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Abstract: Predictive microbiology has steadily evolved into one of the most important tools to
assess and control the microbiological safety of food products. Predictive models were traditionally
developed based on experiments in liquid laboratory media, meaning that food microstructural
effects were not represented in these models. Since food microstructure is known to exert a significant
effect on microbial growth and inactivation dynamics, the applicability of predictive models is limited
if food microstructure is not taken into account. Over the last 10–20 years, researchers, therefore,
developed a variety of models that do include certain food microstructural influences. This review
provides an overview of the most notable microstructure-including models which were developed
over the years, both for microbial growth and inactivation.

Keywords: predictive microbiology; food microstructure; food safety; mathematical models

1. Introduction

Predictive microbiology encompasses the development of mathematical models to
evaluate and predict the effect of environmental conditions (e.g., temperature, pH, CO2
level, salt concentration, water activity) on the (growth, survival, and inactivation) be-
haviour of microorganisms in food (model) systems [1,2]. While some simple model types
have been developed over the years, most predictive models are continuous dynamical
models that consist of a set of ordinary differential equations (ODEs) [3]. The models are
useful tools to assess and design processing, distribution, and storage operations to assure
the microbiological safety and quality of food products [1,2]. To date, predictive models
have been widely accepted by food producers, governments, and scientists as a sound
scientific approach to accomplish legal food safety requirements [4]. The main advantages
of predictive microbiology over traditional challenge tests are (i) an increased efficiency
regarding financial costs, labour-intensiveness, and time, and (ii) the cumulative nature of
the developed models [5].

Food structure, from natural or process-generated origins, is defined as the spatial
arrangement of the structural elements of food products and their interactions [6,7]. Food
structural elements can be interpreted at different scales, i.e., the molecular level (e.g., sugar,
water, protein, and polysaccharide molecules), the nanoscale level (e.g., casein micelles),
the microscale level (fat and water droplets in emulsions, granules, gel networks), and
the macroscale level (e.g., air pockets, powders, foams) [7–9]. When investigating microbial
behaviour, it is mainly the microscale level (i.e., food microstructure) which is of interest,
with influencing aspects including physical constraints on the mobility of microorganisms,
variations in oxygen availability, and nutrient diffusion related to the nature of the food
matrix (i.e., viscous or gelled, rheological properties), and the presence of fat droplets inside
the food matrix [10,11]. An important aspect of the microstructural influence on microbial
dynamics is the effect on the growth morphology of microorganisms [12]. Depending on
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the specific microstructural complexity of foods, microorganisms can occur as single cells,
small aggregates (i.e., radius < 1.5 µm), microcolonies (i.e., radius < 200 µm), macrocolonies
(i.e., radius > 200 µm), and biofilms [13]. An example of this microstructural influence on
bacterial growth morphology is illustrated in Figure 1.
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Figure 1. Confocal laser scanning microscopy images of growth of Listeria monocytogenes in food
model systems with varying microstructural complexity (adapted from [13], with permission from
American Society for Microbiology—Journals, 2021). Bacterial cells and fat droplets are shown in
green and orange, respectively. The liquid/gelled aqueous phase was not stained and is, hence, shown
by the absence of colour. The growth morphology of the bacteria clearly depends on the microstruc-
tural aspects of the food (model) system: (A) single cells, small aggregates and small microcolonies in
a simple low-viscosity liquid system; (B) a large number of small aggregates and small microcolonies
and some larger microcolonies in a liquid system with increased viscosity; (C) microcolonies of
different sizes in an aqueous gel model system; (D) small aggregates and microcolonies growing in
the spaces between fat droplets and around the fat droplets in an emulsion model system; (E) small
aggregates and microcolonies growing in the spaces between the fat droplets and around the fat
droplets in a gelled emulsion model system.

Traditionally, most predictive models are developed based on experiments in liquid
laboratory media, in which case the effect of the food microstructure on the microbial
behaviour, albeit a major influencing factor, is not taken into account [10,14]. The ap-
plicability of these models is, hence, limited to liquid foods with a relatively uniform
distribution of nutrients and microorganisms occurring in a planktonic form [15,16]. In/on
more structured foods (e.g., aqueous gels, emulsions, gelled emulsions), model predictions
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can be either fail-safe (i.e., predicting more growth or less inactivation than in reality) or
fail-dangerous (i.e., predicting less growth or more inactivation than in reality) from a food
safety point of view [10]. For microbial growth, most liquid-based models are considered
fail-safe in/on more structured foods, while for microbial inactivation, most models are
considered fail-dangerous [17–20]. Nevertheless, exceptions to the general trend have been
reported for both microbial growth and inactivation in structured foods, meaning that
including the food microstructural effect into predictive models would be beneficial for
the overall accuracy and safety of predictive models [17,18,21,22].

During the 1990s and early 2000s, a few review papers brought to attention the lack
of knowledge concerning the effect of the food microstructure on microbial dynamics in
the context of predictive microbiology, also proposing modelling frameworks to address
the issue in the future [10,23]. During the 20–30 years following on these pioneering
works, however, the number of developed predictive models that incorporated food mi-
crostructural effects remained scarce. While some useful models have been reported, most
of them mainly consisted of isolated efforts more focussed on specific applications (e.g.,
predicting the growth of microorganisms as a function of the gelatine concentration of
the food [24]) rather than systematic modelling frameworks. Nevertheless, a significant
amount of useful experimental and modelling-related approaches/concepts have been
developed during these last decades. No relevant review papers on this topic have, how-
ever, been published in recent years, except for the review of Skandamis and Jeanson [25],
focussing on the inclusion of the effect of the type of growth of the microorganisms (i.e.,
colonial vs. planktonic) into mathematical models for liquid, semi-liquid, and solid foods
and food surfaces. Therefore, in the current review, the aim is to provide an extensive
overview of the most promising food microstructure-including predictive models which
were developed over the years, both for microbial growth and inactivation. For consistency
and clarity purposes, the parameters and variables in the different presented models were
occasionally renamed to remain uniform among the different examples.

2. Historical Overview on the Inclusion of Food Microstructure in Predictive Models
2.1. The Absence of Food Microstructure in the Early Days of Predictive Microbiology

Figure 2 depicts the evolution of the inclusion of food microstructural factors in
predictive models over the years. In the early days of predictive microbiology, research
did not specifically focus on the influence of food microstructure on microbial behaviour.
One of the basic assumptions of predictive microbiology (which is still valid now) was that
the growth or inactivation behaviour of microorganisms can be described/predicted based
on a limited number of variables. Traditionally, researchers did not see food microstructure
as one of those variables and focussed on factors such as temperature, pH, water activity
(aw), nutrient concentration, and the presence of preservatives [26]. Because of this reason,
predictive models were mainly developed based on experiments in liquid laboratory media
due to their ease of use during microbiological experiments [27].
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Figure 2. Timeline depicting the evolution on the inclusion of food microstructure into predictive
models over the years.

Predictive growth models, both kinetic and probabilistic, started to appear in the 1960s
and 1970s, describing the influence of factors such as storage temperature, salt concentra-
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tion, and pH [28–30]. A renewed interest in predictive models arose in the 1980s, mainly
due to a number of major food poisoning outbreaks and the consequent public (and po-
litical) awareness of the importance of food safety [1]. This renewed interest culminated
in the identification of effective primary models (e.g., modified Gompertz model [31,32],
Baranyi and Roberts model [33]), allowing the objective description of growth curves as
mathematical equations. From then on, the development of secondary models describing
the influence of important environmental factors on the parameters of the primary growth
models was possible [26]. Such secondary models were incorporated into primary models
to include the effect of those environmental factors on microbial growth into the predic-
tions [34–37]. Over the years, secondary models became more sophisticated, describing
the effect of different factors (e.g., temperature, pH, water activity, acid concentration)
and the interaction between them on the growth behaviour of microorganisms [38–40].
However, research in the 1990s and early 2000s more and more brought the insight that
such models could only adequately predict microbial growth in simple liquid food prod-
ucts. Microbial growth in/on more structured food products generally did not follow the
predictions, with both fail-safe and fail-dangerous discrepancies being reported [10,41–43].
Extensive research on the effects of food microstructure on microbial growth was conducted
in the following years, but models were only scarcely developed [17].

The most well-known early predictive model for the inactivation of microorganisms,
although originating from before the introduction of the term predictive microbiology, was
the botulinum cook of Esty and Meyer [44], describing a thermal process designed to kill
1012 spores of Clostridium botulinum type A [1]. This model was based on the Thermal Death
Time (TDT) concept of Bigelow [45], which involves the use of D-values (i.e., the decimal
reduction time, or the time necessary to accomplish a reduction in bacterial numbers
of one log unit under isothermal conditions) and z-values (i.e., increase in temperature
necessary to accomplish a 10-fold decrease in the D-value). Over the years, models based
on this concept of D and z-values, such as the botulinum cook, have been used extensively in
the food industry, with the canning industry being the most notable example [46]. However,
the success of this approach in the canning industry is mostly due to overprocessing rather
than due to modelling accuracy [47]. The models assume loglinear behaviour according to
Equation (1) [48].

log N = log N0 −
t

DT
(1)

with N, the cell density at time t; N0, the initial cell density; DT, the thermal reduction time
(D-value). Similar to predictive growth models, secondary models describing the influence
of important factors on the D-value of the primary inactivation model (Equation (1)) were
developed. Arrhenius-type models represent one of the earliest methods to develop such
secondary inactivation models (e.g., [49,50]). D-values can be expressed by means of
the Arrhenius equation, as shown in Equation (2) [51].

kmax =
2.303
DT

= A·exp
(
−E
R·T

)
(2)

with kmax, the maximum specific inactivation rate; A, the frequency factor; E, the activation
energy; R, the gas constant; T, the absolute temperature. This general Arrhenius equation
can be extended with extra terms to, in addition to the influence of temperature, also
include other factors such as pH and aw [51,52], as for example already applied in the late
1970s by Davey et al. [53] for the effect of temperature and pH during thermal inactiva-
tion. The generalised form of such Arrhenius-type secondary models is represented by
Equation (3) (based on [51]).

ln kmax = a0 + a1,1·V1 + · · ·+ a1,n·Vn
1 + a2,1·V2 + · · ·+ a2,n·Vn

2 + · · ·+ ax,1·Vx + · · ·+ ax,n·Vn
x (3)

with n, the order of the secondary model; a0–ax,n, constants; V1–Vx, environmental
factors such as 1/T, aw or pH. Theoretically, secondary models, be it Arrhenius-type models
or other model types, could include food microstructural factors, but this was not the case
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in the early days of predictive microbiology. Therefore, early models (i.e., including both
primary and secondary models) were accurate when describing the inactivation behaviour
of microorganisms in simple systems, but were inaccurate in complex food environments
because the influence of food microstructure was not taken into account [46]. Again,
model predictions could be fail-safe or fail-dangerous, depending on the specific situa-
tion [47,54,55]. In order to solve the possible inaccuracy of loglinear predictive inactivation
models, new models were developed to deal with common non-loglinear inactivation
trends, with the most notable models dating from after 1988 (e.g., [56–64]). Some of these
models are able to implicitly include the microstructural effect by representing accurate in-
activation dynamics in complexly structured food environments, e.g., via shoulder and/or
tailing effects. However, a direct modelling of the food microstructural effect on microbial
inactivation behaviour is not accomplished by the models if no food microstructural factors
are included in the secondary models.

2.2. More Attention to Food Microstructure in the Last Decades

Following on the increasing number of studies that showed the significant influence of
food microstructure on microbial dynamics, some concepts have been introduced to attempt
to develop predictive models which take the food microstructural influence into account.

A relatively straightforward method to include the influence of food microstructure
into predictive models is the development of models which are only valid for specific food
products. In this case, microbial growth or inactivation experiments are conducted in/on
the target food product. This methodology was occasionally already applied in the 1980s
and 1990s, but has been widely used in recent literature. An extensive list of example studies
exploiting this approach is provided in Table 1, both for microbial growth [65–86] and
thermal inactivation [55,87–97], with a focus on early and recent examples. Interestingly,
however, this predictive microbiology approach bears some similarities to the traditional
challenge testing approach, in which microbial growth/inactivation experiments were
also conducted directly in/on the food product of interest [5]. Hence, this approach could
result in a large amount of models only suitable for a specific set of conditions (i.e., food
product under certain environmental conditions), as also illustrated by the extensive (yet
incomplete) list in Table 1. To the opinion of the authors, this food-specific approach,
while certainly valuable, is not completely in line with the initial philosophy of predictive
microbiology, which aims for “the accumulation of knowledge on microbial behaviour in
foods” [1]. Additionally, and most relevant for this review, while those models inherently
take the influence of food microstructure on microbial dynamics into account, they do not
describe the influence of food microstructural factors on microbial behaviour [21].

Table 1. Examples of studies (ordered chronologically) in which predictive models only valid for specific food products
were developed.

