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and Trevor A. Graham1,6,*

SUMMARY

Cell-free DNA (cfDNA) measured via liquid biopsies provides a way for minimally
invasive monitoring of tumor evolutionary dynamics during therapy. Here we
present liquidCNA, a method to track subclonal evolution from longitudinally
collected cfDNA samples sequenced through cost-effective low-pass whole-
genome sequencing. LiquidCNA utilizes somatic copy number alteration
(SCNA) to simultaneously genotype and quantify the size of the dominant sub-
clone without requiring B-allele frequency information, matched-normal samples,
or prior knowledge on the genetic identity of the emerging clone. We demon-
strate the accuracy of liquidCNA in synthetically generated sample sets and
in vitromixtures of cancer cell lines. In vivo application in patients with metastatic
lung cancer reveals the progressive emergence of a novel tumor subpopulation.
LiquidCNA is straightforward to use, is computationally inexpensive, and enables
continuous monitoring of subclonal evolution to understand and control-therapy-
induced resistance.

INTRODUCTION

Liquid biopsies, primarily the analysis of cell-free DNA (cfDNA) present in blood samples, offer the poten-

tial for regular longitudinal and minimally invasive monitoring of cancer dynamics (Siravegna et al., 2017;

Ng et al., 2017; Rothwell et al., 2019; Khan et al., 2018; Fernandez-Garcia et al., 2019; Conteduca et al.,

2020; Nakamura et al., 2020). Circulating cfDNA is released into the blood via apoptosis or necrosis of cells.

Tumor-derived cfDNA in the blood is detectable from tumors as small as 50 million cells (Diaz et al., 2012),

shows correlation with disease stage (Bettegowda et al., 2014; Newman et al., 2014), and offers the same

diagnostic potential as tissue-based biopsies (Nakamura et al., 2020). cfDNA is an aggregate of DNA shed

from multiple locations and multiple malignant cells across the body, and hence, a single sample can pro-

vide a comprehensive overview of systemic disease. Consequently, cfDNA is an exceptional resource for

noninvasive tracking of tumor composition and for monitoring response to therapy or clinical relapse.

Typically, cfDNA analysis has focused on the detection of driver gene single-nucleotide variants (SNVs), us-

ing panel-capture deep sequencing with the size of mutation-bearing clones inferred from the relative

sequencing read count at the mutation site. For instance, in high-grade serous ovarian cancer (HGSOC),

the frequency of TP53 mutation in cfDNA is a measure of tumor burden and is predictive of treatment

response (Parkinson et al., 2016). In colorectal cancer, KRAS mutation frequency in cfDNA is predictive

of response to anti-EGFR therapy (Khan et al., 2018).

Somatic copy number alterations (SCNAs) and aneuploidy are widespread in cancers (Beroukhim et al.,

2010; Hanahan and Weinberg, 2011; Sansregret et al., 2018; Douville et al., 2020) and have been used

extensively to track tumor composition and dynamics over time (Li et al., 2014; Hieronymus et al., 2018; Ru-

bin et al., 1992). SCNAs can be evaluated with high precision using low-pass whole-genome sequencing

(lpWGS) where genome-wide sequencing is typically performed to 0.001-1X. An lpWGS library can be pro-

duced and sequenced for approximately one-tenth of the cost of a capture-based library and is robust to

low sample input quality (Chin et al., 2018). A matched normal is not typically required to confirm the so-

matic status of detected CNAs (Scheinin et al., 2014), making rapid, high-throughput analysis of liquid
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biopsies by lpWGS feasible and affordable in a clinical setting (Chen et al., 2019; Adalsteinsson et al., 2017;

Van Roy et al., 2017; Hovelson et al., 2017; Vanderstichele et al., 2017; Taylor et al., 2016).

