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Abstract
Background. Classification of true progression from nonprogression (eg, radiation-necrosis) after stereotactic ra-
diotherapy/radiosurgery of brain metastasis is known to be a challenging diagnostic task on conventional magnetic 
resonance imaging (MRI). The scope and status of research using artificial intelligence (AI) on classifying true pro-
gression are yet unknown.
Methods. We performed a systematic literature search of MEDLINE and EMBASE databases to identify studies 
that investigated the performance of AI-assisted MRI in classifying true progression after stereotactic radiotherapy/
radiosurgery of brain metastasis, published before November 11, 2020. Pooled sensitivity and specificity were 
calculated using bivariate random-effects modeling. Meta-regression was performed for the identification of fac-
tors contributing to the heterogeneity among the studies. We assessed the quality of the studies using the Quality 
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria and a modified version of the radiomics quality 
score (RQS).
Results. Seven studies were included, with a total of 485 patients and 907 tumors. The pooled sensitivity and speci-
ficity were 77% (95% CI, 70–83%) and 74% (64–82%), respectively. All 7 studies used radiomics, and none used deep 
learning. Several covariates including the proportion of lung cancer as the primary site, MR field strength, and 
radiomics segmentation slice showed a statistically significant association with the heterogeneity. Study quality 
was overall favorable in terms of the QUADAS-2 criteria, but not in terms of the RQS.
Conclusion. The diagnostic performance of AI-assisted MRI seems yet inadequate to be used reliably in clinical 
practice. Future studies with improved methodologies and a larger training set are needed.

Key Points

• The performance of AI-assisted MRI seems yet inadequate for use in clinical practice.

• All studies used radiomics, and none used deep learning.

• Quality and study design of the published literature should be improved.

Stereotactic radiotherapy or radiosurgery, owing to its high ef-
ficacy with relatively short treatment time and favorable tox-
icity profile, is increasingly used for patients with a limited 

number of brain metastases.1 Contrast-enhanced MR im-
aging remains the modality of choice for follow-up after ster-
eotactic radiotherapy or radiosurgery (hereinafter, collectively 
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termed as stereotactic radiotherapy) of brain metastasis, 
as it shows excellent soft-tissue contrast that can delineate 
structural abnormalities with high resolution. However, 
new or enlarging lesion on MRI may complicate patient 
management during follow-up, as such lesion is not al-
ways indicative of true progression.2 Classification of true 
progression from nonprogression including radiation ne-
crosis is known to be difficult on conventional MRI. In a 
previous systematic review,3 the pooled sensitivity and 
specificity of conventional gadolinium MRI across four 
studies was around 63% and 82%, respectively. Radiation 
necrosis, which strikingly mimics true progression not 
only in MR imaging appearance but also in clinical symp-
toms,4 is reported to occur in up to one-fourth of patients 
after stereotactic radiotherapy.5 Incorrect classification 
of true progression may lead to substantial patient harm, 
as unnecessary systemic therapy or additional radiation 
therapy could be administered, or subsequent biopsy or 
resection may accompany complications such as infection 
or neurologic deficit. Other advanced imaging modalities 
such as perfusion MRI, magnetic resonance spectroscopy, 
18FLT, 18FDG PET, or SPECT3 have also been proposed, 
but to date, none of those has emerged as a standard for 
diagnosing true progression.

Artificial intelligence (AI), which is receiving increasing 
attention as a potential game-changer in the field of medical 
sciences, may be an alternative solution to the diagnostic 
challenge at hand. For example, automated quantitative 
analysis of tumor response for glioblastoma on MRI using 
artificial neural networks showed reliable performance in 
an independent dataset for external validation.6 However, 
the scope and status of research using AI on classifying 
true progression are uncertain at this point. Thus, through 
this systematic review and meta-analysis, we aimed to 
measure the diagnostic performance of AI-assisted MRI 
in classifying true progression from nonprogression after 
radiotherapy of brain metastasis and to identify factors at-
tributable to the heterogeneity in the included studies.