Year Type Microorganism(s) Food Product Ref.

1981 Growth Clostridium botulinum Pork slurry [82]
1985 Growth Various background microflora Beef [86]
1990 Growth Clostridium botulinum Fish filets [66]
1992 Growth Salmonella Typhimurium Beef [70]
1996 Growth Various background microflora Cut endive [85]
1997 Inactivation Enterococcus faecium Bologna sausage [55]
1998 Growth Various background microflora Sausage [65]
1998 Growth Various background microflora Beef [71]
1999 Inactivation Salmonella enteritidis Tarama salad [93]
1999 Inactivation Enterobacter sakazakii Bovine whole milk [94]
1999 Growth Salmonella Typhimurium Cooked chicken breast [79]
1999 Growth Pseudomonas spp. and Shewanella putrefaciens Fresh bogue fish [83]
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Table 1. Cont.

Year Type Microorganism(s) Food Product Ref.

2003 Inactivation Staphylococcus aureus Surimi seafood sticks [89]
2013 Inactivation Salmonella Ground chicken [91]
2014 Inactivation Listeria monocytogenes Ground turkey [92]
2016 Inactivation Salmonella Tree nuts [96]
2018 Growth Bacillus cereus Cooked spinach [73]
2018 Growth Bacillus cereus (spores) Cooked beans [74]
2018 Growth Escherichia coli Mascarpone cheese [76]
2018 Growth Weissella viridescens Vacuum-packaged ham [78]
2018 Growth Escherichia coli Korean rice cake [80]
2018 Inactivation Escherichia coli Ground chicken [97]
2019 Growth Staphylococcus aureus Egg products [68]

2019 Growth Vibrio parahaemolyticus Korean raw crab marinated in
soy sauce [69]

2019 Inactivation Listeria monocytogenes Gilthead sea bream fillets [87]
2019 Growth Bacillus cereus Cooked rice [72]
2019 Growth/inactivation Listeria monocytogenes Fish balls [90]
2019 Growth Bacillus cereus (spores) Cooked pasta [75]

2019 Growth Clostridium perfringens Roasted chicken and braised
beef [77]

2019 Growth Aeromonas hydrophila Lettuce [81]
2019 Inactivation Salmonella Infant formula [95]

2020 Growth Brochothrix thermosphacta, Leuconostoc
gelidum and Pseudomonas spp. Minced pork [67]

2020 Inactivation Salmonella Thompson Iceberg lettuce [88]
2020 Growth Salmonella Reading and lactic acid bacteria Iceberg lettuce [84]

An alternative approach to include the effect of food microstructure into predictive
models is conducting experiments in artificial food model systems which simulate, to
a certain extent, the microstructure of the product. In general, artificial food model systems
are advantageous due to (i) their use being more simple and less labour-intensive than real
food products, (ii) the absence of background microflora, (iii) repeatability of experimen-
tal results, (vi) the possibility to alter factors independently, and (v) the straightforward
transferability of findings to other food products [15,21,98]. Wilson et al. [10] defined six
categories of food architectures which could all be represented by artificial food model
systems, i.e., liquids, oil-in-water emulsions, water-in-oil emulsions, aqueous gels, gelled
emulsions, and surfaces. The use of liquid food model systems (e.g., meat broth to simulate
meat products) was already a common practice in the early days of predictive microbiol-
ogy, mimicking mostly the composition, pH, and water activity of the food products of
interest [28,54,99–102]. In the early 2000s, a large number of research groups underwent
a paradigm shift towards the use of more structured model systems. Artificial model
systems of different structures are frequently used to study the effect of certain influencing
factors on microbial growth [11,15,103–108] or inactivation [109–111]. Seldomly, predictive
models are developed based on experiments in those more structure model systems. In
this regard, two approaches can generally be identified, i.e., (A) using one model system
to model (or include into the model) the effect of certain environmental or food intrinsic
factors (e.g., oxygen diffusion and heat transfer in structured foods) (e.g., [98,112–115])
and (B) using model systems varying in certain compositional or microstructural factors
to include the effect of those factors in relevant secondary models (e.g., [24,27,116,117]).
Both approaches A and B can be regarded as systematic approaches to develop predictive
models which take food microstructure into account, although not all models developed
according to these approaches would explicitly model the microstructural effect. For
instance, one could develop a model which describes the influence of the salt content
on microbial growth in structured products. This hypothetical model would be valid in
structured products, but would not directly express the influence of any microstructural
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factor. The following sections provide an overview of existing models which include food
microstructural effects, for microbial growth and inactivation, respectively.

3. Growth Models Incorporating Food Microstructure

To the best knowledge of the authors, all existing growth models which include
food microstructural effects can be divided into two categories. The first category en-
compasses the introduction of macroscale secondary models describing the influence of
food microstructural factors on microbial growth, while the second category encompasses
semi-mechanistic microscale models which take the local (structured) environment of
the bacterial cell(s) into account. Table 2 provides an overview of the most relevant models
of the two categories. A more detailed description of the respective models can be found in
the following sections.

Table 2. Overview of the most relevant growth models incorporating food microstructure.

Macroscale Secondary Models

Model Description Microstructural Factors Non-Microstructural Factors Ref.

Listeria innocua and Lactococcus lactis
growth (mono- and co-culture) in

a gelled system
Gelatine concentration

Undissociated lactic acid concentration,
pH, physiological state of the cells (for

lag phase)
[24]

Aspergillus carbonarius growth in broth Gelatine concentration
Temperature, water activity,

physiological state of the cells (for
lag phase)

[118]

Salmonella Typhimurium growth in broth Gelatine concentration Water activity, pH, physiological state of
the cells (for lag phase)

[27]

Semi-Mechanistic Microscale Models

Model Description Included Environmental Factors Ref.

Mixed population growth model for
homogeneous food products, with
2-dimensional space dependency

Food structure (via firmness of the food), biomass transport
(via diffusion) [119]

Listeria innocua growth in solid or paste
foods

Dissolved oxygen concentration (and diffusion), biomass transport
(via diffusion) [98,115]

Escherichia coli growth in a (3D)-structured
leafy product during handling and storage

Temperature/heat transfer, biomass transfer (via diffusion), leafy
structure (via inter-leaf contact points and entrapped air pockets) [120]

Listeria monocytogenes growth on the
surface of smear soft cheese and

vacuum-packed cold-smoked salmon

Local pH, local water activity, temperature, structural environment
(e.g., hollows, crests) [121,122]

3.1. Macroscale Secondary Models Including Food Microstructural Factors

The traditional approach which has been employed to model the effect of food mi-
crostructure on microbial growth dynamics is the development of secondary models based
on food microstructural factors of food products. This approach can be regarded as a macro-
scopic simplification of the real microbial behaviour. In essence, heterogeneity (i.e., both
concerning the bacterial distribution and the food environment) is ignored and an aver-
age macroscopic relation is assumed. Due to its relative straightforwardness and limited
required computing power, this secondary modelling approach has been dominant in pre-
dictive microbiology over the years. A remarkable observation is that, in all of the relevant
studies focussing on secondary models for the food microstructural influence on bacterial
growth, gelatine concentration was used as a variable to include the influence of product
rheology on the maximum specific growth rate µmax in the Baranyi and Roberts growth
model [24,27,118].

Antwi et al. [24] developed a predictive model for the growth of Listeria innocua and
Lactococcus lactis (mono- and coculture), quantifying the influence of a gelatine gel matrix.
For this purpose, the model of Vereecken et al. [123], describing bacterial growth in function
of undissociated lactic acid concentration and pH, was fit to growth data in model systems
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containing different gelatine concentrations. After their model optimisation procedure,
Antwi et al. [24] obtained the model represented by Equations (4) and (5).

dN
dt

=
Q

1 + Q
·µmax(Gc)·µLaH,H

(
[LaH],

[
H+
])
·N (4)

µmax(Gc) = a0 + a1·exp(−a2·Gc) (5)

with Gc, the gelatine concentration; Q, the physiological state of the cells; µLaH,H([LaH], [H+]),
the factor bringing the inhibition of growth into the model via the undissociated lactic
acid concentration and the pH; a0, a1, and a2 constant factors. Compared to the traditional
Baranyi and Roberts [33] growth model, this model uses a more mechanistically inspired
coupled-ODE method to explain growth inhibition, i.e., via the effect of the undissoci-
ated lactic acid concentration, the pH, and the gel strength. The authors concluded that
the model satisfactorily predicted the effect of the gelatine concentration on the lactic acid
dissociation and pH evolution and, in turn, also on the growth of the target microorganisms
(in mono- and coculture). A moderate decrease in the growth rate was observed with
an increasing gelatine concentration for both Listeria innocua and Lactococcus lactis, possibly
explained by the increasing medium solidness imposing additional stresses on the cells.

Kapetanakou et al. [118] developed a model for the combined effect of water activity,
temperature, and gelatine concentration on the growth of the fungus Aspergillus carbonarius
in food model systems. A two-step procedure was employed during the model develop-
ment, as the authors first fitted the Baranyi and Roberts [33] model to the growth data, and
then fitted a polynomial secondary model (Equation (6)) to the square root of the maximum
specific growth rates µmax.

√
µmax = a0 + a1·T + a2·Gc + a3·aw + a4·T·Gc + a5·T·aw + a6·Gc·aw + a7·T2 + a8·Gc

2 + a9·a2
w (6)

with a0, a1, a2, . . . , and a9 the constants to be estimated; T, the temperature; Gc, the gela-
tine concentration; aw, the water activity. The developed secondary model showed that
the addition of gelatine caused a large decrease in

√
µmax, but that the structural influence

was less pronounced at lower aw and T. The model was also validated in three commercial
products, i.e., custard, marmalade, and jelly. While the model predictions agreed well with
growth data on custard and marmalade, they agreed poorly with the observed data on jelly.

Theys et al. [27] developed a model for the growth of Salmonella Typhimurium in func-
tion of pH, aw, and gelatine concentration in a broth model system. Similar to the two pre-
vious studies, the authors incorporated a secondary model into the primary growth model
of Baranyi and Roberts [33]. This secondary model, based on the model of Ross et al. [124],
is presented by Equation (7).

√
µmax = a0·

√
aw − aw,min·

√
1− 10(pHmin−pH)·

√
Gc·µliq + a1·µsol

(a1 + Gc)·µsol
(7)

with a0 and a1 constants; aw,min and pHmin, the theoretical minimal values of aw and pH
below which no growth occurs; µliq, the maximum specific growth rate in liquid media
(i.e., gelatine concentration equal to zero); µsol, the maximum specific growth rate in
the strongest possible solid medium (i.e., theoretical infinite gelatine concentration); Gc,
the gelatine concentration. In brief, the structural factor becomes equal to zero if Gc equals
zero, while the factor becomes equal to the ratio of µsol and µliq if Gc is infinitely high. Based
on the developed model, it was observed that the curves of the secondary model were much
flatter with respect to the effect of pH and aw for the 1% and 5% gelatine concentrations
than for 0% gelatine. Hence, the decrease in µmax at a higher gelatine concentration was
large at a mild pH and aw conditions, while the µmax decrease with an increasing gelatine
concentration was much smaller at a stressful pH and aw conditions.

In general, the three aforementioned gelatine concentration models, although ex-
hibiting different model structures, managed to accurately describe microbial growth in
the respective studied food model systems. However, those models are only valid for
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microbial growth in gelatine-containing food products, evidently limiting their general
applicability. In order to address this issue, Aspridou et al. [103] recommended the use
of a single uniform rheological parameter to describe the structure of food matrices in
predictive models. The most suitable rheological parameters to include in predictive mod-
els need to be determined in future research, but might also be specific to the different
food product categories. For example, the structure of more liquid food products could
be described by the viscosity parameters of the Power law model of Reiner [125], while
the structure of visco-elastic and solid products could be described by the storage modulus
G’, the loss modulus G”, or the loss tangent tan δ [11,103]. It should, however, also be taken
into account that rheological properties of food products can be time-dependent and that
the handling of the food product (e.g., stirring, shaking) could exert a more significant
influence on microbial growth than the rheological properties [27].

In addition to food product rheology, other food intrinsic factors related to food
microstructure could also be incorporated into secondary models (e.g., fat droplet size,
food matrix fat content), although more dedicated research towards the effect of those
factors on microbial growth should first be conducted [126]. An extra complexity for
these kinds of models, however, is related to the determination of the most suitable model
structure. One could raise the question whether the food microstructural influence should
be added to factors that describe the influence of other (traditional) factors on microbial
growth (e.g., temperature, pH), or, whether (an) additional food microstructural factor(s)
should be added to existing models. In the latter case, it would theoretically also be possible
that these additional food microstructural factors are dependent on other variables which
are already represented by their own factor in the traditional model (e.g., a pH-dependent
influence of the gelling agent concentration on microbial growth, while a pH factor is
already present in the model) [11,27]. Moreover, certain variables that are included in
the microstructural factor could be dependent on other variables (e.g., a temperature-
dependent rheology in a rheology-related factor). While none of these options can a priori
be defined as the sole correct choice, the resulting possible complexity should be taken
into account when selecting the macroscale secondary modelling approach for certain
complex applications.