However, deriving quantitative information on the proportion of tumor population that carries a particular

SCNA is challenging. Tumor cells are not the only contributors to the measured DNA pool, especially in

liquid biopsies where healthy DNA is often at high proportion. The measured SCNA profile is a noisy com-

pound function of the relative tumor cell contribution to the total cfDNA pool and the specific copy number

(CN) of each alteration. There are multiple sophisticated deconvolution algorithms addressing this prob-

lem in solid-tissue biopsies (Fischer et al., 2014; Yu et al., 2016; Ha et al., 2014; Oesper et al., 2014; Zaccaria

and Raphael, 2020); however, these require the combined information of relative depth and B-allele fre-

quency of a genomic region for best performance in distinguishing between concurrent models of subclo-

nal SCNA profiles. Therefore, they are only applicable to samples sequenced to an adequate depth and

paired with a matched-normal reference, while methods designed for lpWGS have been limited to esti-

mating the tumor fraction of cfDNA samples (Adalsteinsson et al., 2017; Hovelson et al., 2017). In addition,

most methods – with the notable exception of ‘deep sequencing methods’ cloneHD (Fischer et al., 2014)

and HATCHet (Zaccaria and Raphael, 2020) – analyze samples independently and therefore would not

explore the full breadth of information available in a longitudinal cfDNA series.

Here we present a new method to identify and track tumor subclonal evolution from longitudinal cfDNA

samples based solely on lpWGS measurement of SCNAs. Our algorithm, named liquidCNA, determines

the contribution of tumor DNA to the total cfDNA pool (i.e. cellularity/purity) and then jointly analyzes

longitudinal samples of the same patient to characterize and quantify the size of the most pervasive (pu-

tatively resistant) subclone emerging or contracting over time. The method is robust enough for use in

highly unstable genomes where rapid ongoing accrual of SCNAs could confound other methods and

in situations where variation in sequencing coverage between samples introduces additional noise in

SCNA measurement. The efficacy of the method is demonstrated using synthetic datasets, in vitro cell

line mixtures, and in vivo via longitudinal analysis of cfDNA from patients with lung cancer who are un-

dergoing treatment.

RESULTS

Emergent subclone tracking from CN information

First, we derive a mathematical definition of the problem of tracking an emergent (putatively resistant) tu-

mor subclone from longitudinal cfDNA samples, typically taken throughout the course of treatment. We

consider a tumor cell population undergoing continuous evolution characterized by two cell types, namely,

ancestral tumor cells (A) and an emerging subclone (S). We assume that liquid biopsies contain DNA orig-

inating from ancestral and subclonal tumor cells, as well as contaminating DNA from normal cells (N). The

proportion of DNA arising from cells of the emergent subclone within the tumor is expressed by the sub-

clonal ratio, ri, while the overall proportion of tumor-originating DNA is termed the purity or tumor fraction

of the sample, denoted by pi.

We consider that the CN profile of each sample has been measured – for example, using lpWGS – and so

the genome can be divided into segments, contiguous regions of constant CN. Each measured segment

CN in sample i (Cj
i ) is the combination of each cell population’s CN at the jth genomic location (2 for normal

cells, and C(A) and C(S) for ancestral and subclonal tumor cells, respectively), weighted by the proportions

of the three populations (Figure 1). Thus, we have

Cj
i = 2+pi

�ð1� riÞCðAÞj + riCðSÞj � 2
�
: (Equation 1)

We assume that each segment can fall into one of the three categories depending on its CN in ancestral

and subclonal tumor cells. Clonal alterations (and unaltered segments) are at the same CN in both tumor

populations, and their measured CN is only affected by the purity of a sample. Subclonal segments repre-

sent SCNAs that are unique to the emerging subclone. Their measured CN is influenced by the subclonal

ratio of a sample, as well as sample purity. Note that these SCNAsmight appear clonal in a single time point

– in the extreme case of the emerging population overtaking the entire tumor – but not in all samples.