Materials and Methods

We adhered to the standard guidelines of Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA).7

Literature Search

We performed a literature search of the MEDLINE and 
EMBASE databases using the search terms as follows: 
((brain metastas*) OR (cerebral metastas*) OR (meta-
static brain tumor) OR (intra-axial metastatic tumor)) AND 
((automated) OR (computer aided) OR (computer-aided) 
OR (CAD) OR (radiomic*) OR (texture analysis) OR (deep 
learning) OR (machine learning) OR (neural network) OR 
(artificial intelligence)) AND ((gamma-knife) OR (radio-
therapy) OR (radiation) OR (radiosurgery)). The literature 
search was not restricted to any publication date or study 
setting, and the search was updated until November 11, 
2020. The search was limited to publications in English. 
Bibliographies of the retrieved studies were manually 
cross-checked to identify any study meeting the inclusion 
criteria but were not retrieved using our search terms.

Inclusion Criteria

Inclusion criteria for the enrollment of studies were as fol-
lows: (1) involved patients who received stereotactic radi-
otherapy for clinically or pathologically diagnosed brain 
metastasis, (2) used MRI with the aid of AI as the index test 
(hereinafter, AI-assisted MRI), (3) purposed to show the di-
agnostic performance of the index test in classifying (ie, 
either prediction or differentiation) true progression from 
nonprogression, and (4) provided the information neces-
sary for the reconstruction of 2 × 2 contingency tables. The 
term “nonprogression” refers collectively to treatment re-
sponse any other than true progression, including radia-
tion necrosis.

Exclusion Criteria

The exclusion criteria for the enrollment of studies were 
as follows: (1) case reports or series including less than 
ten patients; (2) conference abstracts, editorials, letters, 
consensus statements, guidelines, or review articles; (3) 
studies with, or with suspicion of, overlapping popula-
tions; (4) study purpose not in the field of interest, which 
was to estimate diagnostic performance of the AI-assisted 
MRI in classifying true progression from nonprogression, 
and (5) insufficient data for the reconstruction of 2  × 2 
contingency tables.

Importance of the Study

Classification of true progression after stere-
otactic radiotherapy or radiosurgery of brain 
metastasis is important, as incorrect diagnosis 
may lead to unnecessary systemic therapy or 
additional radiation therapy, or invasive biopsy 
or surgery for a definitive diagnosis. However, 
such classification is known to be difficult using 
advanced imaging modalities such as positron 

emission tomography or MR spectroscopy, as 
well as conventional MRI. Our study contrib-
utes to the knowledge gap regarding the status 
of research using artificial intelligence on diag-
nostic task. Our study reviews the methodology 
and quality of the current studies, offering valu-
able information for future research.
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Literature search and selection were performed inde-
pendently by two radiologists (H.Y.K. and S.J.C. with 6 and 
7 years of experience in radiology, respectively). Any dis-
agreement between the two reviewers was resolved via 
consultation of the third reviewer (L.S., with 10 years of ex-
perience in neuroradiology, and six years of experience in 
AI research).

Data Extraction

Data extraction was performed in a standardized form in 
adherence to the PRISMA guideline.7 We extracted the 
following data: (1) characteristics of the included studies: 
authors, year of publication, institution, country of origin, 
study period, study design (prospective vs retrospective), 
whether radiomics was used, whether DL was used, pa-
tient population from which classification was made (lim-
ited to radiation necrosis vs. extended to other conditions 
of nonprogression including stable disease or regression), 
method of internal validation, whether external validation 
was performed, number of included patients, male to fe-
male ratio, number of included tumor, proportion of true 
progression, proportion of lung cancer as the primary site, 
reference standard, and inclusion and exclusion criteria; 
(2) characteristics of MRI: machine, field strength, in-plane 
resolution, slice thickness, dimension, MRI scan point (pre- 
or postradiotherapy), and sequence used for analysis; 
(3) characteristics of radiomics (as all studies in the final 
selection turned out to have used radiomics): segmenta-
tion slice (2D [region of interest in two dimension] vs. 3D 
[volume of interest in three dimension]), subregion seg-
mentation, method of segmentation (manual vs semiauto-
matic), use of voxel size resampling, filter, normalization, 
and discretization; (4) characteristics of model develop-
ment: feature selection method, classification method, 
number of extracted radiomics feature, and finally selected 
feature number.