3.2. Semi-Mechanistic Microscale Models

While the secondary modelling approach described in Section 3.1 “Macroscale Sec-
ondary Models including Food Microstructural Factors” can result in accurate microbial
growth predictions, it does not provide and/or require an extensive fundamental knowl-
edge of the food microstructural influence on microbial dynamics. When looking at
the rheology-based examples in the previous section, the microbial behaviour which is
not explained by the influence of traditional factors (e.g., temperature, pH, water activity)
is explained by a “black box” rheology-based factor which is not based on any physical
phenomena. In reality, the influence of food rheology on microbial behaviour consists of
different interacting effects, e.g., oxygen and metabolite diffusion, the mechanical distri-
bution of water, the chemical redistribution of organic acids, and physical constraints on
the mobility of microorganisms [6].

A more mechanistic modelling approach can be applied by modelling the interaction
of microorganisms with the local environment based on physical phenomena. In this regard,
the elementary model structure for microbial evolution is provided by Equation (8) [127].

∂N(x, y, z, t)
∂t

= µ(local environment)·N(x, y, z, t) (8)

with N(x,y,z,t), the local cell density and µ, the specific growth rate of the microor-
ganisms. As shown in the equation, the growth rate of the cells is dependent on the local
environment, which comprises a plethora of different factors, e.g., temperature, pH, sub-
strate concentration, metabolite concentration, and interactions with other microorganisms
(i.e., same or competing species) [127]. Accurate modelling of the microbial behaviour,
hence, requires an accurate modelling of the local environment of the cells. Hereby, it is
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important to include all factors which exert a significant influence of the microorganisms,
e.g., oxygen and metabolite diffusion, the surrounding microorganisms (same species and
other species), the local temperature, and local physicochemical conditions such as pH and
aw. In this regard, partial differential equations (PDEs), describing changes in variables
as a function of space and time, are often introduced into the predictive models [3]. This
methodology also allows the inclusion of changes in environmental factors over time in
a straightforward way. This can be useful to include the time-dependent nature of food
structure into models; it is, for example, known that the rheological properties of food
products can change over time [27]. Taking the local conditions into account leads to the de-
velopment of microscale models, rather than the macroscale models (i.e., focussing on
total cell populations and macroscopic food properties) discussed in the previous section.
Since microscale models need to deal with a high level of detail (e.g., spatial and microbial
heterogeneity), they have a high complexity, possibly leading to significant computational
costs [128]. It should also be noted that no fully mechanistic models for microbial dynam-
ics exist to date, since (i) the current microbiological knowledge is too limited for fully
mechanistic relations and (ii) empiric relations are sometimes used to describe some envi-
ronmental conditions in order to save computational efforts. Consequently, most predictive
models are semi-mechanistic, meaning that they contain some mechanistic information in
their structure and physically measurable parameters [128].

Dens and Van Impe [119] proposed a general modelling approach to take spatial
heterogeneity in structured foods into account. While the model was solely based on model
simulations and, hence, not based on experiments in structured model systems, the study
was included in this review because of its importance for models developed in later studies.
In brief, the authors extended a previously developed mixed population growth model for
homogeneous food products, unifying the growth model of Baranyi and Roberts [33] and
the Lotka–Volterra model [129] for two-species competition (i.e., in this case, Escherichia
coli and Lactobacillus plantarum), and introducing a (two-dimensional) space-dependency
into the model. The general model structure is shown by Equations (9) and (10), with
the respective first terms representing bacterial growth via the combined Baranyi and
Roberts [33] and Lotka–Volterra [129] model, and the respective second terms representing
the biomass transport via diffusion.

∂N1(x, y, t)
∂t

= µ1(x, y, t)·N1(x, y, t) + D·∇2N1(x, y, t) (9)

∂N2(x, y, t)
∂t

= µ2(x, y, t)·N2(x, y, t) + D·∇2N2(x, y, t) (10)

The complete form of these model equations is represented by Equations (11) and (12).

∂N1(x, y, t)
∂t

= µmax,1·
Q1(x, y, t)

1 + Q1(x, y, t)
·N1(x, y, t)

Nmax,1
·(Nmax,1 − N1(x, y, t)− α1,2·N2(x, y, t)) + D·

(
∂2N1(x, y, t)

∂x2 +
∂2N1(x, y, t)

∂y2

)
(11)

∂N2(x, y, t)
∂t

= µmax,2·
Q2(x, y, t)

1 + Q2(x, y, t)
N2(x, y, t)

Nmax,2
·(Nmax,2 − N2(x, y, t)− α2,1·N1(x, y, t)) + D·

(
∂2N2(x, y, t)

∂x2 +
∂2N2(x, y, t)

∂y2

)
(12)

with N1 and N2, the cell densities of the two bacterial species; Q1 and Q2, the internal
physiological state of both species used to describe the lag phase; µmax,1 and µmax,2, the max-
imum specific growth rate of both species; Nmax,1 and Nmax,2, the maximum population
density of both species when grown in monoculture; α1,2 and α2,1, the interaction coef-
ficients measuring the effects of species one on species two and vice versa; D, the cell
diffusivity; ∇2, the diffusive operator. For their simulations, the authors assumed a 10
by 10 cm agar gel, 1 mm thick, to allow a two-dimensional model. Space was considered
as a grid of lattice sites, with each site being assumed homogeneous. The biomass mass
transfer was taken into account via the diffusion law, while the food structure was included
via factor D, a measure for the firmness of the food. Factor D was assumed infinite for
very fluid foods and zero for solid foods in which no movement of microorganisms is
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possible. In their concluding remarks, Dens and Van Impe [119] state that, while their
model simulations should not be regarded as accurate, the main message of their work is
that an extended model structure taking space into account is necessary to model microbial
growth in structured food environments. In later years, other authors have indeed used
this approach to model microbial growth in structured environments, as shown by the two
following examples of Noriega et al. [98,115] and De Bonis and Ruocco [120].

Noriega et al. [98,115] developed a predictive model for L. innocua growth in solid or
paste foods, taking into account oxygen diffusion limitations. Three different dissolved
oxygen concentrations were investigated in solidified broth systems, i.e., (i) aerobic con-
ditions (7.6–8.0 mg/L), (ii) hypoxic conditions (0.2–2.6 mg/L), and (iii) anoxic conditions
(<0.01 mg/L). In brief, the used modelling approach was a combination of the logistic
Riccati equation for microbial growth (Equation (13) [130]), on the one hand, and oxygen
(Equation (14)) and substrate (Equation (15)) mass balances, on the other.

dN
dt

= K·N·(1− τ·N) (13)

∂N
∂t

= D·∂
2N

∂z2 +
dN
dt

(14)

∂CO2

∂t
= DO2 ·

∂2CO2

∂z2 +
dCO2

dt
(15)

with D, the cell diffusivity; DO2 , the oxygen diffusion rate; CO2 , the oxygen concentration;
K and τ, kinetic parameters obtained in liquid media, with τ being a function of the oxygen
concentration. The authors concluded that the used approach of combining kinetic parame-
ters as a function of oxygen concentration, obtained in liquid medium with the assumption
of oxygen as a limiting substrate for cell growth, resulted in accurate model predictions for
structured media.

De Bonis and Ruocco [120] developed a mathematical 3D model of a structured
leafy product to simulate Escherichia coli growth in fresh iceberg lettuce during handling
and storage. In brief, the model combined general first-law equations for heat transfer
(Equation (16)), biomass kinetics and transfer (Equation (17)), primary bacterial growth
kinetics (Equation (18) [131]), and secondary temperature-dependent bacterial growth
kinetics (Equation (19) [132]). Structural features of the food were taken into account
by a multiplicity of inter-leaf contact points and insulating air pockets, which influence
microbial growth.

ρ·cP·
∂T
∂t

= kS·∇2T (16)

∂N
∂t

= D·∇2N +
dN
dt

(17)

dN
dt

=
Q

1 + Q
·µmax·

(
1− N

Nmax

)
·N (18)

√
µmax = b·(T − Tmin) (19)

with ρ, the substrate density; cp, the substrate specific heat capacity; T, the temperature;
kS, the substrate conductivity; D, the cell diffusivity in the substrate; µmax, the maximum
specific growth rate; Q, the physiological state of the cells; Nmax, the maximum cell den-
sity; b, the kinetic parameter of the Ratkowsky equation; Tmin, the reference temperature.
The predicted thermal profiles were validated in real iceberg lettuce samples, showing that
the model predicted temperature evolution nicely at all considered depths. The microbial
behaviour was not experimentally validated, but depended on general data on microbial
generation and diffusion. A value for bacterial (constant temperature) diffusivity was
obtained from literature for this purpose. In general, the main advantage of the model of
De Bonis and Ruocco [120] is that it is a general engineering tool which stems from the in-
tegration of partial differential equations that describe heat and mass transfer. The model
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allows the prediction of local and volume-averaged bacterial cell growth with proper accu-
racy, and both in function of the initial contamination and the operating thermal regime of
the product.

The previously discussed approaches can be classified as grid-based or biomass-based
models (BbM), as the cell density in a small volume unit of the food product was used as
the basic unit to model microbial growth. A further step towards more accurate models
would be to include direct intercellular reactions by using individual cells as the basic model
units in individual-based models (IbMs) [128]. IbMs provide realistic bacterial dynamics
and can be designed to include accurate descriptions of complex micro-structures and
environments [133]. Over the last two decades, IbMs have shown increasing potential for
the modelling of microbial behaviour due to the development of specialised software [134].
Examples of IbM software tools for predictive microbiology include BacSim [135], IN-
DISIM [136], MICRODIMS [137,138], BSim [133], and iDynoMiCS [139]. The potential
of IbMs to predict microbial dynamics in complex systems (i.e., complex environment
and/or complex microflora), even including the complex behaviour in microbial biofilms,
is a major advantage for modelling applications in structured food products [140]. While
an in-depth explanation of IbMs lies outside the scope of this study, it is worth mentioning
the most relevant example of an IbM approach applied to microbial growth on (i.e., surface
growth) structured food products.

Ferrier et al. [121] and Augustin et al. [122] developed an IBM approach to describe
the behaviour of a small number of Listeria monocytogenes cells contaminating the surface of
smear soft cheese and vacuum-packed cold-smoked salmon. Microscale models describing
the local pH and aw over the food surface were constructed based on microelectrode mea-
surements. These models were combined with the IBM approach to simulate the stochastic
growth of the bacteria on the product; simulations were also validated on real cheese
and salmon samples. On the one hand, the authors concluded that, for no-growth or
poor-growth situations (i.e., a small number of cells), the accuracy of their coupled IBM
approach surpassed the classical macroscale approach. On the other hand, the results of
the two approaches were similar when assessing the impact of changes in control measures
influencing the growth of the bacteria. Therefore, the IbM approach was mainly useful to
predict single-cell growth probability of foodborne pathogens contaminating food with
a small number of cells. Nevertheless, more microenvironmental factors, as well as the in-
teraction of L. monocytogenes with background microflora, should be added to the model in
order to further increase its accuracy.

4. Inactivation Models Incorporating Food Microstructure

Due to the long history of thermal processing as a means of food preservation in
the food industry, most inactivation models that incorporate the food microstructural
influence are thermal inactivation models, which are, hence, the main focus of this section.
Although predictive inactivation models have been developed for novel non-thermal
technologies, these are in most cases solely based on experiments in liquid laboratory
media (e.g., for high pressure processing [141]).

Similar to the microbial growth models, all reported thermal inactivation models
which include food microstructure can be classified into two categories, i.e., (i) macroscale
secondary models including food microstructural factors and (ii) semi-mechanistic mi-
croscale models. Table 3 provides an overview of the most relevant models of the two
categories. A more detailed description of the respective models can be found in the fol-
lowing sections.
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Table 3. Overview of the most relevant thermal inactivation models incorporating food microstructure.

Macroscale Secondary Models

Model Description Microstructural Factors Non-Microstructural
Factors

Ref.

Listeria monocytogenes inactivation in
homogenised milk model systems Fat content Temperature, pH [142]

Salmonella inactivation in whey protein
powder model systems Water mobility Temperature, water activity [143]

Salmonella inactivation in whey
protein–peanut oil powders model systems Fat content Temperature, water activity [144]

Semi-Mechanistic Microscale Models

Model Description Included Environmental Factors Ref.