Finally, segments that do not follow either of these patterns – owing to uncertainmeasurements or ongoing

instability – are termed unstable. Our aim is to estimate the underlying purity and subclonal ratio, pi and ri,

from longitudinal CN measurements of clonal and subclonal segments (Figure 1).
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Estimation of subclonal ratio

Estimation is carried out in three steps (Figure 2A and STAR Methods). First, the purity of each sample is

assessed using the distribution of segment CN values. We assume that the majority of segments have

integer CN in all tumor cells; hence, the distribution is expected to have distinct peaks at regular intervals

of pi, corresponding to clonal segments with CN of 1, 2, 3, etc (Figure 2B). We derive the purity estimate as

the value that minimizes the squared error between observed and expected peaks (Figure 2C). The inferred

purity values are used to correct the segment CN values, thus estimating the tumor-specific CN of each

segment.

LiquidCNA does not require a mainly diploid tumor genome (i.e. major peak at CN = 2) to derive correct

estimates but will derive erroneous conclusions if the CN values – as measured by the CN quantification

software, e.g. QDNAseq (Scheinin et al., 2014) – are incorrectly centered (e.g. major peak is defined as

CN 2, but the true value is CN 3). To control for this, an initial manual check of the CN profile is recommen-

ded prior to applying liquidCNA and renormalization to the correct ploidy if required.

Next, for every segment, we compute the change in CN,DCN, between each sample and a baseline sample

that is assumed to have negligible proportions of the emerging (putatively resistant) subclone – for

example, a sample taken upon diagnosis or before the start of therapy. DCN values naturally highlight sub-

clone-associated segments altered in nonbaseline samples, as these segments display markedly positive

(CN gain compared with baseline) or negative (CN loss) values (Figure 2D). From these DCNs, we then

establish the set of segments that are subclonal and the sample ordering that reflects increasing subclonal

proportions. To do this, we examine each possible order of samples, classifying each segment as clonal (if

the variance of its DCNs across samples is below a predefined threshold), subclonal (if it shows monotone

change in DCN value along the order of the samples – i.e. if the DCNs are consistent with an emerging sub-

clone), or unstable (if it does not correlate with sample order) according to that order (Figure 2E). The order

with the highest proportion of segments classified as subclonal is selected, and these subclonal segments

are used for downstream computation of tumor composition (Figure 2F). The methodology ensures that

the dominant subclone associated with the most pervasive SCNAs is evaluated and that subclonal ratio

inference is robust to segments with unstable CN.

Finally, we compute the relative and absolute subclonal ratio of each sample using the identified set of sub-

clonal segments. Relative subclonal ratios are defined as themedian ratio of segmentDCNs comparedwith

Figure 1. Schematic of copy number measurements

The first panel shows the SCNA profile of ancestral (in yellow) and subclonal (in red) tumor cells. At different sampling time points, the overall tumor SCNA

profile is a mixture of these profiles (second panel), influenced by the composition of tumor-derived DNA depicted on the pie charts. Clonal, subclonal, and

unstable segments are indicated in yellow, red, and blue, respectively. Note that the CN of clonal segments remains the same. In the liquid biopsies taken at

each time point, contamination from normal cells leads to ’flattened’ measured SCNA profiles (last panel) due to normal cells having a diploid karyotype.

This contamination affects the CN of each segment. Our aim is to estimate purity (pi) and subclonal ratio (ri) based on clonal and subclonal SCNAs.
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Figure 2. Illustration of the estimation algorithm

(A) Outline of the estimation algorithm, with estimation outputs highlighted in color. Dashed arrows separate independent modules.

(B) Purity estimation based on the peaks of the distribution of segment CNs. Green lines show the peaks expected at an example purity of 0.21.

(C) The error of a range of purity estimates, computed from the distance of observed and estimated peaks in (B). Each line corresponds to a smoothing kernel

applied to the raw segment CN distribution. The optimal purity is indicated with arrows.

(D) Change in segment CN values (DCNs) plotted according to an example sample order. The number of subclonal segments computed in (E) is indicated below.

(E) Classificationof segments basedon the sample order in (D). Segments with low variance are classified as clonal (gray).Nonclonal segments are evaluatedwhether

they follow a quasi-monotone pattern (indicated by the shaded regions) and classified as unstable (outside of shaded region, blue) or subclonal (red).

(F) DCN values plotted according to the optimal sample order maximizing subclonal segments. Line colors indicate the class of each segment as in (E).