Quality Assessment

Two reviewers (H.Y.K. and S.J.C.) independently assessed 
and achieved consensus for the methodological quality 
of the enrolled studies using the Quality Assessment of 
Diagnostic Accuracy Studies-2 (QUADAS-2) criteria8 and 
the six domains of the Radiomics Quality Score (RQS) by 
Park et al.9,10 The RQS originally suggested by Lambin et al.9 
consists of 16 components, with a maximal achievable 
score of 36. Park et al.10 categorized the 16 components of 
the RQS into 6 domains, where a score of at least 1 point 
without minus points in each domain was regarded as ad-
herence. The six domains are as shown in Supplementary 
Table 1. Detailed definitions of each component could be 
found in Lambin et al.9

Data Synthesis and Analyses

The primary endpoint of the current systematic review 
and meta-analysis was to measure the diagnostic per-
formance of AI-assisted MRI in classifying true progres-
sion from nonprogression. The secondary endpoint was to 

identify factors attributable to the heterogeneity in the in-
cluded studies.

We measured the pooled sensitivity and specificity with 
their 95% confidence intervals (CIs) using bivariate random-
effects modeling.11–15 We presented the results graphically 
using hierarchical summary receiver operating charac-
teristic (HSROC) curves with 95% confidence and predic-
tion regions. Publication bias was analyzed using Deeks’ 
funnel plot, with Deeks’ asymmetry test being used to cal-
culate the P-value and determine statistical significance.16 
Heterogeneity across the selected studies was evaluated 
using the Cochran Q test, where  value P-value < .05 indi-
cated the presence of heterogeneity.17 According to the 
Higgins I2 statistic, heterogeneity was classified as follows: 
0–40%, might not be important; 30–60%, moderate hetero-
geneity; 50–90%, substantial heterogeneity; and 75–100%, 
considerable heterogeneity.12 The presence of a threshold 
effect (a positive correlation between sensitivity and false-
positive rate) was sequentially evaluated: initially via visual 
assessment of the coupled forest plots of sensitivity and 
specificity; and secondarily via Kendall’s Tau, with a P-value 
of less than 0.05 indicating the presence of the threshold.18

To determine the factors attributable to heterogeneity 
across the studies, we performed meta-regression ana-
lyses using the following covariates: (1) study character-
istics (total tumor number, the multiplicity of tumor per 
patient, the ratio of true progression to nonprogression, 
proportion of lung cancer, proportion of pathologically 
confirmed tumor, patient group), (2) MRI characteris-
tics (MR field strength used, MR sequence used), and (3) 
radiomics characteristics (number of extracted radiomics 
feature, delta radiomics, segmentation method, segmen-
tation slice, and voxel size resampling). One of the authors 
(S.J.C., with three years of experience in performing sys-
tematic reviews and meta-analyses) performed the statis-
tical analyses using the MIDAS and METANDI modules in 
STATA 16.0 (StataCorp).

Results

Literature Search

Our literature search identified 508 studies initially (Figure 
1). After removing 137 duplicates, the remaining 371 
studies were screened mainly at the title and abstract level 
and the full-text level if necessary, yielding 13 potentially 
eligible studies. No additional study was identified after a 
manual review of those 13 studies’ bibliographies. After a 
full-text review of the 13 eligible studies, six studies were 
excluded for the reasons as follows: five studies had insuf-
ficient information for the reconstruction of 2 × 2 table,19–

23 and one study had overlap in the study population 
with one of the finally included studies.24 Finally, seven 
studies24–30 were included in the present systematic review 
and meta-analysis.

Characteristics of the Included Studies

All studies used radiomics with retrospective design 
to classify true progression from nonprogression on 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab080#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab080#supplementary-data
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AI-assisted MRI (Table 1). Except for two studies,24,28 
all studies delimited nonprogression to cases of radi-
ation necrosis. Thus, all studies except for those two 
studies were of case-control design. All studies lacked 
external validation of their results. The number of pa-
tients across all studies was 485, with the number in in-
dividual studies ranging from 20 to 100 patients (Table 
1). The number of tumors across all studies was 907, 
with the number in individual studies ranging from 20 
to 408. Five studies24,26,28-30 included multiple tumors per 
patient in the analysis. The proportion of tumors adjudi-
cated to be true progression ranged from 7.8% (32/408) 
to 75% (73/97) across the studies. The proportion of lung 
cancer as the primary site ranged from 25% (21/84) to 
75% (15/20). The reference standard for true progression 
and nonprogression was based on pathology and clinical 
follow up in five studies,24,26,27,29,30 on pathology alone in 
one study,25 and clinical follow up alone in one another 
study.28 The details of the inclusion and exclusion criteria 
in each study were described in Table 1.

