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A B S T R A C T

Osteosarcoma (OS) is the most common non-hematologic malignant tumor of bone in children. It is usually
characterized by a high risk of developing lung metastasis and poor prognosis. Extracellular vesicles (EVs) are
cell-derived nanoparticles with a small size of 50–200 nm in diameter. As a communicator, the contents of the
EVs secreted via either fusing with lysosomes for degradation and recycling or fusing with the cell plasma
membrane into the extracellular environment, which play an important role in regulating the tumor micro-
environment of OS and mediating the Wnt/β-catenin and TGF-β signalings. Increasing evidences suggest that
EVs have significant role in OS growth, progression, metastasis and drug resistance. In this study, the roles of EVs
in the physiology and pathogenesis of OS and the potential attractive therapeutic target for the treatment of OS
were reviewed.

1. Introduction

Osteosarcoma (OS) is the most common primary malignant bone
tumor in children and adolescents. Current treatment for newly diag-
nosed OS includes three aspects: preoperative chemotherapy, surgical
resection and postoperative chemotherapy. These management strate-
gies have improved the outcomes of patients with localized OS.
However, patients with advanced, metastatic and recurrent OS continue
to experience a quite poor prognosis. Although current multi-
disciplinary treatments have been used for OS, there is still no drastic
change in the overall prognosis during the past two decades. The 5-year
survival rate of OS patients with metastases is 20% compared with 65%
of patients with localized disease [1].

Extracellular vesicles are lipid bilayer membrane vesicles with a
small size of 50–200 nm in diameter. As a communicator in the cancer
microenvironment, previous evidences revealed that extracellular ve-
sicles can directly stimulate target cells with their membrane molecules
or deliver their contents into multiple types of cells for direct influence
[2]. Extracellular vesicles are released by all types of cells, including OS
cells. Indeed, recent studies revealed that extracellular vesicles secreted
by tumor cells played a critical role in cancer cell development, sur-
vival, metastasis and drug resistance [3–5]. However, the role of ex-
tracellular vesicles in the biological and pathophysiological processes of

OS was still not clear. In this review, we provide an overview regard to
the currently available data to illustrate the role of extracellular vesicles
in OS.

2. Biogenesis and functions of extracellular vesicles

Extracellular vesicles are produced by all normal and pathological
cells and secreted from the internal vesicles. The diameters of them are
50–200 nm. Extracellular vesicles are derived from cells via a multi-
vesicular body endocytic process [6], and are found in nearly all ex-
tracellular space and body fluids, including blood plasma, cerebrospinal
fluid, saliva, breast milk, urine and semen. Also, extracellular vesicles
are observed abundantly in tumor microenvironment [7].

After extracellular vesicles are formed, a variety of molecules, such
as multiple proteins, nucleic acids, enzymes and other soluble factors
are contained in them. Extracellular vesicles may differ according to the
tissue birthplace and specific cell type from which they originate, and
may be subjected to the stimulation and physiological variation that the
cells experience. The components of extracellular vesicles could partly
reflect the contents of the original cells [8]. Study indicated that dou-
ble‑stranded genomic DNA contained in extracellular vesicles derived
from cancer cells could partly reflect the mutational status of the ori-
ginate cells [9]. Also, Ismail et al. [10] reported that RNAs contained in
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extracellular vesicles can exchange genetic information with target
cells, and the expression of genes and intercellular communication in
the target cells was influenced by extracellular vesicles. Notably, a
significantly higher expression of extracellular vesicles was found in
tumor cells than normal cells, which meant extracellular vesicles may
play a special role in cancer development and drug resistance [11].