Escherichia coli K12 thermal inactivation
(microwave) in calcium alginate gels

Local temperature (via microwave dielectric heating and heat transfer,
taking thermophysical properties of the gels into account) [113]

Escherichia coli K12 thermal inactivation in
pre-packed ground beef in water baths

Fluid flow in water bath, local temperature (via heat transfer, taking
thermophysical properties of the ground beef into account) [145]

4.1. Macroscale Secondary Models Including Food Microstructural Factors

To the best knowledge of the authors, the only existing macroscopic thermal inacti-
vation models that incorporate food microstructural factors are based on fat content and
water mobility. Fat content is often categorised as a food compositional factor, but since
fat content also determines the microstructural characteristics of emulsion-type foods,
the classification of fat content as a food microstructural factor is justified in some cases.
While some models were developed specifically for certain food products types (e.g., for
poultry with different fat content [19]), this section is focussed on inactivation models
developed in artificial food model systems, because this approach fits more into the general
predictive microbiology mindset.

Chhabra et al. [142] were among the first to develop a fat content-based inactivation
model using food model systems, based on homogenised milk. They developed a model
for the inactivation of L. monocytogenes in function of the fat content, pH, and processing
temperature. The developed model was a modified Gompertz equation, as shown in
Equation (20), including parameters SL, kmax, and Nred, characterising the shoulder phase,
the maximum inactivation rate, and the overall change in the number of survivors, respec-
tively. These parameters depended on the fat content, pH, and processing temperature, as
indicated in Equations (21)–(23).

log N = Nred·e−e(SL+kmax· t) − Nred·e−e(SL) (20)

SL = a0 + a1·CF + a2·pH + a3·T + a1,2·CF·pH + a1,3·CF·T + a2,3·pH·T + a1,2,3·CF·pH·T (21)

kmax = b0 + b1·CF + b2·pH + b3·T + b1,2·CF·pH + b1,3·CF·T + b2,3·pH·T + b1,2,3·CF·pH·T (22)

Nred = c0 + c1·CF + c2·pH + c3·T + c1,2·CF·pH + c1,3·CF·T + c2,3·pH·T + c1,2,3·CF·pH·T (23)

with CF, the fat content parameter; a0−c1,2,3, constant factors. Theoretically, the model
could have also been extended to include terms of higher order. It should, however, be
noted that not all parameters were deemed significant. For instance, the shoulder region
of the inactivation was only affected by the pH, while the death rate was only affected by
the temperature and fat content. It was also shown that, as temperature increased, there was
a decrease in heat resistance due to the presence of milkfat. However, modified Gompertz
models for inactivation are, apart from some mathematical limitations, characterised by
two major modelling problems, i.e., (i) N(t = 0) is not equal to N(0) in the static version



Foods 2021, 10, 2119 14 of 22

of the model and (ii) there is no explicit dependency on N(0) in the dynamic version of
the model, which should be avoided [61,146].

Santillana Farakos et al. [143] used whey protein powder model systems to develop a
predictive model for the thermal inactivation of Salmonella in low-moisture foods in function
of temperature, aw, and water mobility. The water mobility of the different model systems
was acquired by a pH adjustment and heat denaturation, and equilibrated to aw levels
between 0.19 ± 0.03 and 0.54 ± 0.02. The specific water mobility values were determined
by means of wide-line proton-NMR (Nuclear Magnetic Resonance). Four different models
were fitted to the inactivation data, but the Weibull model (Equation (24) [147]) was selected
for secondary modelling, because it best described the data over all temperatures.

log N = log N0 −
(

t
δ

)β

(24)

with N0, the initial cell population; δ, the scale parameter representing the treatment time
(in min) required to for the first decimal log reduction in the cell population; β, the shape
factor value. In order to develop secondary models, the significance of the temperature, aw,
and water mobility on log δ and log β was assessed. The temperature was deemed to be
a significant influencing factor on both Weibull parameters, while aw was only deemed to
be a significant influencing factor on log δ. The water mobility, however, being the only
investigated food microstructural factor, did not exert a significant influence on any of
the parameters. Hence, the developed model, as shown in Equations (25) and (26), did not
explicitly incorporate the influence of food microstructure.

log δ = −0.10T − 4.34aw + 9.91 (25)

log β = −0.006T (26)

Nevertheless, the model achieved acceptable predictions in different real food prod-
ucts, i.e., low-fat cocoa powder, low-fat peanut meal, non-fat dry milk, wheat flour, and
whey protein.

More recently, Trimble et al. [144] adapted the aforementioned model of Santillana
Farakos et al. [143] to include the influence of fat content on Salmonella inactivation in
low-water-activity foods, using whey protein–peanut oil powders as model systems. For
this purpose, they eliminated the correlation between δ and β by using a fixed value
of β = 0.3644. This resulted in a secondary model expressing a significant influence of
the temperature, fat content (CF), and water activity on log δ, as shown in Equation (27).

log δ = 22.90− 0.167T + 0.051CF − 4.38aw (27)

The adapted model was validated in fat-containing low-aw foods, i.e., toasted oats,
animal crackers, chia seed powder, and natural peanut butter. A slight underestimation
of thermal inactivation by the model was reported, but the model was still deemed suc-
cessful for the prediction of Salmonella survival in low-aw foods. In their final remarks,
Trimble et al. [144] suggested that the model could still be expanded to include a wider
fat content and/or temperature range and a dependency on fat type. In general, it should,
however, be mentioned that the Weibull model is characterized by two disadvantages. First
of all, the frequency distribution of the viability of bacterial cells, the concept on which
the Weibull model is based, is difficult to interpret and to validate experimentally [148]. Sec-
ondly, the Weibull model lacks a suitable differential model form. Due to the frequent use
of ODEs and PDEs in predictive modelling frameworks that include food microstructure,
the developed model strategy may, hence, have limited applicability for more complex
microbial inactivation cases.
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4.2. Semi-Mechanistic Microscale Models

An approach which has been extensively used to implicitly incorporate food mi-
crostructure into predictive thermal inactivation models is linking the bacterial inactivation
model to (space- and time-dependent) heat and mass transfer models. This method-
ology is especially suitable for thermal inactivation because structural food properties
tend to change during thermal processing, e.g., the viscosity of liquid foods which de-
creases with an increasing temperature or certain foods which further solidify during
frying [149,150]. Zanoni et al. [55] were among the first to adopt this approach, although
for experiments carried out in a real food product (i.e., bologna sausage). They combined
the Whiting et al. [151] inactivation model with a heat and mass transfer model validated
for bologna sausage cooking. A similar approach was later on conducted in food model
systems by researchers from the School of Chemical Engineering (University of Birming-
ham) and Institute of Food Research (Reading Laboratory) (e.g., [112,114]). These authors
conducted thermal inactivation experiments in agar cylinders and modelled both the heat
transfer and thermal inactivation kinetics, the latter by means of experimentally obtained
D and z-values. These studies marked an important step in the thermal inactivation model
development because the used approach could be used with food products of different
geometry or thermal conductivity, and for different bacteria.

Over the last decade, computer modelling techniques for heat and mass transfer
have become more and more common when modelling treatments of different traditional
and novel thermal processing technologies, e.g., beverage pasteurization [152], agitated
retort heating [153], microwave heating [154], continuous deep frying [155], and radio
frequency heating [156]. In brief, such techniques involve solving the heat and mass
transfer equations with applied initial and boundary conditions using either (i) theoretical
numerical finite difference and finite elements solutions or (ii) a computational fluid
dynamics (CFD) approach [157]. While such models would be suitable to be coupled to
microbial thermal inactivation models, this approach has only been scarcely employed for
these industry-relevant processes [145].

Hamoud-Agha et al. [113] investigated the thermal inactivation of Escherichia coli
K12 in calcium alginate gels during microwave processing. The inactivation model of
Geeraerd et al. [61], including a Bigelow-type temperature dependency of the inactivation
rate, was coupled to heat transfer and Maxwell’s equations into a 3D finite elements
model under dynamic heating conditions. By providing space-dependent predictions,
the model was able to handle the thermal heterogeneity inherent to microwave treatments
and the resulting differences in inactivation efficiency between the different locations
within samples. Consequently, Hamoud-Agha et al. [113] demonstrated the reliability
of the coupled modelling approach which links microbial inactivation models to heat
transfer models.

A similar approach was used by Albuquerque et al. [145] for the thermal inactivation
of Escherichia coli K12 in pre-packed ground beef in water baths programmed to deliver
different heating rates to the product. The authors coupled a 3D-CFD and heat transfer
finite elements model to the inactivation model of Geeraerd et al. [61], including a Bigelow-
type temperature dependent inactivation rate. Even though the large heating rates caused
large temperature gradients and heterogeneous inactivation distributions over the samples,
there was still satisfactory agreement between model predictions and experimental data.
Moreover, and most relevant for this review, the model was able to handle the typical
microstructural complexity of the real food product under study.

The studies of Hamoud-Agha et al. [113] and Albuquerque et al. [145], hence, demon-
strate that coupling microbial thermal inactivation models to heat and mass transfer models
is a promising, and probably the most optimal, approach to develop microbial (thermal) in-
activation models which take the food microstructural influence on microbial inactivation
into account. The fact that the other possible method to include the food microstruc-
tural effect into predictive models (i.e., macroscale secondary models) has so far solely
relied on less optimal model types for inactivation, such as the modified Gompertz and
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Weibull model, strengthens this conclusion. Similar to microbial growth, the accuracy
of the microscale methods could be further improved by including an IbM approach.
The inactivation of small cell populations is often characterised by a high variability in
inactivation behaviour, originating from individual cell heterogeneity [158,159]. However,
an appropriate theoretical IbM approach for modelling of the variability in individual cell
heterogeneity during the inactivation process has not been developed thus far [160].

5. Conclusions

While the influence of food microstructure on microbial dynamics was for the largest
part neglected in the early days of predictive microbiology, significant progress on the sub-
ject has been achieved during the last two decades. Both for microbial growth and thermal
inactivation, two general model types can be distinguished in the scientific literature, i.e.,
(i) macroscale secondary models including food microstructural factors and (ii) microscale
semi-mechanistic models. These model types have benefited from the introduction of
advanced mathematical modelling techniques and the increased usage of artificial food
model systems to collect experimental data (i.e., rather than real food products).

In general, both the macroscopic secondary models and the semi-mechanistic mi-
croscale models have shown their potential as predictive modelling tools/frameworks
when predicting microbial growth and inactivation in/on structured food products. The se-
lection of one approach over another, or a combination of the two approaches, should
ideally depend on the specific application, the required accuracy of the model, and the avail-
able computing power. Specifically for the macroscopic secondary models, other food
intrinsic factors related to food microstructure could also be taken into account in addition
to food product rheology (growth) and fat content (thermal inactivation), although more
dedicated research towards the effect of those additional factors on microbial dynamics
should first be conducted. Moreover, a lot of progress is still to be made for microbial
inactivation via non-thermal technologies, as models including the food microstructural
influence on microbial inactivation for those technologies are to date virtually non-existent.
Specifically for the microscale semi-mechanistic models, the development of models taking
more aspects of the complex microstructural and microbial environment into account forms
an interesting research opportunity.

Author Contributions: Conceptualization, D.V. and J.F.M.V.I.; methodology, D.V.; software, D.V.;
validation, D.V.; formal analysis, D.V.; investigation, D.V.; resources, J.F.M.V.I.; data curation, D.V.;
writing—original draft preparation, D.V.; writing—review and editing, D.V. and J.F.M.V.I.; visualiza-
tion, D.V.; supervision, J.F.M.V.I.; project administration, D.V. and J.F.M.V.I.; funding acquisition, D.V.
and J.F.M.V.I. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the KU Leuven Research Fund through project C24/18/046, by
the Research Foundation Flanders (FWO) through project G0B4121N, and by the EU H2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No. 956126. Author
Davy Verheyen was funded by the Research Foundation Flanders (FWO), grant number 1254421N.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMeekin, T.A.; Olley, J.; Ratkowsky, D.A.; Ross, T. Predictive microbiology: Towards the interface and beyond. Int. J. Food

Microbiol. 2002, 73, 395–407. [CrossRef]
2. Stavropoulou, E.; Bezirtzoglou, E. Predictive modeling of microbial behavior in food. Foods 2019, 8, 654. [CrossRef]
3. Lopatkin, A.J.; Collins, J.J. Predictive biology: Modelling, understanding and harnessing microbial complexity. Nat. Rev. Microbiol.