MRI, Radiomics, and Model Development in the 
Included Studies

Information regarding MR field strength, in plane reso-
lution, and slice thickness is detailed in Table 2. Except 
for one study28 that only used images acquired before ra-
diotherapy, all studies used images acquired after radio-
therapy. One study24 used images acquired both before 
and after radiotherapy. Contrast-enhanced T1 weighted 
images were used for the analysis in all studies, while 
T2 FLAIR or T2 weighted images were analyzed addi-
tionally in five studies.24,26,28–30 Many studies lacked 

detailed information regarding image segmentation 
for radiomics feature extraction. The region used for 
radiomics feature extraction in each study is summar-
ized in Supplementary Table E2. Image segmentation 
was conducted semi-automatically in five studies24,26,28–30 
and manually in the remaining two studies.25,27 There 
was variable use of the radiomics techniques; voxel 
size resampling was used in four studies,24,25,27,28 fil-
tering in four studies,24,27,28,30 image normalization in 
four studies,25–28 and discretization in four studies.25–27,29 
The categories of radiomics features used in each study 
are summarized in Supplementary Table E3. The number 
of extracted radiomics features ranged from 42 to 3072 
across the studies, with more than 400 features used in 
three studies,24,25,28 and less than 400 features used in the 
remaining four studies.26,27,29,30 Finally selected feature 
numbers ranged from four to 12. Detailed feature selec-
tion methods and classification methods are summarized 
in Table 2.

Diagnostic Performance of the MRI

Across the seven studies, the pooled sensitivity was 77% 
(95% CI, 70–83%), and the pooled specificity was 74% (95% 
CI, 64–82%). The range of sensitivity and specificity across 
the seven studies was 60–92% and 58–87%, respectively 
(Figure 2). The area under the HSROC curve was 0.82 (95% 
CI, 0.78–0.85) (Figure 3). The difference between the 95% 
confidence and the prediction regions was relatively large, 
indicating heterogeneity among the studies. According to 
the Q test, heterogeneity was present (P  =  .026), mainly 
due to the heterogeneity in the specificity (P < .01) and 
not sensitivity (P  =  .09). Higgins I2 statistics were also 
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suggestive of heterogeneity that “might not be important” 
in the sensitivity (I2 = 44.5%) and moderate heterogeneity 
in the specificity (I2 = 73%). There was no threshold effect 
(Kendall’s Tau value of −0.04, P = .76). According to Deeks’ 
funnel plot, the likelihood of publication bias was low, with 
a P-value of .54 for the slope coefficient (Supplementary 
Figure 1).

Meta-regression

In the meta-regression analysis (Table 3), several covariates 
showed a statistically significant association with the het-
erogeneity in the joint model. Those factors were the pro-
portion of lung cancer as the primary site, proportion of 
pathologically confirmed tumor, MR field strength used, 
and segmentation slice. Sensitivity was increased while 
specificity was lowered, in the studies with 50% or higher 
proportion of lung cancer as the primary site, with less 
than 50% of the pathologically confirmed tumor, and in the 
studies that used MR field strength of 1.5T only, and VOI in 
segmentation.

Quality Assessment

Overall ratings were favorable in terms of the QUADAS-2 
criteria (Figure 4). In the patient selection domain, 5 studies 
were considered to have an unclear risk of bias due to the 
case-control study design and unclear information re-
garding inappropriate exclusion.25–27,29,30 In the flow and 
timing domain, 6 studies were considered to have an un-
clear risk of bias, since not all patients underwent the same 
reference standard procedure, but were adjudicated based 
on either pathology or clinical follow-up results. Otherwise, 
the bias risks in the index test and reference standard were 
regarded as low in all studies. There was low concern re-
garding applicability in the patient selection, index test, 
and the reference standard for all studies.