The contents of the extracellular vesicles secreted via either fusing
with lysosomes for degradation and recycling or fusing with the cell
plasma membrane into the extracellular environment. Notably, extra-
cellular vesicles production and release are signal and stimuli depen-
dent, and various proteins are associated with the process of extra-
cellular vesicles secretion. Members of the Rab family are demonstrated
to accurately regulate the secretion of extracellular vesicles, especially
Rab27a and Rab27b affecting the size and localization of extracellular
vesicles [12]. Also the factor p53 is shown to be involved in the ex-
tracellular vesicles release [13]. Previous studies revealed that elevated
intracellular calcium concentration, acidosis, cAMP levels and P2× 7
receptor activation modulated the pool of extracellular vesicles output
[3]. After extracellular vesicles secreted into the extracellular space,
they may be taken up by the target cells via direct fusion with the
plasma membrane; receptor-ligand interaction; endocytosis by phago-
cytosis and degradation in the lysosome [14].

3. Extracellular vesicles in the microenvironment of OS

As a communicator, the main function of extracellular vesicles in
intercellular communication is to exchange information with target
cells. Increasing studies revealed that extracellular vesicles had sig-
nificant roles in tumor development, progression, metastasis and
chemo-resistance [3]. Detection of extracellular vesicles in osteoblastic
and osteoclastic lesions provided a strong rationale to study the func-
tion of extracellular vesicles in messaging OS bone microenvironment
[15]. Studies have reported the characterization of extracellular ve-
sicles derived from OS cells and its potential implications on the bone
marrow stroma. It clearly reported that abundant of the extracellular
vesicles have diameters within 50 to 200 nm [16].

Biomechanical stress in the bone marrow stroma can elevated in-
tracellular calcium concentration, which in turn accelerates the pro-
duction of extracellular vesicles, and up-regulate the expression of ex-
tracellular remodeling enzymes, such as matrix metalloproteinases
(MMPs). The significantly higher expression of MMPs and down-reg-
ulation of miRNA143 are correlated with the poor prognostic outcomes
in patients with OS. Therefore, detection of MMPs in extracellular ve-
sicles is a valuable finding for predicting OS prognosis [16,17]. Casi-
miro et al. [18] identified RANKL as the important regulatory factor for
osteoclast differentiation due to it playing a special role in the activa-
tion of MMPs and stimulation of osteoclastogenesis. Lim et al. observed
that the transfer of nucleic acid from bone microenvironment to breast
cancer cells through extracellular vesicles may have a significant role in
the quiescence of bone metastases [19].

CD-9 belongs to tetraspanin protein family and is found enriched in
extracellular vesicles. It can regulate osteoclast differentiation and
suppress the formation of mature polykaryons. In osteotropic cancers,
CD-9 not only induces the homing of cancer cells in the bone micro-
environment, but also enhances osteoclastic bone resorption via over-
expression [20]. Herr et al. [21] reported that blocking of CD-9 by
KMC8 would suppress multinucleated osteoclast formation and mediate
osteoclast differentiation. Yi et al. [22] also indicated the regulatory
function of CD-9 in the mediation of MMP-9 induced migration and
invasion in cancer.

The expression of TGF-β is highly in the serum of patients with OS
compared with those without OS. TGF-β can regulate the bone marrow
stroma and stimulate migration of OS cells directly [23]. TGF-β con-
tained in extracellular vesicles can increases the accumulation of im-
mature myeloid cells, and the function of immature myeloid cells from
the osteolytic bone marrow stroma in accelerating osteoclastic bone

resorption was demonstrated [24].Thus, targeting the OS bone micro-
environment and inhibiting extracellular vesicles secretion may prevent
tumorigenesis.

4. Wnt signaling and extracellular vesicles in OS

The Wingless (Wnt) signaling pathway plays an important role in
cell proliferation and tumorigenesis. Previous studies revealed that
maintenance of cancer cells are regulated by the Wnt/β‑catenin sig-
naling pathway in several cancers. And aberrantly activated the Wnt/β-
catenin pathway is correlated with the progression of OS [25]. Chen
et al. established that activation of autocrine Wnt/β-catenin signaling in
the tumor cell-derived extracellular vesicles would enhance the devel-
opment and survival of OS cells [26].

