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The human metathalamus plays an important role in processing visual and auditory
information. Understanding its layers and subdivisions is important to gain insights in
its function as a subcortical relay station and involvement in various pathologies. Yet,
detailed histological references of the microanatomy in 3D space are still missing. We
therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB)
and its subdivisions in the BigBrain – a high-resolution 3D-reconstructed histological
model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB
and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem
brains were studied. Three MGB subdivisions (MGBv, MGBd, MGBm) were identified on
every 5th BigBrain section, and a deep-learning based tool was applied to map them
on every remaining section. The maps were 3D-reconstructed to show the shape and
extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were
additionally identified in nine other postmortem brains. Probabilistic cytoarchitectonic
maps in the MNI “Colin27” and MNI ICBM152 reference spaces were computed which
reveal an overall low interindividual variability in topography and extent. The probabilistic
maps were included into the Julich-Brain atlas, and are freely available. They can
be linked to other 3D data of human brain organization and serve as an anatomical
reference for diagnostic, prognostic and therapeutic neuroimaging studies of healthy
brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a
basis for data integration, brain modeling and simulation to bridge the larger scale
involvement of thalamocortical and local subcortical circuits.

Keywords: metathalamus, BigBrain, cytoarchitectonic maps, lateral geniculate body, medial geniculate body,
human, 3D histology

INTRODUCTION

The human metathalamus, located caudoventrally of the main body of the thalamus, plays an
important role in processing visual and auditory information. Visual and auditory processing is
encoded separately in the two major nuclei of the metathalamus, i.e., the lateral geniculate body
(LGB) and the medial geniculate body (MGB). The LGB is a 6-layered structure, innervated by
optic tract fibers covering the contralateral visual field. Its two magnocellular and four parvocellular
layers process functionally distinct retinal pathways. The MGB on the other hand receives input
from ascending tonotopically organized projections via the medial lemniscus, as well as projections
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from the inferior colliculus and the auditory cortex (Peruzzi
et al., 1997; Saint Marie et al., 1997; Llano and Sherman,
2008; Caspary and Llano, 2017). It can cytoarchitectonically
be subdivided into three major compartments: the ventral,
dorsal and medial subdivisions (Winer, 1984). Both nuclei have
prominent projections to cortical areas and serve as subcortical
relay stations.

Investigating the structural-functional relationship of the
MGB and LGB including its subdivisions and layers is also
relevant from a clinical perspective, e.g., to understand the MGB’s
involvement in tinnitus (Llinas et al., 2002; Rauschecker et al.,
2010; Leaver et al., 2011; Ridder et al., 2015; Caspary and Llano,
2017; Berlot et al., 2020), speech recognition (Mihai et al., 2019),
and developmental dyslexia (Díaz et al., 2012) as well as the
LGB’s role in glaucoma (Wang et al., 2015; Stein et al., 2021),
multiple sclerosis (Korsholm et al., 2007; Papadopoulou et al.,
2019), Parkinson’s (Lee et al., 2016), and psychiatric diseases
(Butler and Javitt, 2005; Selemon and Begovic, 2007).

Since the spatial resolution of ultra-highfield fMRI has
increased to the submillimeter range in recent years, more
detailed studies have been become feasible including the
possibility to measure laminar brain activity (Huber et al., 2018;
Jia et al., 2021) as well as identifying functional subdivisions of
subcortical (Rijk et al., 2021) and cortical (Martino et al., 2015;
Nasr et al., 2016) structures.

However, existing histological maps of the human thalamus
do not include subdivisions of the MGB and/or layers of
the LGB or do not cover the metathalamus over its whole
extent (Morel, 2007; Krauth et al., 2010; Ding et al., 2016; Mai
et al., 2016). The same holds true for MRI based probabilistic
atlases of the thalamus (Iglesias et al., 2018; Najdenovska et al.,
2018; García-Gomar et al., 2019). Furthermore, no probabilistic
histologically based reference maps of the metathalamus exist
so far, which make it difficult to account for individual
variability in topography and volume, as well as to compare
histological maps with findings from neuroimaging. More
detailed maps of subdivisions and layers of the MGB and
LGB could provide micro-anatomical reference data for high-
field MRI investigations, to inform neuroimaging studies,
and to provide reference data for biologically realistic brain
modeling and simulation.