The quality of the studies was further assessed using 
RQS. The scores were low (below 4) in all studies. All 
studies24–30 showed adherence to the model performance 
index (domain 4). However, only three studies showed 
adherence to domain 1 (protocol quality and stability in 
image and segmentation),26,29,30 and another three studies 
to domain 3 (biologic/clinical validation and utility).25,28,29 

  

Hettal L et al 2020

Karami E et al 2019

Larroza A et al 2015

Lohmann P et al  2018

Mouraviev A et al 2020

Peng L et al 2018

Zhang Z et al 2018

Pooled

Source

Hettal L et al 2020

Karami E et al 2019

Larroza A et al 2015

Lohmann P et al  2018

Mouraviev A et al 2020

Peng L et al 2018

Zhang Z et al 2018

Pooled

Source

92% [62%–100%]

79% [66%–89%]

83% [61%–95%]

81% [58%–95%]

78% [60%–91%]

60% [45%–73%]

78% [67%–87%]

75% [35%–97%]

81% [71%–89%]

84% [67%–95%]

61% [42%–78%]

65% [60%–70%]

87% [69%–96%]

58% [37%–78%]

77% [70%–83%]

Q = 10.81, df = 6.00, p = 0.09

I2 = 44.49 [0.00–92.54]

74% [64%–82%]

Q = 22.43, df = 6.00, p = 0.00

I2 = 73.25 [52.81–93.70]

0.5 1.0
SENSITIVITY

0.3 1.0
SPECIFICITY

SENSITIVITY (95% CI) SPECIFICITY (95% CI)

Figure 2. Forest plots showing pooled sensitivity and specificity of AI-assisted MRI in classifying true progression from nonprogression after 
stereotactic radiotherapy of brain metastasis. Horizontal error bars and black diamonds represent 95% confidence intervals and point estimates of 
each study, respectively. Solid vertical lines represent pooled point estimates.
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab080#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab080#supplementary-data
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Furthermore, none of the studies adhered to domain 2 
(feature selection and validation), domain 5 (high level of 
evidence), and domain 6 (open science and data). The de-
tailed score according to the domains was presented in 
Supplementary Table 1.

Discussion

This systematic review and meta-analysis included seven 
studies that aimed to classify true progression after stereo-
tactic radiotherapy of brain metastasis on MRI with the aid 
of AI. Across the seven studies24–30 including 485 patients 
and 907 tumors, the pooled sensitivity and specificity were 
77% (95% CI, 70–83%) and 74% (64–82%), respectively. 
Heterogeneity was present, mainly in the specificity but 
not sensitivity. Study quality was overall favorable in terms 
of the QUADAS-2 criteria, but not in terms of the RQS.

As a classification of true progression on standard MRI 
alone is difficult, other advanced imaging modalities such 
as MR perfusion, MRS, or PET have also been proposed.31–34 
Although the pooled sensitivities and specificities across 
the studies that investigated those advanced imaging mo-
dalities were generally above 80% according to a previous 
systematic review,3 the Response Assessment in Neuro-
Oncology Brain Metastases (RANO-BM) working group 
considers those previous studies as inadequately robust 
to render any solid evidence and thus recommends mul-
tidisciplinary team decision rather than relying on any one 

of those imaging modalities.35 In fact, the previous studies 
included small numbers of patients and lacked external 
validation. Moreover, due to difficulties in establishing a 
definitive diagnosis, many of the previous studies were 
conducted with a case-control design (ie, including only 
the patients who underwent pathological confirmation), 
rather than with a cohort including all patients presenting 
with the new or enlarging enhancing lesion.