(G) Relative subclonal ratio estimation compared with maximal subclonal ratio sample (rightmost in (F)). Points show individual segment-wise estimates, with

an example segment highlighted in black. Black line shows the median.

(H and I) Subclonal ratios and confidence intervals inferred by fitting a Gaussian mixture model to the DCN distribution of subclonal segments. The

components of the best fit with means �r and r are shown in green and magenta, respectively, in (H).
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Figure 3. Estimation of mixtures of synthetic cell populations

(A) Parameters used to randomly sample synthetic datasets including simulatedmeasurement noise. The font size of copy

number states indicates their probability.

(B) A randomly generated sample. The heatmap depicts the distribution of segment CNs in ancestral and subclonal cells,

and the proportion of cell populations is shown on the pie chart (red: subclonal, yellow: ancestral, gray: normal).

(C) Copy number profile of the sample in (B), with raw bin-wise and segmented copy number values shown in black and

red, respectively.

(D) Estimated purity of 1,000 synthetic samples with varying levels of noise (s), plotted against the true theoretical purity.

The y = x line is indicated with dashes.

(E) Error of purity estimation (absolute difference to true purity) for samples with noise level indicated on the x axis.
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the sample with the maximum subclonal proportion (Figure 2G). The absolute subclonal ratio is computed

based on the assumption that subclonal segment DCN values correspond to distinct SCNAs that differ be-

tween ancestral and subclonal cells. The subclonal ratio of sample i is therefore derived as the shared mean

(ri) of a mixtures of Gaussian distributions with constrained means �ri,+ri, etc., fitting the DCN distribution

of subclonal segments (Figure 2H). We also provide the 95% confidence interval of the absolute subclonal

ratio estimate based on the shared variance of the fitted Gaussians (Figure 2I).

LiquidCNA outputs both relative and absolute subclonal ratio measures, because for most applications the

relative value holds sufficient information on how the subclonal (putative resistant) population changes be-

tween time points. Relative proportions are also less susceptible to the measurement noise in the

measured segment CNs, while a combination of low subclonal proportion and high sequencing noise

can cause the fitting of absolute subclonal ratio estimates to fail to converge.

Synthetic mixed populations

We first evaluated the performance of liquidCNA using synthetic datasets where input values of subclonal

proportion and purity were known. We generated these datasets matching characteristics of measure-

ments from patients, and therefore, each dataset is equivalent to a longitudinal synthetic experiment, typi-

cally consisting of 4–5 synthetic samples. In order to simulate imperfect measurements, we added varying

levels of normally distributed measurement noise (defined by the dimensionless parameter s) to bin-wise

CN values (Figures 3A–3C and STAR Methods).

We evaluated the accuracy of the purity estimation on 1000 synthetic samples (from 200 experiments/data-

sets, Figure 3D) and found that purity p could be estimated within 2% of the true tumor fraction in 90% of

samples at noise levels s% 1. The error on the purity estimation was greater when the noise was increased

(Figure 3E) and was most pronounced in samples with high noise and low tumor fraction.

Next, we derived subclonal ratios using purity-corrected CNprofiles on synthetic mixtures with purityR0.1.

We set a threshold to filter out clonal segments (see Figure 2E) such that at least 10 segments were retained

and the proportion of retained segments classified as subclonal was maximal following segment classifica-

tion. Figure 3F shows the true and estimated subclonal ratios for 50 synthetic experiments. Overall, we

found that the subclonal ratio was estimated with ~5% error, and the accuracy decreased with higher mea-

surement noise (Figure 3G). Relative subclonal ratios (calculated compared with the sample with highest

subclonal proportion) were estimated with higher accuracy (error ~3%, Figures S1A and S1B). We found

that computing absolute subclonal ratios in a two-step process from these values yielded similar results

to direct estimation by fitting a Gaussians mixture model and provided an estimate even in cases where

the direct estimation did not converge (Figure S1C and STAR Methods).