The BigBrain model based on its 7404 cell-body stained
and 3D-reconstructed sections constitutes an anatomical brain
model at a spatial resolution of 20 micrometers isotropic in this
regard (Amunts et al., 2013). It has been used, for example, to
interpret MRI based models of brain connectivity (Wei et al.,
2019; Paquola et al., 2020b), functional and structural gradients
(Paquola et al., 2019; Royer et al., 2020), as well as default mode
network components (Margulies et al., 2016; Paquola et al., 2019).

In the present study, we aimed to create a cytoarchitectonic
map of the MGB and its subdivisions in the BigBrain model
and supplement previously published maps of the LGB with
its six layers (Brandstetter et al., 2021). To construct a high-
resolution map of the MGB, a novel deep-learning based
cytoarchitectonic mapping tool was applied (Schiffer et al.,
2021c). Secondly, the MGB and LGB were identified in
histological sections of ten postmortem brains and volumes, as

well as probabilistic cytoarchitectonic maps were computed to
address the intersubject variability of the two nuclei.

MATERIALS AND METHODS

Processing of Postmortem Brains
Cytoarchitectonic mapping was performed in serial histological
sections of ten human brains from body donors (5 female, age 59–
85 years, 5 male, 30–75 years, Table 1). The brains were obtained
in accordance to legal and ethical regulations and guidelines as
part of the body donor program of the Department of Anatomy
of the Heinrich Heine University Düsseldorf. Body donors gave
written informed consent for the general use of brain tissue for
aims of research and education. All usage in this work is covered
by a vote of the ethics committee of the Medical Faculty of the
Heinrich Heine University Düsseldorf (#4863). The postmortem
delay did not exceed 24–36 h. The list of brains also included the
BigBrain dataset (Amunts et al., 2013).

The procedure of processing the brain tissue was described
in detail in Amunts et al. (2020). In short, the brains were
fixed in 4% buffered formalin (pH 7.4) or Bodian’s fixative for
at least 3 months. All brains underwent magnetic resonance
imaging using a T1-weighted 3D FLASH sequence (flip angle
40◦, repetition time TR 40 ms, echo time TE 5 ms). MR
images were used as an undistorted spatial reference for the 3D-
reconstruction of the histological sections. After scanning, the
brains were embedded in paraffin and serially sectioned in the
coronal plane on a large-scale microtome (20 µm thickness),
whereby series of blockface images of the paraffin-embedded
brains were obtained. Every 15th section (every section in case of
the BigBrain) was stained for cell bodies using a silver staining
technique (Merker, 1983), and digitized using tissue scanners
(1 µm in-plane resolution).

Cytoarchitectonic Probability Maps
To create probability maps of the MGB and LGB, both nuclei
were delineated and traced over their whole extent on every
15th section (distance between sections: 300 µm) in all 10

TABLE 1 | List of postmortem brains used for cytoarchitectonic
mapping and analysis.

Brain ID Gender Age
(Years)

Cause of death Fresh weight
(g)

pm 1 Female 79 Carcinoma of the bladder 1,350

pm 4 Male 75 Necrotizing glomerulonephritis 1,349

pm 5 Female 59 Cardiorespiratory insufficiency 1,142

pm 7 Male 37 Acute right heart failure/cardiac
arrest

1,437

pm 8 Female 72 Renal failure/renal arrest 1,216

pm 9 Female 79 Cardiorespiratory insufficiency 1,110

pm 10 Female 85 Mesenteric infarction 1,046

pm 13 Male 39 Drowning 1,234

pm 20 Male 65 Cardiorespiratory insufficiency 1,392

pm 21 Male 30 Bronchopneumonia 1,409
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brains using an in-house software (Online Section Tracer). The
MGB was identified based on previous microscopical studies
and its characteristic topography (Kuhlenbeck, 1954; Winer,
1984). Delineation criteria for the LGB were adapted from the
literature (Clark, 1932; Brandstetter et al., 2021). The delineations
of the MGB and LGB in the left and the right hemisphere
were 3D-reconstructed. Hereby, spatial transformations of the
whole-brain histological datasets were used that were earlier
computed based on the MR-images and the blockface images
of the paraffin-embedded brains. The delineated nuclei were
then spatially normalized and transferred to the T1-weighted
single-subject template of the Montreal Neurological Institute
(MNI), “Colin27”, as well as the MNI ICBM152 2009c non-linear
asymmetric reference space (Evans et al., 2012). The individual
maps of the MGB and the LGB were superimposed in both
templates to calculate probabilistic maps. Values from 0 to 100%
overlap were calculated to indicate the probability for each voxel
of the reference brain to contain either the MGB or the LGB at a
certain position (Amunts et al., 2020).