2020, 18, 507–520. [CrossRef] [PubMed]

http://doi.org/10.1016/S0168-1605(01)00663-8
http://doi.org/10.3390/foods8120654
http://doi.org/10.1038/s41579-020-0372-5
http://www.ncbi.nlm.nih.gov/pubmed/32472051


Foods 2021, 10, 2119 17 of 22

4. Pérez-Rodríguez, F.; Carrasco, E.; Pradhan, A.K.; Sant’Ana, A.S.; Valdramidis, V.P.; Valero, A. Special issue on 10th international
conference of predictive modelling in foods: Towards a new paradigm in predictive microbiology. Int. J. Food Microbiol. 2019, 291,
65–66. [CrossRef]

5. McDonald, K.; Sun, D.-W. Predictive food microbiology for the meat industry: A review. Int. J. Food Microbiol. 1999, 52, 1–27.
[CrossRef]

6. Heertje, I. Structure and function of food products: A review. Food Struct. 2014, 1, 3–23. [CrossRef]
7. Aguilera, J.M. Why food microstructure? J. Food Eng. 2005, 67, 3–11. [CrossRef]
8. Bhopatkar, D.; Hamaker, B.R.; Campanella, O.H. Micro to macro level structures of food materials. In Food Materials Science and

Engineering; Bhandari, B., Roos, Y.H., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 26–51.
9. Ubbink, J.; Burbridge, A.; Mezzenga, R. Food structure and functionality: A soft matter perspective. Soft Matter 2008, 4, 1569–1581.

[CrossRef] [PubMed]
10. Wilson, P.D.G.; Brocklehurst, T.F.; Arino, S.; Thualt, D.; Jakobsen, M.; Lange, M.; Farkas, J.; Wimpenny, J.W.T.; Van Impe, J.F.

Modelling microbial growth in structured foods: Towards a unified approach. Int. J. Food Microbiol. 2002, 73, 275–289. [CrossRef]
11. Verheyen, D.; Bolívar, A.; Pérez-Rodríguez, F.; Baka, M.; Skåra, T.; Van Impe, J.F. Effect of food microstructure on growth dynamics

of Listeria monocytogenes in fish-based model systems. Int. J. Food Microbiol. 2018, 283, 7–13. [CrossRef]
12. Wimpenny, J.W.T.; Leistner, L.; Thomas, L.V.; Mitchell, A.J.; Katsaras, K.; Peetz, P. Submerged bacterial colonies within food and

model systems: Their growth, distribution and interactions. Int. J. Food Microbiol. 1995, 28, 299–315. [CrossRef]
13. Verheyen, D.; Xu, X.M.; Govaert, M.; Baka, M.; Van Impe, J.F. Food microstructure and fat content affect growth morphology,

growth kinetics, and preferred phase for cell growth of Listeria monocytogenes in fish-based model systems. Appl. Environ. Microbiol.
2019, 85, e00707-19. [CrossRef]

14. Mertens, L.; Geeraerd, A.H.; Dang, T.D.T.; Vermeulen, A.; Serneels, K.; Van Derlinden, E.; Cappuyns, A.M.; Moldenaers, P.;
Debevere, J.; Devlieghere, F.; et al. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii
spoilage in acidic sauces. Appl. Environ. Microbiol. 2009, 75, 7060–7069. [CrossRef] [PubMed]

15. Baka, M.; Noriega, E.; Van Langendonck, K.; Van Impe, J.F. Influence of food intrinsic complexity on Listeria monocytogenes growth
in/on vacuum-packed model systems at suboptimal temperatures. Int. J. Food Microbiol. 2016, 235, 17–27. [CrossRef]

16. Pérez-Rodríguez, F.; Valero, A. Predictive Microbiology in Foods; SpringerBriefs in Food, Health, and Nutrition; Springer: New York,
NY, USA, 2013.

17. Theys, T. Modelling the (Boundaries of) Microbial Growth in Structured Media: Effect of pH, Water Activity and Gelatin on
the Growth of Salmonella Typhimurium. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2009.

18. Velliou, E.G.; Noriega, E.; Van Derlinden, E.; Mertens, L.; Boons, K.; Geeraerd, A.H.; Devlieghere, F.; Van Impe, J.F. The effect of
colony formation on the heat inactivation dynamics of Escherichia coli K12 and Salmonella typhimurium. Food Res. Int. 2013, 54,
1746–1752. [CrossRef]

19. Juneja, V.K.; Eblen, B.S.; Marks, H.M. Modeling non-linear survival curves to calculate thermal inactivation of Salmonella in
poultry of different fat levels. Int. J. Food Microbiol. 2001, 70, 37–51. [CrossRef]

20. Murphy, R.Y.; Marks, B.P.; Johnson, E.R.; Johnson, M.G. Thermal inactivation kinetics of Salmonella and Listeria in ground chicken
breast meat and liquid medium. J. Food Sci. 2000, 65, 706–710. [CrossRef]

21. Verheyen, D. Micro- and Macroscopic Investigation of the Food Microstructural Influence on Microbial Dynamics: Case Study
in/on Fish Products. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2020.

22. Smet, C.; Noriega, E.; Van Mierlo, J.; Valdramidis, V.P.; Van Impe, J.F. Influence of the growth morphology on the behaviour of
Salmonella Typhimurium and Listeria monocytogenes under osmotic stress. Food Res. Int. 2015, 77, 515–526. [CrossRef]

23. Robins, M.M.; Wilson, P.D.G. Food structure and microbial growth. Trends Food Sci. Technol. 1994, 5, 289–293. [CrossRef]
24. Antwi, M.; Bernaerts, K.; Van Impe, J.F.; Geeraerd, A.H. Modelling the combined effects of structured food model system and

lactic acid on Listeria innocua and Lactococcus lactis growth in mono- and coculture. Int. J. Food Microbiol. 2007, 120, 71–84.
[CrossRef]

25. Skandamis, P.N.; Jeanson, S. Colonial vs. Planktonic type of growth: Mathematical modelling of microbial dynamics on surfaces
and in liquid, semi-liquid and solid foods. Front. Microbiol. 2015, 6, 1178. [CrossRef]

26. Buchanan, R.L. Predictive food microbiology. Trends Food Sci. Technol. 1993, 4, 6–11. [CrossRef]
27. Theys, T.E.; Geeraerd, A.H.; Verhulst, A.; Poot, K.; Van Bree, I.; Devlieghere, F.; Moldenaers, P.; Wilson, D.; Brocklehurst, T.;

Van Impe, J.F. Effect of pH, water activity and gel micro-structure, including oxygen profiles and rheological characterization, on
the growth kinetics of Salmonella Typhimurium. Int. J. Food Microbiol. 2008, 128, 67–77. [CrossRef] [PubMed]

28. Genigeorgis, C.; Martin, S.; Franti, C.E.; Riemann, H. Initiation of Staphylococcal growth in laboratory media. Appl. Microbiol.
1971, 21, 934–939. [CrossRef] [PubMed]

29. Nixon, P.A. Temperature integration as a means of assessing storage conditions. In Report on Quality in Fish Products, Seminar
No. 3; Fishing Industry Board: Wellington, New Zealand, 1971; pp. 34–44.

30. Spencer, R.; Baines, C.R. The effect of temperature on the spoilage of wet fish: I. Storage at constant temperature between −1 ◦C
and 25 ◦C. Food Technol. Champ. 1964, 18, 769–772.

31. Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value
of life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115, 513–585.

http://doi.org/10.1016/j.ijfoodmicro.2018.11.010
http://doi.org/10.1016/S0168-1605(99)00126-9
http://doi.org/10.1016/j.foostr.2013.06.001
http://doi.org/10.1016/j.jfoodeng.2004.05.050
http://doi.org/10.1039/b802183j
http://www.ncbi.nlm.nih.gov/pubmed/32907147
http://doi.org/10.1016/S0168-1605(01)00660-2
http://doi.org/10.1016/j.ijfoodmicro.2018.05.032
http://doi.org/10.1016/0168-1605(95)00065-8
http://doi.org/10.1128/AEM.00707-19
http://doi.org/10.1128/AEM.01045-09
http://www.ncbi.nlm.nih.gov/pubmed/19783742
http://doi.org/10.1016/j.ijfoodmicro.2016.06.029
http://doi.org/10.1016/j.foodres.2013.09.009
http://doi.org/10.1016/S0168-1605(01)00518-9
http://doi.org/10.1111/j.1365-2621.2000.tb16076.x
http://doi.org/10.1016/j.foodres.2015.08.008
http://doi.org/10.1016/0924-2244(94)90137-6
http://doi.org/10.1016/j.ijfoodmicro.2007.04.015
http://doi.org/10.3389/fmicb.2015.01178
http://doi.org/10.1016/S0924-2244(05)80004-4
http://doi.org/10.1016/j.ijfoodmicro.2008.06.031
http://www.ncbi.nlm.nih.gov/pubmed/18834641
http://doi.org/10.1128/am.21.5.934-939.1971
http://www.ncbi.nlm.nih.gov/pubmed/5574324


Foods 2021, 10, 2119 18 of 22

32. Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ.
Microbiol. 1990, 56, 1875–1881. [CrossRef] [PubMed]

33. Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294.
[CrossRef]

34. Bhaduri, S.; Turner-Jones, C.O.; Buchanan, R.L.; Phillips, J.G. Response surface model of the effect of pH, sodium chloride and
sodium nitrite on growth of Yersinia enterocolitica at low temperatures. Int. J. Food Microbiol. 1994, 23, 333–343. [CrossRef]

35. George, S.M.; Richardson, L.C.C.; Peck, M.W. Predictive models of the effect of temperature, pH and acetic and lactic acid on
the growth of Listeria monocytogenes. Int. J. Food Microbiol. 1996, 32, 73–90. [CrossRef]

36. Ng, T.M.; Schaffner, D.W. Mathematical models for the effects of pH, temperature, and sodium chloride on the growth of Bacillus
stearothermophilus in salty carrots. Appl. Environ. Microbiol. 1997, 63, 1237–1243. [CrossRef] [PubMed]

37. Sutherland, J.P.; Bayliss, A.J.; Braxton, D.S. Predictive modelling of growth of Escherichia coli O157:H7: The effects of temperature,
pH and sodium chloride. Int. J. Food Microbiol. 1995, 25, 29–49. [CrossRef]

38. Augustin, J.-C.; Carlier, V. Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including
interactions between environmental factors. Int. J. Food Microbiol. 2000, 56, 53–70. [CrossRef]

39. Le Marc, Y.; Huchet, V.; Bourgeois, C.M.; Guyonnet, J.P.; Mafart, P.; Thuault, D. Modelling the growth kinetics of Listeria as
a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol. 2002, 73, 219–237. [CrossRef]

40. Panagou, E.Z.; Skandamis, P.N.; Nychas, G.-J.E. Modelling the combined effect of temperature, pH and aw on the growth rate of
Monascus ruber, a heat-resistant fungus isolated from green table olives. J. Appl. Microbiol. 2003, 94, 146–156. [CrossRef]

41. Little, C.L.; Knøchel, S. Growth and survival of Yersinia enterocolotica, Salmonella and Bacillus cereus in Brie stored at 4, 8 and 20 ◦C.
Int. J. Food Microbiol. 1994, 24, 137–145. [CrossRef]

42. Meldrum, R.J.; Brocklehurst, T.F.; Wilson, D.R.; Wilson, P.D.G. The effects of cell immobilization, pH and sucrose on the growth of
Listeria monocytogenes Scott A at 10 ◦C. Food Microbiol. 2003, 20, 97–103. [CrossRef]

43. Ongeng, D.; Ryckeboer, J.; Vermeulen, A.; Devlieghere, F. The effect of micro-architectural structure of cabbage substratum and or
background bacterial flora on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 2007, 119, 291–299. [CrossRef]

44. Esty, J.R.; Meyer, K.F. The heat resistance of the spore of B. botulinus and allied anaerobes XI. J. Infect. Dis. 1922, 31, 650–663.
[CrossRef]

45. Bigelow, W.D. The logarithmic nature of thermal death time curves. J. Infect. Dis. 1921, 29, 528–536. [CrossRef]
46. Bevilacqua, A.; Speranza, B.; Sinigaglia, M.; Corbo, M.R. A focus on the death kinetics in predictive microbiology: Benefits and

limits of the most important models and some tools dealing with their application in foods. Foods 2015, 4, 565–580. [CrossRef]
[PubMed]

47. Desriac, N.; Vergos, M.; Achberger, V.; Coroller, L.; Couvert, O. Predicting heat process efficiency in thermal processes when
bacterial inactivation is not log-linear. Int. J. Food Microbiol. 2019, 290, 36–41. [CrossRef] [PubMed]

48. Ball, C.O.; Olson, F.C.W. Sterilization in Food Technology: Theory, Practice and Calculation; McGraw-Hill: New York, NY, USA, 1957.
49. Garrett, E.R. Prediction of stability in pharmaceutical preparation II. Vitamin stability in liquid multivitamin preparations. J. Am.

Pharm. Assoc. 1956, 45, 171–178. [CrossRef] [PubMed]
50. Levine, S. Determination of the thermal death rate of bacteria. Food Res. 1956, 21, 295–301. [CrossRef]
51. Davey, K.R. Linear-Arrhenius models for bacterial growth and death and vitamin denaturations. J. Ind. Microbiol. 1993, 12,

172–179. [CrossRef]
52. Cerf, O.; Davey, K.R.; Sadoudi, A.K. Thermal inactivation of bacteria—A new predictive model for the combined effect of three

environmental factors: Temperature, pH and water activity. Food Res. Int. 1996, 29, 219–226. [CrossRef]
53. Davey, K.R.; Lin, S.H.; Wood, D.G. The effect of pH on continuous high-temperature/short-time sterilization of liquid. Am. Inst.