Meanwhile, AI has been increasingly utilized in medical 
imaging, such as for diagnosis and prediction of risk and 
prognosis. If diagnostic accuracy in classifying true pro-
gression after radiotherapy on standard imaging could be 
improved by using AI, it may usher in a breakthrough in 
the challenge. However, our study results suggest other-
wise, with the performance of AI-assisted MRI not much 
superior to the reported performances of imaging modal-
ities without the assistance of AI. The disappointing results 
may be attributable to the inadequate size of training data, 
inappropriate AI algorithm, or the intricate nature of the 
challenge that is unsolvable even by applying AI. Robustly 
designed future studies that address those issues are 
needed, preferably with a larger number of patients in the 
training set. Future studies that apply deep learning are also 
warranted; although our systematic search was targeted 
for any kind of AI, all retrieved studies had used radiomics. 
Another way of improving the diagnostic accuracy would 
be to take temporal changes of imaging findings into ac-
count, rather than using data from a single time point (eg, 
when a new or enlarging enhancing lesion was initially de-
tected on MRI). Although two of our studies24,30 had already 
incorporated such a concept by using delta radiomics and 
did not show significant improvement in the performance, 
further research using data from multiple time points (eg, 
pre-RT, two post-RT images) could be attempted.

Although there was no significant threshold effect, sub-
stantial heterogeneity still existed, especially in specificity 
but not in sensitivity. Several covariates, including the pro-
portion of lung cancer as the primary site, proportion of 
pathologically confirmed tumor, MR field strength, and 
segmentation slice, showed a statistically significant as-
sociation with the heterogeneity. Lung cancer is the most 
common primary cancer of brain metastasis,36 and thus 
studies with the proportion of lung cancer as the primary 
site of 50% or higher would better represent the real pop-
ulation compared to those with the proportion lower than 
50%. Radiomics feature selection and subsequent analysis 
are known to be affected substantially by imaging acqui-
sition parameters and reconstruction techniques.37,38 Thus, 
the MR field strength and the segmentation slice used (ROI 
vs VOI) may have contributed to the heterogeneity in our 
results. Moreover, in case ROI was used, there is a possi-
bility that the slice selected for feature extraction may not 
have represented the overall tumor nature appropriately, 
as the target lesion may be a mixture of both recurrent 
tumor and radiation necrosis.39

Although the quality assessment in terms of the 
QUADAS-28 was relatively favorable, that in terms of 
the RQS9,10 was generally poor. Adherence was espe-
cially low in domain 2 (feature selection and validation), 
domain 5 (high level of evidence), and domain 6 (open 
science and data), mostly due to the lack of external 
validation, prospective study design, and open-source 
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Figure 3. Hierarchical summary receiver operating characteristic 
(HSROC) curve showing the performance of AI-assisted MRI.
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data. Low adherence in domain 6 calls for further efforts 
in inter-institutional data and model sharing, which 
is critical in generating reproducible study results. 
Adherence in domain 1 was also suboptimal in most 
studies, raising concern regarding the repeatability and 
reproducibility of the study procedure. Although expec-
tations for AI to be a panacea for our diagnostic chal-
lenges are high, there are also concerns that complexity 
and “black box” nature inherent to AI make it difficult 
for others to apply the algorithm to clinical workflow 
or to perform external validation.40 Such lack of trans-
parency calls for firm adherence to standardized meth-
odological and reporting procedures. However, there 
are yet established guidelines for the reporting and 
quality assessment of the diagnostic accuracy or prog-
nostic studies using AI, which is a relatively nascent 

methodology. The release of AI-specific extension to the 
STARD (Standards for Reporting of Diagnostic Accuracy 
Studies) and TRIPOD (Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis) is underway,40,41 and future studies 
on classifying true progression after radiotherapy 
would hopefully be conducted according to those new 
guidelines.

There were limitations in our study. First, the numbers 
of studies in each subgroup in the meta-regression were 
mostly small, possibly inadequate for drawing statistically 
robust conclusions. Second, there were substantial differ-
ences in the methodology across the studies, raising con-
cern in pooling the results. For example, unlike the rest of 
the studies that reported the diagnostic performance by 
using radiomics features alone, the study by Mouraviev 

  
Table 3. Meta-Regression of MRI Radiomics for Classifying True Progression from Nonprogression

Covariate Subgroup Meta–analytic summary estimate P-value

Sensitivity [95% CI] Specificity [95% CI]