Volumetric Analysis
Volumes were calculated and corrected for shrinkage based on
the delineations of the MGB and LGB in histological sections
based on Cavalieri’s principle (Amunts et al., 2007). A volume
normalization was applied by calculating the proportion of the
volume of the structures and the total brain volume to make
the results comparable (Bludau et al., 2014). Differences in
volume proportions were tested for significant effects caused by
hemisphere (left vs. right) and sex (male vs. female) with pair-
wise permutation tests. For each of these tests, the corresponding
values (male/female; left/right hemisphere) were grouped and
a contrast estimate was calculated between the means of these
groups. The null distribution was estimated by a Monte-Carlo
simulation. All values were randomly redistributed into two
groups, calculating the same contrast with a repetition of
1,000,000 iterations. Differences were considered statistically
significant if the contrast estimate of the true comparison
was larger than 95% of the values under the null distribution
(p < 0.05). Differences in mean volumes between the MGB and
LGB were analyzed using a paired two-sided t-test with an α

error-rate set to 0.05.

High-Resolution Cytoarchitectonic Brain
Mapping in the BigBrain
In addition, the MGB and its subdivisions were delineated on
every 5th section of the BigBrain dataset (Amunts et al., 2013)
using the high-resolution digitized scans. The range of sections
covered a distance of 3.20 mm in the left and 3.08 mm in
the right hemisphere. To map the three subdivisions on every
section, a deep-learning based brain mapping tool designed to
map cytoarchitectonic structures in full stacks (Schiffer et al.,
2021c) was applied. The deep-learning network architecture has
shown to resemble cytoarchitectonic criteria (Kiwitz et al., 2020)
and has successfully been used to generate whole-stack maps
of several cytoarchitectonic areas (Schiffer et al., 2021c). The
method was trained on 57 delineated sections containing the

MGB and its subdivisions. Training was performed remotely via a
web-based interface (Schiffer et al., 2021c) on the supercomputer
JURECA at Jülich Supercomputing Centre (Krause and Thörnig,
2018). Automatically created maps were subsequently controlled
to exclude falsely qualified sections, which were manually
corrected via the tool’s web-based interface. The annotations
were transformed into the 3D-reconstructed BigBrain space
by applying a non-linear registration of the high-resolution
digitized sections (Omidyeganeh et al., 2020) and available
transformations for the BigBrain (Amunts et al., 2013) to generate
a volume for each MGB subdivision. The total number of volume
voxels, their physical size and a shrinkage factor of 1.931 for the
BigBrain (Bludau et al., 2014) were subsequently used to calculate
the volume of the MGB and its subdivisions. The total volume of
the subdivisions of this straight-forward approach was compared
to the estimated MGB volume based on Cavalieri’s principle as
described above.

3D-surface meshes of the subdivisions were generated using
the marching cube algorithm (Lewiner et al., 2003). The
3D reconstruction directly followed the protocol described in
Schiffer et al. (2021c). Rough edges on the mesh surfaces
were subsequently smoothed locally using normalized curvature
operators in the normal direction preserving their specific
structure. Surface meshes of the LGB have been generated and
3D-reconstructed in a similar manner based on publicly available
whole brain maps of the LGB and its layers in the BigBrain
(Brandstetter et al., 2021; Schiffer et al., 2021a).

RESULTS

Localization of the Medial and Lateral
Geniculate Bodies
The MGB and LGB followed a consistent topography in
all analyzed postmortem brains. The LGB was located
ventrolaterally of the pulvinar of the thalamus. It showed
the typical 6-layered pattern with sharp bends. The MGB was
always located medially to the LGB. Its caudal pole protruded
from the caudal extremity of the diencephalon. The caudal pole
itself was located caudoventrally of the posterior nuclear complex
(i.e., the compact limitans, suprageniculate and posterior nucleus
of the thalamus) and medially of the inferior pulvinar nucleus
of the thalamus (Figure 1). The caudal surface of the pretectum
formed the dorsomedial flank of the MGB.

