mM Na2-EDTA, 0.05% (v/v) Tween 20, pH 
8.0) and the tube was removed from the rack and vortexed thoroughly. This washing process was 
repeated twice more, for a total of three washes in TET. A fourth cycle was used to replace the TET 
with incomplete SeraBind buffer (4.2 M NaCl, 16.8 mM Tris base, 1.68 mM Na2-EDTA, pH 8.0). The 
vortexed 1 ml aliquot of beads was then transferred to a conical tube containing 28 ml incomplete 
SeraBind buffer and mixed by inversion. Twenty ml 50% (w/v) PEG 8000 solution was dispensed 
slowly down the side of the conical tube, bringing the total volume to 49 ml. Finally, this was brought 
to 50 ml by adding 250 μl 10% (w/v) Tween 20 solution and 750 μl autoclaved water to complete the 
SeraSure bead suspension.

To perform a bead cleanup, an aliquot of prepared SeraSure suspension was vortexed thoroughly 
to completely resuspend the beads, then the appropriate relative volume of SeraSure suspension 
was added to a sample, mixing thoroughly by gentle pipetting. The sample was incubated at room 
temperature for 5 min to allow the beads to bind the DNA, then transferred to a magnetic rack and 
incubated for a further 5 min to draw as many beads as possible out of suspension. The supernatant 
was removed and discarded and replaced with 80% ethanol, to a volume sufficient to completely 
submerge the bead pellet. The sample was incubated for 0.5–1 min, then the ethanol was replaced 
and incubated for a further 0.5–1 min. The second ethanol wash was removed, and the tube left on 
the rack until the bead pellet was almost, but not completely, dry, after which it was removed from 
the rack. The bead pellet was resuspended in a suitable volume of elution buffer (10 mM Tris-HCl, 
pH 8.5) then incubated at room temperature for at least 5 min to allow the nucleic acid molecules 
to elute from the beads.

Unless otherwise specified, the beads from a cleanup were left in a sample during subsequent 
applications. To remove beads from a sample, the sample was mixed gently but thoroughly to 
resuspend the beads, incubated for an extended time period (at least 10 min) to maximize nucleic 
acid elution, then transferred to a magnetic rack and incubated for 2–5 min to remove the beads from 
suspension. The supernatant (containing the eluted nucleic acid molecules) was then transferred to a 
new tube, and the beads discarded.

Note 6: Pre-processing repertoire-sequencing data
Unless otherwise specified, utilities used in the pre-processing pipelines were provided by the 
pRESTO (Vander Heiden et al., 2014) and Change-O (Gupta et al., 2015) suites of command-line 
tools. All code used as part of this pipeline, as well as for downstream analysis and visualization, 
will be made available at https://github.com/willbradshaw/killifish-igseq/, (copy archieved at 
swh:1:rev:2c933de6564c1055cb363389778f86bfa3fe4ab2; Bradshaw, 2022).

Demultiplexed, adapter-trimmed MiSeq sequencing data were uploaded by the sequencing 
provider to Illumina BaseSpace and accessed via the Illumina utility program BaseMount. Library 
annotation information (fish ID, sex, strain, age at death, death weight, etc.) was added to the 
read headers of each library FASTQ file, and library was assigned a replicate and individual identity. 
Reads from different sequencing libraries were pooled together, then split by replicate identity; this 
pooling and re-splitting process enables all reads considered to be a single replicate to be processed 

https://doi.org/10.7554/eLife.65117
https://github.com/willbradshaw/killifish-igseq/
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together even if sequenced separately, maximizing the effectiveness of UMI-based pre-processing, 
while also allowing all replicates to be processed in parallel.

After pooling and re-splitting, the raw read set underwent quality control, discarding any read 
with an average Phred score of less than 20. Invariant primer sequences were removed and UMI 
sequences identified and extracted.

In order to reduce the level of barcode errors in each dataset, primer-masked reads then 
underwent barcode clustering, in which reads with the same replicate identity and highly similar 
UMI sequences were grouped together into the same molecular identifier group (MIG). To do this, 
5'-reads were first clustered by UMI sequence using a 90% sequence identity cutoff. In order to split 
any genuinely distinct MIGs accidentally united by this process, as well as to reduce the level of 
barcode collisions, the reads within each MIG were clustered again based on their insert sequences; 
the cluster dendrogram was cut at 75% total sequence identity, and each subcluster was separated 
into its own distinct MIG. These clustering thresholds (90% for barcode clustering, 75% for barcode 
splitting) were identified empirically as the values that maximize the number of reads passing 
downstream quality checks in turquoise-killifish data.

The cluster annotations from these two clustering steps were combined into a single annotation, 
uniquely identifying each MIG in each replicate. These annotations were further modified to designate 
the replicate identity of each read, giving each MIG a unique annotation across the entire dataset. 
These annotations were copied to the reverse reads, such that each read pair had a matching MIG 
annotation, and reads without a mate (due to differential processing of the two reads files) were 
discarded. The 5'-reads were then grouped based on MIG identity, and the reads in each cluster 
grouping were aligned and collapsed into a consensus read sequence; an identical consensus-read-
generation step was performed on the reverse reads.