We also evaluated if a higher proportion of unstables segments decreased accuracy, but found that, unlike

noise, it had little effect on the estimation accuracy (Figure S2). Finally, we explored how the overall number

of samples (measurement time points) influenced subclonal ratio estimation. As expected, datasets with

only 2 measurements (consisting of a baseline and single nonbaseline sample) were estimated with

reduced accuracy since unstable and subclonal segments could not be distinguished in this case. Accuracy

increased with the number of samples available for evaluation and showed negligible improvement above

4 samples (Figures S3A and S3B). Relative subclonal ratio on the other hand could be estimated with high

accuracy at all sample numbers (Figures S3C and S3D).

Mixtures of ovarian cancer cell lines

Next, we evaluated liquidCNA on lpWGS data derived from in vitro mixtures of two paired high-grade se-

rous ovarian cancer (HGSOC) cell lines (Hoare et al., 2020) (see STAR Methods and Table S1). HGSOC cells

were ideally suited for this evaluation as high levels of chromosomal instability are a hallmark of the disease

Figure 3. Continued

(F) True and estimated subclonal ratios of 200 synthetic datasets (1,000 samples) with varying levels of noise (s).

(G) Error in subclonal ratio estimation for datasets with increasing noise level. Box plot elements in (E) & (G) stand for the

following: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. R

in (D) & (F) indicates the Pearson correlation coefficient; p < 10�8 for all panels.

See also Figures S1–S3.
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(Nelson et al., 2020; Cancer Genome Atlas Research Network, 2011). We anticipated that liquidCNA will be

most applicable for the tracking of subclonal evolution in malignancies with high CNA burden (Vandersti-

chele et al., 2017).

We divided a population of OVCAR4 cells into an untreated ‘sensitive/ancestral’ and a ‘resistant/subclonal’

aliquot, the latter cultured to develop resistance to platinum-containing chemotherapy. In addition to the

high SCNA burden inherited from the ancestral sensitive cell line, resistant cells acquired new SCNAs dur-

ing the in vitro evolution of resistance (Figure 4A). In varying known proportions, we then mixed the

genomic DNA extracted from the two cell lines and further diluted the mixtures with DNA from blood sam-

ples of healthy volunteers assumed to have a diploid genome (Table S1). These DNA mixtures were

sequenced to mean depth 1.3x, and composite SCNA profiles were generated using QDNAseq (Scheinin

et al., 2014) (see STAR Methods). In addition, we generated further in silico mixtures by sampling and

A

B C

D E

F G

Figure 4. Estimation of mixtures of high-grade serous ovarian cancer cell lines

(A) Copy number profile of the ancestral/sensitive and subclonal/resistant HGSOC cell lines. Raw bin-wise and segmented copy number values are shown in

black and red, respectively. Resistant-specific subclonal SCNAs are highlighted.

(B) Purity estimates of samples S0-S5. Corrected values are computed using the linear fit in (C). Theoretical purity values are indicated by maroon diamonds.

(C) True (theoretical) and estimated tumor purity of 120 in silico HGSOC cell line mixtures. y = x and the linear fit of the estimates (y = 0.81x) are shown with

dashed and solid lines, respectively. Point shape and shade indicate the total number of reads per sample.

(D) Subclonal ratio estimates for samples S1-S5. Shaded and empty bars indicate estimates derived using direct (Gaussian fit) and two-step (from relative

ratios in (F)) methods, respectively. Error bars show 95% confidence interval of the direct estimate, and maroon diamonds indicate theoretical values.

(E) True and estimated subclonal ratios of 50 in silico datasets constructed of samples from (C) with 50 million reads.

(F) Relative subclonal ratio estimates for samples S1-S4, compared to S5. Estimates from each subclonal segment are shown with dots, the median estimates

are indicated by black lines, and true values are indicated by maroon diamonds.

(G) True and estimated relative subclonal ratios in the 50 datasets shown in (E).

See also Figures S5–S8.
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mixing genome-aligned reads from sequencing data from each of the three cell types sequenced individ-

ually. In these mixtures, we controlled the total number of reads per sample to study the effect of variable

read depth and associated measurement noise.