Probabilistic Cytoarchitectonic Maps of
the Medial and Lateral Geniculate Bodies
Delineations of the MGB and LGB in the sample of 10
postmortem brains were transferred to the MNI Colin 27 and
MNI ICBM152 2009c non-linear asymmetric reference spaces.
The probability maps of the two nuclei show their paired
arrangement caudoventrally of the main body of the thalamus.
The LGB is located dorsally of the hippocampal formation along
its whole extent with the MGB adjoining it medially (Figure 2).
Center of mass coordinates in the Colin 27 and MNI ICBM152
2009c non-linear asymmetric spaces (in parentheses) constituted
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FIGURE 1 | Topography of the MGB and LGB. (A) Cell-body stained section (number 3660, caudal MGB) from the left hemisphere of postmortem brain pm 21. The
dashed box indicates the location of the thalamus magnified in panel (B). (B) Magnified crop from panel (A) showing the topography of the MGB and LGB (cyan and
red) in comparison to putative locations of other thalamic nuclei. (C) Magnified crop from panel (B) depicting the layered structure of the LGB (cyan, left side) and the
subdivisions of the MGB (red, right side). Roman numerals indicate layers of the LGB; LGB, lateral geniculate body; MGB, medial geniculate body; MGBv, ventral
subdivision of the MGB; MGBd, dorsal subdivision; MGBm, medial subdivision; Po, posterior nucleus; SGN, suprageniculate nucleus; Lim, compact limitans
nucleus; Pul, pulvinar; MD, mediodorsal nucleus; LP, lateral posterior nucleus.

FIGURE 2 | Probability maps of the MGB and LGB in the single-subject template of MNI “Colin27” (Evans et al., 2012). Coronal slices from rostral (y = –17) to caudal
(y = –31) show the probability maps color-coded in blue (LGB) and red (MGB) in the MNI “Colin27” coordinate space. Color gradients on the lower right indicate the
overlap across the ten postmortem brains for a specific voxel (10%: only one brain; 100%: all ten brains); LGB, lateral geniculate body; MGB, medial geniculate body.

x = −24, y = −24, z = −10 (−24, −25, −9) for he left LGB,
x = 22, y = −24, z = −10 (23, −24, −9) for the right LGB,
x = −16, y = −27, z = −8 (−15, −27, −7) for the left MGB, as

well as x = 14, y = −27, z = −9 (15, −26, −8) for the right MGB.
The y-coordinates of the center of masses demonstrate the more
rostral location of the LGB (y = −24) in comparison to the MGB
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TABLE 2 | Mean volumes, standard deviations (SD) as well as minimal and
maximal values of the shrinkage-corrected mean volumes of the MGB and LGB in
ten postmortem brains for both hemispheres measured in mm3.

Nucleus Statistic Left hemisphere Right hemisphere Sum

MGB Mean 124.3 134.4 258.7

Min 91.9 89.0

Max 164.2 209.3

SD 27.4 35.3 59.2

LGB Mean 166.9 165.5 332.4

Min 116.3 120.4

Max 220.8 218.3

SD 28.5 26.6 54.6

MGB, medial geniculate body; LGB, lateral geniculate body.

(y = −27) as shown in Figure 2. The color-coded probability
maps of both nuclei (Figure 2) show a central peak with a steady
decrease when moving away from the center of mass in all three
dimensions – emphasizing the central location of the two nuclei
within the probability maps in both hemispheres.

Volumetric Analysis of the Metathalamus
Results of the volumetric analysis of the ten postmortem brains
are shown in Table 2. Shrinkage-corrected mean volumes of the
MGB (Mean = 258.7 mm3, SD = 59.2 mm3) were significantly
smaller than the LGB (Mean = 332.4 mm3, SD = 54.6 mm3)
volumes (t(9) = −7.0, p < 0.001, two-sided test). Permutation
tests did not reveal any significant effects of hemisphere and sex
as well as their interaction on the shrinkage-corrected volumes
for each nucleus (p > 0.05).