The function of Wnt signaling in OS remains controversial. Some
studies suggested an oncogenic role for this pathway, but other studies
supported an anti-tumorigenic role for it. Goldstein et al. found that
treatment with BHQ880 (an antibody against the Wnt signaling in-
hibitor) would induce increased nuclear localization of β-catenin,
which resulted in elevated expression of a number of Wnt target genes
released from extracellular vesicles and inhibited OS metastasis. These
studies indicated that Wnt signaling pathway promoted bone differ-
entiation in OS, and prevented tumor progression and metastasis [27].

Several valuable molecular strategies for therapeutic intervention
by targeting Wnt signaling in OS have been reported. Two groups of
secreted Wnt antagonists are characterized by their inhibition me-
chanisms. The first group of antagonists directly bind to Wnt ligands
and promot inhibitory reaction, such as sFRP family and Wnt inhibitory
factor-1. CD82 and CD9 were abundantly found in extracellular ve-
sicles, which would suppress β-catenin-mediated Wnt signaling activity.
It revealed that the function of CD82 and CD9 in mediating the down-
regulation of Wnt signaling induced discharge of β-catenin [28].The
second group of antagonists suppress the Wnt signaling pathway by
binding to transmembrane receptors, such as the Dickkopf (Dkk) family
and sclerostin. The Dkk family comprises four secretory proteins, which
could mediate Wnt signaling pathway via binding to the transmem-
brane receptors LRP5/6 [29]. Dkk-3 can suppress the motility of β-ca-
tenin nuclear in OS cells, and the decreased expression of Dkk-3 was
shown to prevent progression and migration of OS cells [30].

Recently, a number of microRNAs were found to be played im-
portant roles in the pathogenesis of OS. These microRNAs were de-
tected in tumor-derived extracellular vesicles and acted as oncogenic
[31, 32] or suppressive RNAs [33]. For example, miR-370 could sup-
press the invasion of OS cell by inhibiting the Wnt/β-catenin signaling
pathway [34].

Based on the findings above, the Wnt signaling pathway plays a
significant role in the progression and metastasis of OS. Thus, pre-
venting autocrine activation of Wnt/β-catenin signaling by regulating
tumor cells extracellular vesicles may be an effective therapeutic
method for inhibiting OS development and metastasis.

5. TGF-β signaling and extracellular vesicles in OS

Transforming growth factor β (TGF-β) super family plays sig-
nificance roles in the development of various diseases. It is one of the
most abundant molecules in the tumor microenvironment. Study re-
vealed that tumor cells derived from extracellular vesicles are able to
enhance the proliferation and migration of tumor cells through acti-
vating an anti-apoptotic pathway regulated by exosome-associated
TGF- β [35]. In particular, TGF-β is strongly associated with the de-
velopment and progression of OS. Increased expression of TGF-β was
found in the serum of patients with OS compared with those without OS
[36]. And a significantly higher expression of TGF-β was found in OS
patients with metastasis than those without metastasis [37]. Also the
elevated serum TGF-β level was correlated with high-grade OS [38].

As one of the most widely studied pathways in OS, variations in the

M. Lan et al. Journal of Bone Oncology 12 (2018) 101–104

102



TGF-β signaling pathway involved in cell differentiation, growth and
apoptosis. And it was closely related with the development and pro-
gression of OS in an autocrine manner [39]. Previous studies indicated
that the osteoblast differentiation was mediated by the TGF-β signaling
pathway, and evidences suggested the role of TGF-β1 in the pro-mi-
gratory effect of OS [40]. Loss of TGF-β signaling is important for tu-
morigenesis of many cancers. Aberrant signaling in a variety of path-
ways has shown to be related with OS progression [41]. Elevated
expression of TGF-β1 and TGF-β3 secreted from extracellular vesicles
was demonstrated in OS patients, and it was closely correlated with
tumor progression [42].