Chem. Eng. J. 1978, 3, 537–540. [CrossRef]
54. Blackburn, C.d.W.; Curtis, L.M.; Humpheson, L.; Billon, C.; McClure, P.J. Development of thermal inactivation models for

Salmonella enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. Int. J. Food Microbiol.
1997, 38, 31–44. [CrossRef]

55. Zanoni, B.; Peri, C.; Garzaroli, C. A dynamic mathematical model of the thermal inactivation of Enterococcus faecium during
Bologna Sausage Cooking. Lebensm. Wiss. Technol. 1997, 30, 727–734. [CrossRef]

56. Albert, I.; Mafart, P. A modified Weibull model for bacterial inactivation. Int. J. Food Microbiol. 2005, 100, 197–211. [CrossRef]
57. Baranyi, J.; Jones, A.; Walker, C.; Kaloti, A.; Robinson, T.P.; Mackey, B.M. A combined model for growth and subsequent thermal

inactivation of Brochothrix thermosphacta. Appl. Environ. Microbiol. 1996, 62, 1029–1035. [CrossRef] [PubMed]
58. Casolari, A. Microbial death. In Physiological Models in Microbiology 2; Bazin, M.J., Prosser, J.I., Eds.; CRC Press: Boca Raton, FL,

USA, 2009; pp. 1–44.
59. Chiruta, J.; Davey, K.R.; Thomas, C.J. Combined effect of temperature and pH on microbial death in continuous pasteurisation of

liquids. In Engineering and Food at ICEF7; Jowitt, R., Ed.; Sheffield Academic Press: Sheffield, UK, 1997; pp. A109–A112.
60. Daugthry, B.J.; Davey, K.R.; Thomas, C.J.; Verbyla, A.P. Food processing–A new model for the thermal destruction of contaminating

bacteria. In Engineering and Food at ICEF7; Jowitt, R., Ed.; Sheffield Academic Press: Sheffield, UK, 1997; pp. A113–A116.
61. Geeraerd, A.H.; Herremans, C.H.; Van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild

heat treatment. Int. J. Food Microbiol. 2000, 59, 185–209. [CrossRef]

http://doi.org/10.1128/aem.56.6.1875-1881.1990
http://www.ncbi.nlm.nih.gov/pubmed/16348228
http://doi.org/10.1016/0168-1605(94)90157-0
http://doi.org/10.1016/0168-1605(94)90161-9
http://doi.org/10.1016/0168-1605(96)01108-7
http://doi.org/10.1128/aem.63.4.1237-1243.1997
http://www.ncbi.nlm.nih.gov/pubmed/16535566
http://doi.org/10.1016/0168-1605(94)00082-H
http://doi.org/10.1016/S0168-1605(00)00224-5
http://doi.org/10.1016/S0168-1605(01)00640-7
http://doi.org/10.1046/j.1365-2672.2003.01818.x
http://doi.org/10.1016/0168-1605(94)90113-9
http://doi.org/10.1016/S0740-0020(02)00083-7
http://doi.org/10.1016/j.ijfoodmicro.2007.08.022
http://doi.org/10.1093/infdis/31.6.650
http://doi.org/10.1093/infdis/29.5.528
http://doi.org/10.3390/foods4040565
http://www.ncbi.nlm.nih.gov/pubmed/28231222
http://doi.org/10.1016/j.ijfoodmicro.2018.09.028
http://www.ncbi.nlm.nih.gov/pubmed/30292677
http://doi.org/10.1002/jps.3030450313
http://www.ncbi.nlm.nih.gov/pubmed/13319081
http://doi.org/10.1111/j.1365-2621.1956.tb16923.x
http://doi.org/10.1007/BF01584187
http://doi.org/10.1016/0963-9969(96)00039-7
http://doi.org/10.1002/aic.690240322
http://doi.org/10.1016/S0168-1605(97)00085-8
http://doi.org/10.1006/fstl.1997.0244
http://doi.org/10.1016/j.ijfoodmicro.2004.10.016
http://doi.org/10.1128/aem.62.3.1029-1035.1996
http://www.ncbi.nlm.nih.gov/pubmed/16535254
http://doi.org/10.1016/S0168-1605(00)00362-7


Foods 2021, 10, 2119 19 of 22

62. Sapru, V.; Teixeira, A.A.; Smerage, G.H.; Lindsay, J.A. Predicting thermophilic spore population dynamics for UHT sterilization
processes. J. Food Sci. 1992, 575, 1248–1252. [CrossRef]

63. Whiting, R.C. Modeling bacterial survival in unfavorable environments. J. Ind. Micro 1993, 12, 240–246. [CrossRef]
64. Xiong, R.; Xie, G.; Edmondson, A.E.; Sheard, M.A. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 1999, 46,

45–55. [CrossRef]
65. Aggelis, G.; Samelis, J.; Metaxopoulos, J. A novel modelling approach for predicting microbial growth in a raw cured meat

product stored at 3 ◦C and at 12 ◦C in air. Int. J. Food Microbiol. 1998, 43, 39–52. [CrossRef]
66. Baker, D.A.; Genigeorgis, C. Predicting the safe storage of fresh fish under modified atmospheres with respect to Clostridium

botulinum toxigenesis by modeling length of the lag phase of growth. J. Food Prot. 1990, 53, 131–140. [CrossRef]
67. Cauchie, E.; Delhalle, L.; Baré, G.; Tahiri, A.; Taminiau, B.; Korsak, N.; Burteau, S.; Fall, P.A.; Farnir, F.; Daube, G. Modeling

the growth and interaction between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in minced pork samples.
Front. Microbiol. 2020, 11, 639. [CrossRef]

68. Choi, W.-S.; Son, N.; Cho, J.-I.; Joo, I.-S.; Han, J.-A.; Kwak, H.-S.; Hong, J.-H.; Suh, S.H. Predictive model of Staphylococcus aureus
growth on egg products. Food Sci. Biotechnol. 2019, 28, 913–922. [CrossRef]

69. Chung, K.-H.; Park, M.S.; Kim, H.-Y.; Bahk, G.J. Growth prediction and time–temperature criteria model of Vibrio parahaemolyticus
on traditional Korean raw crab marinated in soy sauce (ganjang-gejang) at different storage temperatures. Food Control 2019, 98,
187–193. [CrossRef]

70. Dickson, J.S.; Siragusa, G.R.; Wray, J.E., Jr. Predicting the growth of Salmonella typhimurium on beef by using the temperature
function integration technique. Appl. Environ. Microbiol. 1992, 58, 3482–3487. [CrossRef] [PubMed]

71. Giannuzzi, L.; Pinotti, A.; Zaritzky, N. Mathematical modelling of microbial growth in packaged refrigerated beef stored at
different temperatures. Int. J. Food Microbiol. 1998, 39, 101–110. [CrossRef]

72. Hwang, C.-A.; Huang, L. Growth and survival of Bacillus cereus from spores in cooked rice–One-step dynamic analysis and
predictive modelling. Food Control 2019, 96, 403–409. [CrossRef]

73. Hyun, J.-E.; Yoon, J.-H.; Lee, S.-Y. Response surface modeling for the inactivation of Bacillus cereus on cooked spinach by natural
antimicrobial at various temperatures. J. Food Saf. 2018, 38, e12484. [CrossRef]

74. Juneja, V.K.; Mishra, A.; Pradhan, A.K. Dynamic predictive model for growth of Bacillus cereus from spores in cooked beans. J.
Food Prot. 2018, 81, 308–315. [CrossRef] [PubMed]

75. Juneja, V.K.; Golden, C.E.; Mishra, A.; Harrison, M.A.; Mohr, T.B. Predictive model for growth of Bacillus cereus at temperature
applicable to cooling of cooked pasta. J. Food Sci. 2019, 84, 590–598. [CrossRef]

76. Kowalik, J.; Lobacz, A.; Zulewska, J.; Dec, B. Analysis and mathematical modelling of the behaviour of Escherichia coli in
the mascarpone cheese during cold storage. Int. J. Food Sci. Technol. 2018, 53, 1541–1548. [CrossRef]

77. Li, M.; Huang, L.; Zhu, Y.; Wei, Q. Growth of Clostridium perfringens in roasted chicken and braised beef during cooling–One-step
dynamics analysis and modelling. Food Control 2019, 106, 106739. [CrossRef]

78. Longhi, D.A.; da Silva, N.B.; Martins, W.F.; Carciofi, B.A.M.; de Aragão, G.M.F.; Laurindo, J.B. Optimal experimental design to
model spoilage bacteria growth in vacuum-packaged ham. J. Food Eng. 2018, 216, 20–26. [CrossRef]

79. Oscar, T.P. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of
Salmonella typhimurium on cooked chicken breast. J. Food Prot. 1999, 62, 1470–1474. [CrossRef]

80. Park, S.Y.; Ha, S.-D. Predictive growth model of the effects of temperature on the growth kinetics of generic Escherichia coli in
the Korean traditional rice cake product “Garaetteok”. J. Food Sci. Technol. 2018, 55, 506–512. [CrossRef]

81. Park, S.Y.; Choi, S.-Y.; Ha, S.-D. Predictive modeling for the growth of Aeromonas hydrophila on lettuce as a function of combined
storage temperature and relative humidty. Foodborne Pathog. Dis. 2019, 16, 376–383. [CrossRef] [PubMed]

82. Roberts, T.A.; Gibson, A.M.; Robinson, A. Prediction of toxin production by Clostridium botulinum in pasteurized pork slurry. J.
Food Technol. 1981, 16, 337–355. [CrossRef]

83. Taoukis, P.S.; Koutsoumanis, K.; Nychas, G.J.E. Use of time-temperature integrators and predictive modelling for shelf life control
of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 1999, 53, 21–31. [CrossRef]

84. Tarlak, F.; Johannessen, G.; Villegas, I.B.; Bolívar, A.; Posada-Izquierdo, G.D.; Pérez-Rodríguez, F. Modelling of the behaviour of
Salmonella enterica serovar Reading on commercial fresh-cut iceberg lettuce stored at different temperatures. Foods 2020, 9, 946.
[CrossRef]

85. Vankerschaver, K.; Willocx, F.; Smout, C.; Hendrickx, M.; Tobback, P. The influence of temperature and gas mixtures on the growth
of the intrinsic micro-organisms on cut endive: Predictive versus actual growth. Food Microbiol. 1996, 13, 427–440. [CrossRef]

86. Zamora, M.C.; Zaritzky, N.E. Modeling of microbial growth in refrigerated packaged beef. J. Food Sci. 1985, 50, 1003–1006.
[CrossRef]

87. Costa, J.C.C.P.; Bover-Cid, S.; Bolívar, A.; Zurera, G.; Pérez-Rodríguez, F. Modelling the interaction of the sakacin-producing
Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere
packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 2019, 297, 72–84. [CrossRef]

88. Cuggino, S.G.; Bascón-Villegas, I.; Rincón, F.; Pérez, M.A.; Posada-Izquierdo, G.; Marugán, J.; Carro, C.P.; Pérez-Rodríguez, F.
Modelling the combined effect of choline, benzyl isothiocyanate, exposure time and cut size on the reduction of Salmonella in
fresh-cut lettuce during washing process. Food Microbiol. 2020, 86, 103346. [CrossRef]

http://doi.org/10.1111/j.1365-2621.1992.tb11310.x
http://doi.org/10.1007/BF01584196
http://doi.org/10.1016/S0168-1605(98)00172-X
http://doi.org/10.1016/S0168-1605(98)00095-6
http://doi.org/10.4315/0362-028X-53.2.131
http://doi.org/10.3389/fmicb.2020.00639
http://doi.org/10.1007/s10068-018-0529-4
http://doi.org/10.1016/j.foodcont.2018.11.021
http://doi.org/10.1128/aem.58.11.3482-3487.1992
http://www.ncbi.nlm.nih.gov/pubmed/1482173
http://doi.org/10.1016/S0168-1605(97)00127-X
http://doi.org/10.1016/j.foodcont.2018.09.036
http://doi.org/10.1111/jfs.12484
http://doi.org/10.4315/0362-028X.JFP-17-391
http://www.ncbi.nlm.nih.gov/pubmed/29369689
http://doi.org/10.1111/1750-3841.14448
http://doi.org/10.1111/ijfs.13736
http://doi.org/10.1016/j.foodcont.2019.106739
http://doi.org/10.1016/j.jfoodeng.2017.07.031
http://doi.org/10.4315/0362-028X-62.12.1470
http://doi.org/10.1007/s13197-017-2959-z
http://doi.org/10.1089/fpd.2018.2590
http://www.ncbi.nlm.nih.gov/pubmed/30864848
http://doi.org/10.1111/j.1365-2621.1981.tb01827.x
http://doi.org/10.1016/S0168-1605(99)00142-7
http://doi.org/10.3390/foods9070946
http://doi.org/10.1006/fmic.1996.0049
http://doi.org/10.1111/j.1365-2621.1985.tb12998.x
http://doi.org/10.1016/j.ijfoodmicro.2019.03.002
http://doi.org/10.1016/j.fm.2019.103346