Cytoarchitecture of the Medial
Geniculate Body
Three subdivisions of the MGB were identified and delineated in
the BigBrain (Figure 3): The ventral subdivision (MGBv) formed
the ventrolateral part of the MGB and was mainly comprised
of small and medium sized perikarya, some of which formed
row-like clusters as described previously (Winer, 1984). These
contributed to a layer-like appearance of the ventral subdivision
(Figure 3B). The MGBv was flanked by white matter that
extended ventrally to the lateral border of the cerebral peduncle
and ringed the free surface of the caudal pole of the MGB
(Figure 3G). It could easily be separated from the medial and
dorsal subdivisions by cell-sparse zones (Figure 3H), as well
as differences in cell-density, size and composition. Similar to
observations by Winer (1984), we found a small cluster of larger
cells in the ventrolateral part of the ventral subdivision on some
sections (Figure 3E).

The dorsal subdivision (MGBd) covered the whole caudo-
rostral extent of the MGB forming a cap on top of the ventral
and medial subdivisions. It showed a reduced cell-density in
comparison to the ventral subdivision (Figure 3C). The largest
cells in the dorsal subdivision could be found on the medial and
ventromedial limb, right at the border to the medial subdivision
(Figure 3F). They marked the border to the medial subdivision.
The border to the medial subdivision was also characterized

by a fine cell-sparse zone, which was more profound in rostral
sections (Figure 3F).

The medial subdivision (MGBm) formed the ventromedial
part of the MGB and, on average, contained the largest perikarya
of all subdivisions (Figure 3D). The MGBm showed a caudo-
rostral gradient of increasing cell size which facilitated the
separation from the ventral subdivision in rostral sections. At
the same time, the increase in cell size impeded the separation
from the dorsal subdivision with its especially large somata at the
border to the medial subdivision (Figure 3F).

High-Resolution 3D-Reconstructions of
the Medial Geniculate Body in the
BigBrain
The deep-learning based brain mapping tool allowed to identify
delineations of the three subdivisions of the MGB on 132
sections of the left and 165 sections of the right hemisphere in
the BigBrain. Combined 3D-reconstructions of the MGB and
LGB (Brandstetter et al., 2021) with its subdivisions and layers
in the BigBrain are shown in Figure 4 (see Supplementary
Video) and demonstrate the paired arrangement of the two
nuclei in proximity of the hippocampal formation ventrolaterally
(Figure 4C). The MGBd forms a cap across the whole extent of
the MGB. The ventral and medial subdivisions share the lower
half of the MGB. On rostral sections, MGBd and MGBm are
flanked by white matter and parts of the ventrobasal complex
of the thalamus (Figure 4C). Here, the darkly stained substantia
nigra of the mesencephalon can be seen ventromedially of the
MGB (Figure 4C). Caudally, the MGBd and MGBm border
the posterior nuclear complex along their dorsomedial surface,
whereas the MGBd and MGBv border the most caudal tip of the
inferior pulvinar nucleus (see Figures 1B,C for an illustration).

Shrinkage-corrected volumes of MGBv and MGBm were
larger in the left hemisphere, whereas the MGBd subdivision
showed a similar size in both hemispheres (Table 3). The sum
of all three subdivisional volume measurements corresponds
to the mean MGB volume calculated based on mappings on
every 15th section in postmortem brain pm20 (BigBrain). The
latter fits within 0.8 standard deviations of the left and 1.3
standard deviations of the right hemisphere of the mean volume
measurements based on all ten postmortem brains (Table 2).

DISCUSSION

The present study introduces high-resolution 3D brain maps of
the human MGB and its subdivisions in the BigBrain utilizing
a novel deep-learning based brain mapping tool. Together with
the recently published LGB layer maps (Brandstetter et al., 2021)
they provide a high-resolution whole-brain histological reference
of the metathalamus at 20 micrometer resolution. Additionally,
probabilistic cytoarchitectonic maps of the MGB and LGB were
calculated in a sample of ten brains, with a spatial resolution
of 1 mm. They have been aligned with two commonly used
reference spaces (MNI “Colin27” and MNI ICBM152 2009c
non-linear asymmetric) and are part the Julich-Brain atlas
(Amunts et al., 2020). All datasets are publicly available on

Frontiers in Neuroanatomy | www.frontiersin.org 5 March 2022 | Volume 16 | Article 837485

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-16-837485 March 2, 2022 Time: 16:6 # 6