After consensus-read generation had been performed for both 5'- and 3'-reads, the annotations 
attached to each read were again unified across read pairs with matching cluster identities, and 
consensus reads without a mate of the same cluster identity were dropped. Consensus-read pairs 
with matching cluster annotations were then aligned and merged into a single contiguous sequence. 
To convert this dataset of MIGs (representing distinct RNA molecules) into one of unique sequences 
(representing distinct B-cells), merged consensus sequences with identical insert sequences but 
distinct cluster identities were collapsed together into a single FASTQ entry, recording the number, 
size, and UMI makeup of contributing MIGs in each case. Sequences represented by only a single 
read across all MIGs in the dataset were discarded as unreliable, and the remaining non-singleton 
sequences from all replicates were combined into a single FASTA file.

V/D/J identities were assigned to each sequence using IgBLAST (Ye et  al., 2013), and the 
sequences imported into a tab-delimited Change-O database file for downstream processing. 
Clonotype identities inferred using Change-O’s nearest-neighbor distance-threshold technique 
(Gupta et al., 2015; Nouri and Kleinstein, 2018), with replicates from the same individual pooled 
before undergoing clonotyping to enable comparison of clonotype composition across replicates. 
A full-length germline sequence was constructed for each sequence entry, and improved V/D/J 
assignments were made based on the assignments of other sequences in the same clone. Finally, each 
sequence in the dataset was annotated according to whether or not it possessed V/D/J assignments 
and whether these assignments were ambiguous (i.e. whether multiple possible assignments were 
given rather than just one), and combined VJ and VDJ assignments were obtained by concatenating 
the individual segment assignments as appropriate. The processed sequence databases were then 
passed on to downstream analysis pipelines.

Note 7: Diversity-spectrum inference and statistical comparison
Methods for computing diversity spectra were adapted from those presented in the Alakazam 
R package (Gupta et al., 2015; Stern et al., 2014), following completion of the pre-processing 
pipeline described in Appendix 1—note 6.

To ensure comparability between individuals, and obtain estimates of confidence intervals for 
diversity estimates, the repertoire of each individual underwent multinomial bootstrap resampling: 
for each of 2000 bootstrap replicates, the same number of unique sequences was sampled, with 
replacement, from each individual. Following bootstrapping, Hill diversity estimates for each 
bootstrap replicate and diversity order were calculated as appropriate for the type of diversity being 
estimated:

https://doi.org/10.7554/eLife.65117
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•	 Individual diversity spectra (i.e. for individual fish, not aggregated by age group) were 
computed as specified in Equation 2.

•	 Alpha-diversity spectra for each age group were computed across all individuals in that age 
group as specified in Equation 9 and Equation 11.

•	 Gamma-diversity spectra for each age group were computed across all individuals in each 
age group as specified in Equation 8 and Equation 10.

•	 Beta-diversity spectra for each age group were computed as specified in Equation 7, and 
rescaled as described in Appendix 1—note 3.

Having computed diversity values for each bootstrap replicate, diversity spectra were visualized as 
the mean across all replicates, while 95% confidence intervals were computed empirically as the 
0.025- and 0.975-quantiles of diversity across replicates.

To estimate the statistical significance of an age effect on individual repertoire diversity, we 
adopted a permutation-based approach. For each of 3000 permutations, the age-group assignments 
of the individuals in the dataset were randomly reshuffled, and a Kruskal-Wallis one-way analysis-
of-variance test for an age effect was performed on the individual diversity estimates for each 
permutation, bootstrap replicate, and diversity order. For each permutation and diversity order, 
the largest Kruskal-Wallis H statistic across all bootstrap replicates was identified. The same process 
was repeated on the (unpermuted) real data for each bootstrap replicate and diversity order, again 
taking the largest H statistic across all bootstrap replicates for each diversity order. The p-value of 
the age effect at a given diversity order was then computed as the proportion of permutations with 
a higher maximum H value than that obtained from the real data.

https://doi.org/10.7554/eLife.65117
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Appendix 1—figure 1. Summary of pre-processing pipeline applied to killifish repertoire-sequencing data 
(Appendix 1—note 6).

Appendix 1—figure 2. The SmartNNNa template-switch adapter. Annotated sequence of the SmartNNNa 
barcoded template-switch adapter (TSA) used in template-switch reverse transcription for immunoglobulin-
sequencing library preparation (Turchaninova et al., 2016). The 5’-terminal pink characters represent an invariant 
sequence used for primer-binding in downstream PCR steps, while the gray N characters represent the random 
nucleotides constituting the unique molecular identifier (UMI), each of which could take any value from A, C, G, or 
T. The blue U residues represent deoxyuridine, which is specifically digested after reverse transcription to remove 
residual TSA oligos from the reaction mixture. The orange, 3’-terminal rG characters indicate riboguanosine 
residues, which pair with terminal-transferase added cytidine residues to enable template switching.

https://doi.org/10.7554/eLife.65117
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