Foods 2021, 10, 2119 20 of 22

89. Jaczynski, J.; Park, J.W. Predictive models for microbial inactivation and texture degradation in surimi seafood during thermal
processing. J. Food Sci. 2003, 68, 1025–1030. [CrossRef]

90. Jia, Z.; Li, C.; Fang, T.; Chen, J. Predictive modeling of the effect of ε-polylysine hydrochloride on growth and thermal inactivation
of Listeria monocytogenes in fish balls. J. Food Sci. 2019, 84, 127–132. [CrossRef] [PubMed]

91. Juneja, V.K.; Gonzales-Barron, U.; Butler, F.; Yadav, A.S.; Friedman, M. Predictive thermal inactivation model for the combined
effect of temperature, cinnamaldehyde and carvacrol on starvation-stressed multiple Salmonella serotypes in ground chicken. Int.
J. Food Microbiol. 2013, 265, 184–199. [CrossRef] [PubMed]

92. Juneja, V.K.; Garcia-Dávila, J.; Lopez-Romero, J.C.; Pena-Ramos, E.A.; Camou, J.P.; Valenzuela-Melendres, M. Modeling the effects
of temperature, sodium chloride, and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in
Turkey. J. Food Prot. 2014, 77, 1696–1702. [CrossRef] [PubMed]

93. Koutsoumanis, K.; Lambropoulou, K.; Nychas, G.-J.E. A predictive model for the non-thermal inactivation of Salmonella enteritidis
in a food model system supplemented with a natural antimicrobial. Int. J. Food Microbiol. 1999, 49, 63–74. [CrossRef]

94. Nazarowec-White, M.; McKellar, R.C.; Piyasena, P. Predictive modelling of Enterobacter sakazakii inactivation in bovine milk
during high-temperature short-time pasteurization. Food Res. Int. 1999, 32, 375–379. [CrossRef]

95. Portela, J.B.; Coimbra, P.T.; Cappato, L.P.; Alvarenga, V.O.; Oliveira, R.B.A.; Pereira, K.S.; Azeredo, D.R.P.; Sant’Ana, A.S.;
Nascimento, J.S.; Cruz, A.G. Predictive model for inactivation of Salmonella in infant formula during microwave heating
processing. Food Control 2019, 104, 308–312. [CrossRef]

96. Santillana Farakos, S.M.; Pouillot, R.; Anderson, N.; Johnson, R.; Son, I.; Van Doren, J. Modeling the survival kinetics of Salmonella
in tree nuts for use in risk assessment. Int. J. Food Microbiol. 2016, 227, 41–50. [CrossRef]

97. Sheen, S.; Huang, C.-Y.; Ramos, R.; Chien, S.-Y.; Scullen, J.; Sommers, C. Lethality prediction for Escherichia Coli O157:H7 and
uropathogenic E. coli in ground chicken treated with high pressure processing and trans-cinnamaldehyde. J. Food Sci. 2018, 83,
740–749. [CrossRef]

98. Noriega, E.; Laca, A.; Díaz, M. Modelling of diffusion-limited growth to predict Listeria distribution in structured model foods. J.
Food Eng. 2008, 87, 247–256. [CrossRef]

99. Broughall, J.M.; Anslow, P.A.; Kilsby, D.C. Hazard analysis applied to microbial growth in foods: Development of mathematical
models describing the effect of water activity. J. Appl. Bacteriol. 1983, 55, 101–110. [CrossRef]

100. Devlieghere, F.; Geeraerd, A.H.; Versyck, K.J.; Vandewaetere, J.; Van Impe, J.; Debevere, J. Growth of Listeria monocytogenes in
modified atmosphere packed cooked meat products: A predictive model. Food Microbiol. 2001, 18, 53–66. [CrossRef]

101. Gibson, A.M.; Bratchell, N.; Roberts, T.A. Predicting microbial growth: Growth responses of salmonellae in a laboratory medium
as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 1988, 6, 155–178. [CrossRef]

102. Juneja, V.K.; Marmer, B.S.; Phillips, J.G.; Miller, A.J. Influence of the intrinsic properties of food on thermal inactivation of spores
of nonproteolytic Clostridium botulinum: Development of a predictive model. J. Food Saf. 1995, 15, 349–364. [CrossRef]

103. Aspridou, Z.; Moschakis, T.; Biliaderis, C.G.; Koutsoumanis, K.P. Effect of the substrate’s microstructure on the growth of Listeria
monocytogenes. Food Res. Int. 2014, 64, 683–691. [CrossRef] [PubMed]

104. Boons, K.; Van Derlinden, E.; Mertens, L.; Peeters, V.; Van Impe, J.F. Effect of immobilization and salt concentration on the growth
dynamics of Escherichia coli K12 and Salmonella typhimurium. J. Food Sci. 2013, 78, 567–574. [CrossRef]

105. Costello, K.M.; Gutierrez-Merino, J.; Bussemaker, M.; Ramaioli, M.; Baka, M.; Van Impe, J.F.; Velliou, E.G. Modelling the mi-
crobial dynamics and antimicrobial resistance development of Listeria in viscoelastic food model systems of various structural
complexities. Int. J. Food Microbiol. 2018, 286, 15–30. [CrossRef]

106. Kabanova, N.; Stulova, I.; Vilu, R. Microcalorimetric study of the growth of bacterial colonies of Lactococcus lactis IL1403 in agar
gels. Food Microbiol. 2012, 29, 67–79. [CrossRef]

107. Prachaiyo, P.; McLandsborough, L.A. Oil-in-water emulsion as a model system to study the growth of Escherichia coli O157:H7 in
a heterogeneous food system. J. Food Sci. 2003, 68, 1018–1024. [CrossRef]

108. Zalazar, A.L.; Gliemmo, M.F.; Campos, C.A. Effect of stabilizers, oil level and structure on the growth of Zygosaccharomyces bailii
and on physical stability of model systems simulating acid sauces. Food Res. Int. 2016, 85, 200–208. [CrossRef]

109. Castro, M.P.; Rojas, A.M.; Campos, C.A.; Gerschenson, L.N. Effect of preservatives, tween 20, oil content and emulsion structure
on the survival of Lactobacillus fructivorans in model salad dressings. LWT Food Sci. Technol. 2009, 42, 1428–1434. [CrossRef]

110. Verheyen, D.; Baka, M.; Akkermans, S.; Skåra, T.; Van Impe, J.F. Effect of microstructure and initial cell conditions on thermal
inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems. Food Microbiol. 2019, 84,
103267. [CrossRef] [PubMed]

111. Verheyen, D.; Govaert, M.; Seow, T.K.; Ruvina, J.; Mukherjee, V.; Baka, M.; Skåra, T.; Van Impe, J.F. The complex effect of food
matrix fat content on thermal inactivation of Listeria monocytogenes: Case study in emulsion and gelled emulsion model systems.
Front. Microbiol. 2020, 10, 3149. [CrossRef] [PubMed]

112. Bellara, S.R.; Fryer, P.J.; McFarlane, C.M.; Thomas, C.R.; Hocking, P.M.; Mackey, B.M. Visualization and modelling of the thermal
inactivation of bacteria in a model food. Appl. Environ. Microbiol. 1999, 65, 3095–3099. [CrossRef] [PubMed]

113. Hamoud-Agha, M.M.; Curet, S.; Simonin, H.; Boillereaux, L. Microwave inactivation of Escherichia coli K12 CIP 54.117 in a gel
medium: Experimental and numerical study. J. Food Eng. 2013, 116, 315–323. [CrossRef]

http://doi.org/10.1111/j.1365-2621.2003.tb08282.x
http://doi.org/10.1111/1750-3841.14420
http://www.ncbi.nlm.nih.gov/pubmed/30569471
http://doi.org/10.1016/j.ijfoodmicro.2013.04.025
http://www.ncbi.nlm.nih.gov/pubmed/23756235
http://doi.org/10.4315/0362-028X.JFP-14-124
http://www.ncbi.nlm.nih.gov/pubmed/25285486
http://doi.org/10.1016/S0168-1605(99)00054-9
http://doi.org/10.1016/S0963-9969(99)00100-3
http://doi.org/10.1016/j.foodcont.2019.05.006
http://doi.org/10.1016/j.ijfoodmicro.2016.03.014
http://doi.org/10.1111/1750-3841.14059
http://doi.org/10.1016/j.jfoodeng.2007.11.035
http://doi.org/10.1111/j.1365-2672.1983.tb02653.x
http://doi.org/10.1006/fmic.2000.0378
http://doi.org/10.1016/0168-1605(88)90051-7
http://doi.org/10.1111/j.1745-4565.1995.tb00145.x
http://doi.org/10.1016/j.foodres.2014.07.031
http://www.ncbi.nlm.nih.gov/pubmed/30011704
http://doi.org/10.1111/1750-3841.12067
http://doi.org/10.1016/j.ijfoodmicro.2018.07.011
http://doi.org/10.1016/j.fm.2011.08.018
http://doi.org/10.1111/j.1365-2621.2003.tb08281.x
http://doi.org/10.1016/j.foodres.2016.04.040
http://doi.org/10.1016/j.lwt.2009.02.021
http://doi.org/10.1016/j.fm.2019.103267
http://www.ncbi.nlm.nih.gov/pubmed/31421789
http://doi.org/10.3389/fmicb.2019.03149
http://www.ncbi.nlm.nih.gov/pubmed/32038582
http://doi.org/10.1128/AEM.65.7.3095-3099.1999
http://www.ncbi.nlm.nih.gov/pubmed/10388708
http://doi.org/10.1016/j.jfoodeng.2012.11.030


Foods 2021, 10, 2119 21 of 22

114. Mackey, B.M.; Kelly, A.F.; Colvin, J.A.; Robbins, P.T.; Fryer, P.J. Predicting the thermal inactivation of bacteria in a solid matrix:
Simulation studies on the relative effects of microbial thermal resistance parameters and process conditions. Int. J. Food Microbiol.
2006, 107, 295–303. [CrossRef] [PubMed]

115. Noriega, E.; Laca, A.; Díaz, M. Modelling of diffusion-limited growth for food safety in simulated cheeses. Food Bioprod. Process.
2008, 86, 122–129. [CrossRef]

116. Mertens, L.; Van Derlinden, E.; Dang, T.D.T.; Cappuyns, A.M.; Vermeulen, A.; Debevere, J.; Moldenaers, P.; Devlieghere, F.;
Geeraerd, A.H.; Van Impe, J.F. On the critical evaluation of growth/no growth assessment of Zygosaccharomyces bailii with optical
density measurements: Liquid versus structured media. Food Microbiol. 2011, 28, 736–745. [CrossRef]

117. Ter Steeg, P.F.; Otten, G.D.; Alderliesten, M.; De Weijer, R.; Naaktgeboren, G.; Bijl, J.; Vasbinder, A.J.; Kershof, I.;
Van Duijvendijk, A.M. Modelling the effects of (green) antifungals, droplet size distribution and temperature on mould
outgrowth in water-in-oil emulsions. Int. J. Food Microbiol. 2001, 67, 227–239. [CrossRef]

118. Kapetanakou, A.E.; Ampavi, A.; Yanniotis, S.; Drosinos, E.H.; Skandamis, P.N. Development of a model describing the effect of
temperature, water activity and (gel) structure on growth and ochratoxin A production by Aspergillus carbonarius in vitro and
evaluation in food matrices of different viscosity. Food Microbiol. 2011, 28, 727–735. [CrossRef]

119. Dens, E.J.; Van Impe, J.F. On the need for another type of predictive model in structured foods. Int. J. Food Microbiol. 2001, 64,
247–260. [CrossRef]

120. De Bonis, M.V.; Ruocco, G. A heat and mass transfer perspective of microbial behavior modelling in a structured vegetable food.
Int. J. Food Eng. 2016, 190, 72–79. [CrossRef]

121. Ferrier, R.; Hezard, B.; Lintz, A.; Stahl, V.; Augustin, J.-C. Combining individual-based modelling and food microenvironment
descriptions to predict the growth of Listeria monocytogenes on smear soft cheese. Appl. Environ. Microbiol. 2013, 19, 5870–5881.
[CrossRef]

122. Augustin, J.-C.; Ferrier, R.; Hezard, B.; Lintz, A.; Stahl, V. Comparison of individual-based modeling and population approaches
for prediction of foodborne pathogens growth. Food Microbiol. 2015, 45, 205–215. [CrossRef] [PubMed]

123. Vereecken, K.M.; Devlieghere, F.; Bockstaele, A.; Debevere, J.; Van Impe, J.F. A model for lactic acid-induced inhibition of Yersinia
enterocolitica in mono- and coculture with Lactobacillus sakei. Food Microbiol. 2003, 20, 701–713. [CrossRef]

124. Ross, T.; Ratkowsky, D.A.; Mellefont, L.A.; McMeekin, T.A. Modelling the effects of temperature, water activity, pH and lactic
acid concentration on the growth rate of Escherichia coli. Int. J. Food Microbiol. 2003, 82, 33–43. [CrossRef]

125. Reiner, M. Über die strömung einer elastichen flüssigkeit durch eine kapillare. Kolloid, Z. 1926, 39, 80–87. [CrossRef]
126. Verheyen, D.; Bolívar, A.; Pérez-Rodríguez, F.; Baka, M.; Skåra, T.; Van Impe, J.F. Isolating the effect of fat content on Listeria

monocytogenes growth dynamics in fish-based emulsion and gelled emulsion systems. Food Control 2020, 108, 106874. [CrossRef]
127. Van Impe, J.F.; Poschet, F.; Geeraerd, A.H.; Vereecken, K.M. Towards a novel class of predictive microbial growth models. Int. J.