Kiwitz et al. Metathalamic Maps in 3D Space

FIGURE 3 | Cytoarchitecture of the MGB. (A) Histological cell-body stained section from the left hemisphere of the BigBrain (section 3290, rostral level of the MGB)
displaying the three subdivisions. Dashed boxes with italic letters (e-h) indicate magnified excerpts. (B) Cytoarchitecture of MGBv showing row-like clusters of
medium-sized cells (yellow); (C) cytoarchitecture of MGBd showing a cell-sparse pattern. (D) Cytoarchitecture of MGBm showing perikarya (yellow) which were
larger than in the other subdivisions. (E) Magnified excerpts from the ventrolateral quadrant of MGBv showing the putative human homologous region of the feline
ventrolateral nucleus (Winer, 1984). (F) Magnified excerpts of the border between MGBd and MGBm. Red arrows indicate a cell-sparse zone defining the borderline.
Brownish colored cells correspond to the previously described suprageniculate and posterior limitans nuclei of MGBd (Winer, 1984) and are of similar size as the
reddish colored cells of MGBm. (G) Magnified excerpts from the ventrolateral part of MGBv showing a capsule of neuropil (yellow) flanking MGBv. (H) Magnified
excerpts of the border between MGBv and MGBm highlighting a cell-sparse zone that defines the borderline; MGB, medial geniculate body; MGBv, ventral
subdivision of the MGB; MGBd, dorsal subdivision; MGBm, medial subdivision.
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FIGURE 4 | 3D-reconstructions of the MGB and LGB in the left hemisphere of the BigBrain. (A) Illustration of the BigBrain surface model, latero-caudal view (cutting
plane corresponds to coronal section number 3290, rostral MGB). (B) Cut through the BigBrain volume at section position 3290 showing the subdivisions of the
MGB (MGBv, MGBd, and MGBm) and layers of the LGB (I-VI). (C) Magnified view of the LGB (left) and MGB (right) showing their location at the ventral surface of the
BigBrain; MGB, medial geniculate body; LGB, lateral geniculate body; MGBv, ventral subdivision of the MGB; MGBd, dorsal subdivision; MGBm, medial subdivision.

TABLE 3 | Volumes of the MGB subdivisions in the BigBrain for both hemispheres.

Volume in mm3

MGB subdivision Left hemisphere Right hemisphere

MGBv 18.7 13.1

MGBd 44.8 45.3

MGBm 39.6 31.6

Sum of subdivisions 103.1 90.0

Measurements show shrinkage-corrected volumes obtained from the 3D-
reconstructed surface meshes of the MGB subdivisions (MGBv, MGBd, and
MGBm); MGB, medial geniculate body; MGBv, ventral subdivision of the MGB;
MGBd, dorsal subdivision; MGBm, medial subdivision.

EBRAINS (Kiwitz et al., 2021b; Schiffer et al., 2021b) and the
multi-level atlas of the Human Brain Project.1

Comparison With Previous Histological
Studies and Atlases
The overall characterization of three distinct subdivisions of
the MGB in the BigBrain is in accordance to histological
studies in human (Hassler, 1959; Winer, 1984; Morel, 2007;
Ding et al., 2016; Mai et al., 2016) and animal brains (Morest,
1964; Clerici and Coleman, 1990). The topography of the three
MGB subdivisions in the BigBrain resembles that shown by
Morel (2007), Hassler (1959), and Winer (1992). Following
their localization of the subdivisions, our analysis consolidates
the notion for the ventromedial location of the magnocellular
subdivision MGBm. This subdivision has previously also been
reported to be located more ventrolateral by Amunts et al. (2012).
The cytoarchitectonic features in our investigation correspond

1https://interactive-viewer.apps.hbp.eu/

well with those found by Winer (1984), with the exception
of the described size of perikarya in MGBm. In the BigBrain,
MGBm still contains the largest perikarya of all subdivisions,
yet the size difference seems to be not as distinct as previously
described (Winer, 1984). Although we were able to detect
some correspondences to even finer subparcellations, i.e., the
suprageniculate and posterior limitans nuclei of the dorsal
subdivision (Figure 3F) and a cell cluster possibly corresponding
to the feline ventrolateral nucleus (Strick and Sterling, 1974;
Winer, 1984), further subdivisions found in human (Winer, 1984)
and animal studies (Morest, 1964; Harrison and Howe, 1974)
could not reliably be replicated in the BigBrain.