Angiogenesis plays a significant role in tumor development and
progression. It's established as an indicator for high risk of metastasis
and poor prognosis. Tumor cells under hypoxia can elevate secretion of
extracellular vesicles, which leads to the activation of vascular cells
during tumor angiogenesis. Extracellular vesicles-associated TGF-β se-
creted from injured cells promotes original tissue recovery and re-
generative [43]. Bhattacharya et al. found that TGF-β1-containing ex-
tracellular vesicles promoted tumor development and metastasis via
angiogenesis in OS [44]. The therapeutic effects of an anti-TGF-β an-
tibody depend on the recovery of the immune response in OS [45].
Mohammad et al. showed that SD-208 forcefully affected the ability of
the primary OS developing lung metastases by blocking the capacity of
TGF-β1 [46]. Therefore, preventing TGF-β signaling via modulation of
extracellular vesicles could be a novel therapeutic target for OS.

6. Extracellular vesicles and immunotherapy for OS

Currently, personalized medicine strategies are widely used for the
treatment of patients with cancer. The primary function of extracellular
vesicles in intercellular communication is to exchange information with
target cells. Thus, specific bioactive molecules contained in extra-
cellular vesicles would design and select to deliver anti-tumor drugs for
the treatment of cancer. Researchers have designed drug-loaded mag-
netic exosome-based vehicle, which can be delivered directly to the
target tumors cells under an external magnetic field and suppress tumor
progression [47]. The abundant of drug-loaded extracellular vesicles
around tumors can significantly improve the anti-tumor efficiency and
limit their side effects. Therefore, extracellular vesicles worked as de-
livery vehicles could be an attractive therapeutic for cancer. And this
novel therapeutic has gained increasing interest due to the effective
biocompatibility and biodistribution of extracellular vesicles [4].

Down-regulation immunoreaction or escaping from immune sur-
veillance is important for cancer development and metastasis. Zitvogel
and colleagues have indicated the immune therapeutic benefits of ex-
tracellular vesicles in tumor. They revealed vaccination of mice with
extracellular vesicles secreted from dendritic cells (DCs) had functional
MHC, T-cell and costimulatory molecules [48]. The DCs were shown to
stimulate an antitumor immune response and suppressed tumor growth
in a T cell-dependent manner. Therefore, DC vaccination secreted an-
tibodies mediate certain immunoregulatory molecules can improve the
therapeutic efficiency in OS. Furthermore, recent studies indicated that
using DC immunotherapy may induce cytotoxic T cell response in OS
[49]. Bacterial products injected into unresectable tumors was able to
stimulate human’ immune response and suppressed tumor progression
[50]. Therefore, strategy for specifically targeting extracellular vesicles
is a promising treatment for cancer.

As a delivery system, extracellular vesicles are extensively working
as vehicles for a variety of cancers therapeutic cargos. The insulin-like
growth factor (IGF) well established as an important factor on onco-
genesis, tumor progression, tumor metastasis and chemoresistance. And
the increased expression of IGF-1, IGF-2 and IGF-1 receptor (IGF-1R) is
found in the serum of patients with OS [51]. IGF pathway has become
the target of novel therapeutics. Ganitumab worked as a monoclonal
antibody for IGF-1R, is able to suppress the proliferation of OS and
mediates OS tumor progression [52]. High level of IGFBP3 is related

with a poor prognosis and high grade tumors, which is expressed in
extracellular vesicles from human osteoblasts [53]. Therefore, this
molecule may be new pathway and potential therapeutic target for the
treatment of OS.

7. Conclusion

OS is a malignant tumor of the bone with poor outcome and high
risk of lung metastasis. Communication between tumor cells and other
organs is crucial for cancer progression. Extracellular vesicles emerge as
major players in this communication and play an important role in
regulating the tumor microenvironment of OS. They also regulated the
Wnt/β-catenin and TGF-β signaling pathways. Tumor-derived extra-
cellular vesicles contribute to the failure of cancer treatment, and
eliminating these extracellular vesicles seems helpful for tumor
therapy. However, the detailed molecular mechanisms of extracellular
vesicles assisting tumor progression and metastasis also was not fully
elucidated. Additional studies are necessary to determine the exact
roles of extracellular vesicles in the pathogenesis of OS.
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