Food Microbiol. 2005, 100, 97–105. [CrossRef]
128. Tack, I. Metabolic Differentiation in Microbial Colonies and Biofilms: A Multiscale Modelling Approach. Ph.D. Thesis, KU

Leuven, Leuven, Belgium, 2016.
129. Ayala, F.J.; Gilpin, M.J.; Ehrenfield, J.G. Competition between species: Theoretical models and experimental results. Theor. Pop

Biol. 1973, 4, 331–356. [CrossRef]
130. Bailey, J.E.; Ollis, D.F. Biochemical Engineering Fundamentals, 2nd ed.; McGraw-Hill: New York, NY, USA, 1986.
131. Baranyi, J.; Robinson, T.P.; Kaloti, A.; Mackey, B.M. Predicting the growth of Brochothrix thermosphacta at changing temperature.

Int. J. Food Microbiol. 1995, 27, 61–75. [CrossRef]
132. Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship between temperature and growth rate of bacterial cultures. J.

Bacteriol. 1982, 149, 1–5. [CrossRef] [PubMed]
133. Gorochowski, T.E.; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K.; Reid, S.; Tsaneva-Atanasova, K.T.; Savery, N.J.; Grierson,

C.S.; di Bernardo, M. BSim: An agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS ONE
2012, 7, e42790. [CrossRef] [PubMed]

134. González-Cabaleiro, R.; Mitchell, A.M.; Smith, W.; Wipat, A.; Ofiteru, I.D. Heterogeneity in pure microbial systems: Experimental
measurements and modeling. Front. Microbiol. 2017, 8, 1813. [CrossRef] [PubMed]

135. Kreft, J.-U.; Booth, G.; Wimpenny, J.W.T. BacSim, a simulator for individual-based modelling of bacterial colony growth.
Microbiology 1998, 144, 3275–3287. [CrossRef]

136. Ginovart, M.; López, D.; Valls, J. INDISIM, an individual-based discrete simulation model to study bacterial cultures. J. Theor.
Biol. 2002, 214, 305–319. [CrossRef]

137. Verhulst, A.J.; Cappuyns, A.M.; Van Derlinden, E.; Bernaerts, K.; Van Impe, J.F. Analysis of the lag phase to exponential growth
transition by incorporating inoculum characteristics. Food Microbiol. 2011, 28, 656–666. [CrossRef]

138. Tack, I.L.M.M.; Nimmegeers, P.; Akkermans, S.; Hashem, I.; Van Impe, J.F.M. Simulation of Escherichia coli dynamics in biofilms
and submerged colonies with an individual-based model including metabolic network information. Front. Microbiol. 2017, 8,
2509. [CrossRef]

139. Lardon, L.A.; Merkey, B.V.; Martins, S.; Dötsch, A.; Picioreanu, C.; Kreft, J.-U.; Smets, B.F. iDynoMiCS: Next-generation individual-
based modelling of biofilms. Environ. Microbiol. 2011, 13, 2416–2434. [CrossRef]

140. Hellweger, F.L.; Clegg, R.J.; Clark, J.R.; Plugge, C.M.; Kreft, J.U. Advancing microbial sciences by individual-based modelling.
Nat. Rev. Microbiol. 2016, 14, 461–471. [CrossRef]

http://doi.org/10.1016/j.ijfoodmicro.2005.10.008
http://www.ncbi.nlm.nih.gov/pubmed/16406135
http://doi.org/10.1016/j.fbp.2008.03.005
http://doi.org/10.1016/j.fm.2010.05.032
http://doi.org/10.1016/S0168-1605(01)00458-5
http://doi.org/10.1016/j.fm.2010.06.001
http://doi.org/10.1016/S0168-1605(00)00472-4
http://doi.org/10.1016/j.jfoodeng.2016.06.015
http://doi.org/10.1128/AEM.01311-13
http://doi.org/10.1016/j.fm.2014.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25500386
http://doi.org/10.1016/S0740-0020(03)00031-5
http://doi.org/10.1016/S0168-1605(02)00252-0
http://doi.org/10.1007/BF01425357
http://doi.org/10.1016/j.foodcont.2019.106874
http://doi.org/10.1016/j.ijfoodmicro.2004.10.007
http://doi.org/10.1016/0040-5809(73)90014-2
http://doi.org/10.1016/0168-1605(94)00154-X
http://doi.org/10.1128/jb.149.1.1-5.1982
http://www.ncbi.nlm.nih.gov/pubmed/7054139
http://doi.org/10.1371/journal.pone.0042790
http://www.ncbi.nlm.nih.gov/pubmed/22936991
http://doi.org/10.3389/fmicb.2017.01813
http://www.ncbi.nlm.nih.gov/pubmed/28970826
http://doi.org/10.1099/00221287-144-12-3275
http://doi.org/10.1006/jtbi.2001.2466
http://doi.org/10.1016/j.fm.2010.07.014
http://doi.org/10.3389/fmicb.2017.02509
http://doi.org/10.1111/j.1462-2920.2011.02414.x
http://doi.org/10.1038/nrmicro.2016.62


Foods 2021, 10, 2119 22 of 22

141. Possas, A.; Pérez-Rodríguez, F.; Valero, A.; Rincón, F.; García-Gimeno, R.M. Mathematical approach for the Listeria monocytogenes
inactivation during high hydrostatic pressure processing of a simulated meat medium. Innov. Food Sci. Emerg. Technol. 2018, 47,
271–278. [CrossRef]

142. Chhabra, A.T.; Carter, W.H.; Linton, R.H.; Cousin, M.A. A predictive model to determine the effects of pH, milkfat, and
temperature on thermal inactivation of Listeria monocytogenes. J. Food Prot. 1999, 62, 1143–1149. [CrossRef]

143. Santillana Farakos, S.M.; Frank, J.F.; Schaffner, D.W. Modeling the influence of temperature, water activity and water mobility on
the persistence of Salmonella in low-moisture foods. Int. J. Food Microbiol. 2013, 166, 280–293. [CrossRef]

144. Trimble, L.M.; Frank, J.F.; Schaffner, D.W. Modification of a predictive model to include the influence of fat content on Salmonella
inactivation in low-water-activity foods. J. Food Prot. 2020, 83, 801–815. [CrossRef]

145. Albuquerque, C.D.D.; Curet, S.; Boillereaux, L. A 3D-CFD-heat-transfer-based model for the microbial inactivation of pasteurized
food products. Innov. Food Sci. Emerg. Technol. 2019, 54, 172–181. [CrossRef]

146. Gil, M.M.; Miller, F.A.; Brandão, T.R.S.; Silva, C.L.M. On the use of the Gompertz model to predict microbial thermal inactivation
under isothermal and non-isothermal conditions. Food Eng. Rev. 2011, 3, 17–25. [CrossRef]

147. Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On calculating sterility in thermal preservation methods: Application of
the Weibull frequency distribution model. Int. J. Food Microbiol. 2002, 72, 107–113. [CrossRef]

148. Huang, L. Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. J.
Food Eng. 2009, 90, 380–387. [CrossRef]

149. Chen, H.-H.; Kang, H.-Y.; Chen, S.-D. The effects of ingredients and water content on the rheological properties of batters and
physical properties of crusts in fried foods. J. Food Eng. 2008, 88, 45–54. [CrossRef]

150. Rao, M.A. Rheology of Fluid and Semifluid Foods: Principles and Applications; Springer Science+Business Media, LLC: New York, NY,
USA, 2007.

151. Whiting, R.C.; Sackitey, S.; Calderone, S.; Morely, K.; Phillips, J.G. Model for the survival of Staphylococcus aureus in nongrowth
environments. Int. J. Food Microbiol. 1996, 31, 231–243. [CrossRef]

152. Bhuvaneswari, E.; Anandharamakrishnan, C. Heat transfer analysis of pasteurization of bottled beer in a tunnel pasteurizer using
computational fluid dynamics. Innov. Food Sci. Emerg. Technol. 2014, 23, 156–163. [CrossRef]

153. Erdogdu, F.; Tutar, M.; Sarghini, F.; Skipnes, D. Effects of viscosity and agitation rate on temperature and flow field in cans during
reciprocal agitation. J. Food Eng. 2017, 213, 76–88. [CrossRef]

154. Topcam, H.; Karatas, O.; Erol, B.; Erdogdu, F. Effect of rotation on temperature uniformity of microwave processed low-high
viscosity liquids: A computational study with experimental validation. Innov. Food Sci. Emerg. Technol. 2020, 60, 102306.
[CrossRef]

155. Wu, H.; Karayiannis, T.G.; Tassou, S.A. A two-dimensional frying model for the investigation and optimisation of continuous
industrial frying systems. Appl. Therm. Eng. 2013, 51, 926–936. [CrossRef]

156. Bedane, T.F.; Erdogdu, F.; Lyng, J.G.; Marra, F. Effects of geometry and orientation of food products on heating uniformity during
radio frequency heating. Food Bioprod. Process. 2021, 125, 149–160. [CrossRef]

157. Erdogdu, F.; Karatas, O.; Sarghini, F. A short update on heat transfer modelling for computational food processing in conventional
and innovative processing. Curr. Opin. Food Sci. 2018, 23, 113–119. [CrossRef]

158. Aspridou, A.; Koutsoumanis, K.P. Individual cell heterogeneity as variability source in population dynamics of microbial
inactivation. Food Microbiol. 2015, 45, 216–221. [CrossRef] [PubMed]

159. Abe, H.; Koyama, K.; Kawamura, S.; Koseki, S. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation.
Int. J. Food Microbiol. 2018, 285, 129–135. [CrossRef]

160. Koseki, S.; Koyama, K.; Abe, H. Recent advances in predictive microbiology: Theory and application of conversion from
population dynamics to individual cell heterogeneity during inactivation process. Curr. Opin. Food Sci. 2021, 42, 60–67. [CrossRef]

http://doi.org/10.1016/j.ifset.2018.03.012
http://doi.org/10.4315/0362-028X-62.10.1143
http://doi.org/10.1016/j.ijfoodmicro.2013.07.007
http://doi.org/10.4315/0362-028X.JFP-18-431
http://doi.org/10.1016/j.ifset.2019.04.007
http://doi.org/10.1007/s12393-010-9032-2
http://doi.org/10.1016/S0168-1605(01)00624-9
http://doi.org/10.1016/j.jfoodeng.2008.07.011
http://doi.org/10.1016/j.jfoodeng.2008.01.017
http://doi.org/10.1016/0168-1605(96)01002-1
http://doi.org/10.1016/j.ifset.2014.03.004
http://doi.org/10.1016/j.jfoodeng.2017.05.030
http://doi.org/10.1016/j.ifset.2020.102306
http://doi.org/10.1016/j.applthermaleng.2012.10.002
http://doi.org/10.1016/j.fbp.2020.11.010
http://doi.org/10.1016/j.cofs.2018.10.003
http://doi.org/10.1016/j.fm.2014.04.008
http://www.ncbi.nlm.nih.gov/pubmed/25500387
http://doi.org/10.1016/j.ijfoodmicro.2018.08.006
http://doi.org/10.1016/j.cofs.2020.12.019

	Introduction 
	Historical Overview on the Inclusion of Food Microstructure in Predictive Models 
	The Absence of Food Microstructure in the Early Days of Predictive Microbiology 
	More Attention to Food Microstructure in the Last Decades 

	Growth Models Incorporating Food Microstructure 
	Macroscale Secondary Models Including Food Microstructural Factors 
	Semi-Mechanistic Microscale Models 

	Inactivation Models Incorporating Food Microstructure 
	Macroscale Secondary Models Including Food Microstructural Factors 
	Semi-Mechanistic Microscale Models 

	Conclusions 
	References