Intersubject Variability of Volumes
Currently available histological atlases mostly contain
metathalamic structures based on single brains (Ding et al.,
2016) with the exception of Morel (2007), who compared
the topography of structures to a previously published atlas
using a different postmortem brain. The present analysis
addresses intersubject variability in a larger sample. The here
provided shrinkage-corrected mean volumes of the MGB add
to the limited literature of histological volume measurements
(Glendenning and Masterton, 1998; Rademacher et al., 2002;
Sitek et al., 2019). The interindividual variability in MGB
volume resembles data of a more than twofold variability
reported earlier (Rademacher et al., 2002). The same is
true for the LGB volumes and their approximately twofold
interindividual variation (Zvorykin, 1980; Andrews et al.,
1997). Similar to previous histological investigations, we found
no significant hemispheric asymmetries of MGB and LGB
volumes (Eidelberg and Galaburda, 1982; Andrews et al., 1997;
Rademacher et al., 2002).
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At the same time, volume measurements derived from
MRI-based measurements differ to a varying degree from our
histological volumes. Comparable MGB volumes have been
reported using postmortem MRI (Sitek et al., 2019) and structural
in vivo MRI (Kitajima et al., 2015; Amaral et al., 2016). At the
same time higher MGB, as well as higher and lower LGB volumes
have been reported using functional and structural in vivo MR
measurements (Li et al., 2012; García-Gomar et al., 2019; Jonak
et al., 2020).

These inconsistencies may reflect the inherent difficulty of
manually segmenting small subcortical nuclei in MR-images.
A direct localization of the LGB in structural MR images under
low field strengths (1.5 Tesla) requires prior enhancement and
co-registration to anatomical surroundings (Li et al., 2012). At
3 Tesla, the LGB has been delineated indirectly using prior
masking (Wang et al., 2015; Cecchetti et al., 2016). A more
direct segmentation of the LGB and MGB using structural
and diffusion-weighted imaging becomes feasible at higher (7
Tesla) field strengths (García-Gomar et al., 2019). Although
the MGB becomes detectable at such field strengths, a clear
segmentation has only been reported for postmortem structural
MR (Sitek et al., 2019). Yet, even under high field strengths
a histological validation still seems to be needed to rule out
possible confounds such as low diffusion anisotropy due to
crossing fibers, as well as to assist investigators with anatomical
landmark information when creating segmentations (García-
Gomar et al., 2019). The task difficulty of perceiving the LGB
and MGB in MR images is significantly impacted by the
image acquisition procedure (Kitajima et al., 2015) – imposing
a threat to the objectivity of such segmentations. Therefore,
in vivo segmentations of metathalamic nuclei in particular
for the MGB remains challenging due to the nuclei’s small
size and low contrast - confirming the notion for a more
precise histologically derived reference that our probability maps
provide.

The new maps constitute a probabilistic representation of
the MGB and LGB in the general population and include
five female and five male donors with a wide age range
including brains from older body donors. The older age of
some body donors may raise the question of possible structural
changes of the MGB in the context of age-related hearing loss.
Several studies indicate age-related changes of the subcortical
auditory system with regards to neurotransmitter and calcium-
binding protein expression (reviewed in Caspary and Llano,
2019). Both for normal aging and pathological conditions
such as deafness, structural changes have been reported for
the temporal cortex including the primary auditory cortex
(Lin et al., 2014; Wong et al., 2014; Qian et al., 2017), but
not for the MGB (Stanton and Harrison, 2000; Butler and
Lomber, 2013; Caspary and Llano, 2019). Other pathologies like
Alzheimer’s disease and Leber’s hereditary disease have shown
to alter human MGB volumes (Jonak et al., 2020; Bernstein
et al., 2021). The clinical records of the body donors did
not include any information of such pathologies, and did not
mention any changes in hearing abilities. Therefore, the here
presented volumes seem to represent mean volumes of the
investigated age range.