Study characteristics     

 Total tumor number <100 80% [70%–90%] 73% [58%–87%] .78

≥100 75% [67%–83%] 74% [63%–85%] .78

 Multiplicity of tumor per patient No 85% [72%–98%] 65% [44%–86%] .40 

Yes 75% [68%–82%] 76% [67%–85%] .40 

 Ratio of true progression to nonprogression ≤1.5 80% [72%–89%] 70% [58%–82%] .51

>1.5 74% [65%–82%] 77% [66%–89%] .51

 Proportion of lung cancer* <50% 74% [67%–82%] 74% [64%–84%] <.001

≥50% 85% [72%–98%] 65% [44%–86%] <.001

 Proportion of pathologically confirmed tumor† <50% 80% [70%–90%] 69% [56%–82%] <.001

≥50% 73% [63%–83%] 74% [59%–89%] <.001

 Patient group Cohort 80% [70%–90%] 73% [58%–87%] .78

Case control 75% [67%–83%] 74% [63%–85%] .78

MRI     

 MR field strength used 1.5 Tesla only 79% [73%–85%] 73% [63%–82%] <.001

3 Tesla 66% [54%–77%] 84% [70%–98%] <.001

 MR sequence used T1W C+ only 85% [72%–98%] 65% [44%–86%] .40 

Others also 75% [68%–82%] 76% [67%–85%] .40 

Radiomics     

 Number of extracted radiomics feature‡ <400 74% [65%–82%] 74% [62%–86%] .45

≥400 81% [72%–90%] 72% [59%–85%] .45

 Delta radiomics Not used 75% [66%–84%] 74% [63%–84%] .86

Used 78% [69%–88%] 74% [58%–89%] .86

 Segmentation Method Manual 85% [72%–98%] 65% [44%–86%] .40 

Semiautomatic 75% [68%–82%] 76% [67%–85%] .40 

 Segmentation slice VOI 80% [74%–86%] 71% [61%–81%] <.001

ROI 67% [56%–77%] 86% [76%–96%]  

 Voxel size resampling Not used 72% [63%–81%] 78% [66%–90%] .27 

Used 81% [74%–89%] 70% [59%–81%] .27 

tCI: confidence interval, T1 W C+: T1 weighted contrast-enhanced, VOI: volume of interest, ROI: region of interest.
*Out of all tumors, except for in Zhang et.al in which the patient number was used as the denominator; 
†Out of all tumors; 
‡Per region- or volume of interest.
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et  al.28 had reported the performance of radiomics fea-
tures in addition to clinical features. Karami et  al.42 and 
Zhang et al.30 incorporated delta radiomics by using MR 
images from more than one time point, and Mouraviev 
et  al.28 used pre-RT MR images, whereas the remaining 
studies used only the MR images at a single time point 
after RT. Moreover, the inclusion of patients who had re-
ceived whole-brain radiotherapy varied across the studies, 
with most studies lacking detailed information regarding 
the patients’ previous treatment history. Nevertheless, we 
chose to use broad inclusion criteria, and instead analyzed 
various factors and clinical settings attributable to the het-
erogeneity affecting the diagnostic performance. Third, 
only two studies25,29 reported the performance of neuro-
radiologists on standard MRI without the aid of AI. Thus, 
it was not possible to measure the added value of the AI 
compared to the conventional MRI. Fourth, not all step-by-
step procedures of radiomics were detailed in the included 
studies. Thus, substantial heterogeneity caused by varied 
methodologies across the studies may not have been cap-
tured adequately in this systematic review. Nevertheless, 
all included studies have shared the general pipeline of 
radiomics (ie, beginning from image acquisition, segmen-
tation, preprocessing, feature extraction, feature selec-
tion, to validation of model performance). Methodological 

heterogeneity in studies using AI, including but not limited 
to those using radiomics, is almost inevitable. However, 
we may hopefully have a better understanding of the 
source of heterogeneity via the research community’s 
more dedicated data and model sharing.

In conclusion, our systematic review of studies that used 
AI in classifying true progression after stereotactic radio-
therapy of brain metastasis has identified seven studies, all 
of which had used radiomics but not deep learning. The diag-
nostic performance of AI-assisted MRI seems yet inadequate 
to be used reliably in clinical practice. Further studies with im-
proved methodologies and a larger training set are needed.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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