Neuroscientific and Clinical Relevance
The maps are part of the Julich-Brain (Amunts et al., 2020),
an atlas that is part of the multilevel atlas of the Human
Brain Project and its research infrastructure EBRAINS.2 This
way, the maps may provide a reference to localize findings
from neuroimaging and serve as seed regions for functional
connectivity and diffusion weighted imaging analyses. In this
regard, they can be used to study brain disorders and functional
impairments, including the LGB’s involvement in visual field and
eye movement deficits (Dai et al., 2011; Pasu et al., 2015; Usrey
and Alitto, 2015; Wang et al., 2015), multiple sclerosis (Sepulcre
et al., 2009; Hickman et al., 2014; Papadopoulou et al., 2019),
Parkinson’s disease (Lee et al., 2016), psychiatric disorders (Mai
et al., 1993; Selemon and Begovic, 2007; Dorph-Petersen et al.,
2009), as well as the MGB’s involvement in tinnitus (Llinas et al.,
2002; Rauschecker et al., 2010; Leaver et al., 2011; Ridder et al.,
2015; Caspary and Llano, 2017; Berlot et al., 2020), and both
structures’ involvement in Leber’s hereditary optic neuropathy
(Jonak et al., 2020). In tinnitus patients, the maps have the
potential to aid future neurosurgical planning for deep-brain
stimulation (Smit et al., 2016; van Zwieten et al., 2021). The latter
already benefits from the development of multimodal deep-brain
stimulation atlases (Ewert et al., 2018) to which our metathalamic
probability maps can contribute.

The high-resolution MGB BigBrain maps show the
topography of the three subdivisions at nearly cellular resolution,
and are interoperable with any reference space used in the
neuroimaging community. This way, they can be used to bridge
the microscale histology of the metathalamic BigBrain maps with
macroscale functional measurements. Evidence from ultrahigh-
field-fMRI studies for example shows a mirror-symmetric
tonotopic gradient in the ventral MGB (Moerel et al., 2015),
which is well reflected by the row-like cell clusters (Winer, 1984;
Moerel et al., 2015) that were also detected in the BigBrain
(Figure 3B). At the same time, the MGB and its ascending and
descending connections seem to be involved in a tinnitus-related
network (Rauschecker et al., 2010; Leaver et al., 2011; Caspary
and Llano, 2017). Modulation of the ventral MGB is also
behaviorally relevant for speech recognition (Mihai et al., 2019)
explaining the MGB’s involvement in developmental dyslexia
(Díaz et al., 2012). The MGB BigBrain maps may facilitate studies
of these larger scale involvements of thalamocortical circuits and
local subcortical circuits.

Together with the already published LGB BigBrain maps
(Brandstetter et al., 2021), the MGB maps provide a subcortical
target space for neuroimaging data integration and comparative
histological approaches at the level of specific subdivisions and
layers of the metathalamus. Several studies have already used
the 20-micron isotropic resolution of the BigBrain dataset for
such integrative approaches (Paquola et al., 2020a; Royer et al.,
2020) including subcortical structures of the auditory system
(Sitek et al., 2019). The BigBrainWarp toolbox (Paquola et al.,
2021, preprint) and the EBRAINS VoluBA toolbox for spatial
anchoring in the BigBrain space3 enable such an integration.

2https://ebrains.eu/
3https://ebrains.eu/service/voluba/
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Such a relationship is not only relevant to support MR
measurements with the cellular architecture, but also to develop
better and more realistic human brain models. The incorporation
of cytoarchitectonic parameters has recently led to more
biologically valid models of the macaque visual system including
cortical areas of different architectural types (Schmidt et al.,
2018), as well as models of the human cerebellar granular
layer (Florimbi et al., 2021). However, such models usually lack
quantitative metathalamic input parameters, forcing them to be
estimated indirectly based on other network parameters (Schmidt
et al., 2018). Following this line of arguments, the metathalamic
maps in the BigBrain can enrich current brain modeling
approaches by directly extracting cytoarchitectonic features from
the BigBrain (Paquola et al., 2020a; Dickscheid, 2021) at the
cellular level (Dickscheid et al., 2019; Behuet et al., 2021). Recent
advances in reconstructing the white matter fiber architecture
from Nissl-stained glia cells (Schurr and Mezer, 2021) could allow
to complement such features with sample specific connectivity
data of layers and subdivisions of the metathalamus.

As the BigBrain dataset is continuously expanded by
cortical and subcortical cytoarchitectonic parcellations, as
well as intracortical surface models (DeKraker et al., 2020;
Paquola et al., 2020a; Wagstyl et al., 2020), it provides an
increasingly rich resource for such integrative approaches. The
here provided high-resolution maps of the MGB contribute to
this development.
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