First, we used liquidCNA to estimate the purity of in vitro mixed samples (samples S0-S5). The purity of

each sample was estimated to be lower than the theoretical mixing proportion (Figure 4B). In the in

silico mixed samples, we found that there was a strong linear relationship between estimated and

true purity (Figure 4C). The underestimation of purity is explained by our definition of theoretical purity

in the in vitro and in silico mixing procedure (defined as proportion of DNA weight versus the propor-

tion of read counts, respectively). A highly aneuploid genome has a higher weight than a diploid

genome; therefore, mixing of equal weights results in a higher proportion of normal genomes than ex-

pected. Our purity estimates were in agreement with observed peaks of the CN distribution (Fig-

ure S4A), and by fitting a linear model to the estimates, the theoretical tumor fraction could be fully

recovered, as illustrated by the ‘corrected’ estimates of samples S0-S5 (Figure 4B). The number of reads

(sequencing depth) did not systematically influence the accuracy of estimating tumor fraction, but pu-

rity estimates of samples with low tumor fraction were noisier at low read depth (Figure 4C). As samples

below 10% tumor fraction are estimated with lower accuracy and are more influenced by noise, we

advise to complement purity estimation with orthogonal measures or manual curation or discard

such samples from downstream analysis.

Next, we inferred the subclonal ratio for cell line mixtures using purity-corrected DCN values, with sample

S0 used as the baseline sample for both in vitro and in silico sample sets. We could correctly order cell line

mixtures according to subclonal ratios without any a priori information (Figure S4B), and both absolute

subclonal ratio and relative subclonal changes were estimated on average within 2% and 3% of the true

subclonal percentage (Figures 4D and 4F). In particular, we note that samples S4 and S3 were accurately

estimated as having an equal subclonal ratio, despite originating from different biological replicates

with different tumor purity. We also note that even though there were no truly unstable segments in this

dataset as measurements were not taken over time, three nonclonal segments were classified as such,

owing to relatively small size and higher noise in their measured CN value.

Using datasets of randomly selected in silico samples with 50 million reads, we confirmed that our algo-

rithm could accurately infer the subclonal ratio of samples, in particular when considering relative propor-

tions (Figures 4E and 4G). Although the estimation quality decreased with lower read counts (Figure S5), in

most cases the estimated absolute and relative subclonal ratios were within 15% and 10% of the true sub-

clonal proportion, respectively. Furthermore, we found that cases with high estimation error were typically

caused by misestimation of purity of low-purity samples, which could be easily identified and removed

without a priori information, as demonstrated in Figure S6.

Using the known theoretical mixing values of tumor DNA content – instead of data-derived estimates – to

derive purity-corrected CN values increased the estimation error, especially in low-read-count samples

(Figure S7). This finding emphasizes that nondiploid genomes might bias alternative measurement

methods and that internal consistency in the method of deriving sample characteristics (purity and subclo-

nal ratio) is crucial when assessing the dynamics of the subclonal population.

We further validated our results using ichorCNA, a recent bioinformatic method designed specifically for

screening the tumor fraction of low-coverage cfDNA samples with high sensitivity (Adalsteinsson et al.,

2017). IchorCNA uses a hidden Markov model and Bayesian inference framework to tackle the problem

of accurately estimating tumor purity in samples sequenced to 0.1x coverage (Adalsteinsson et al.,

2017). In addition to normal contamination, ichorCNA also derives an estimate on subclone fraction –

but it is important to note that the algorithm was not optimized for subclonal deconvolution. We applied

ichorCNA to both in vitro and in silico samples to derive purity and subclonal ratio estimates, the latter cor-

rected for the fact that ichorCNA has no knowledge of the subclone’s identity as ancestral/subclonal (see

STAR Methods). We found that our purity results derived by liquidCNA were consistent with the estimates

from ichorCNA. As ichorCNA offered a higher accuracy in cases with low purity and read count, we believe

this method could be used to ‘save’ these cases (e.g. S108 in Figure S6) for downstream analysis. On the

other hand, we found that liquidCNA substantially outperformed ichorCNA in estimating the subclonal ra-

tio since our tool performs a specialized joint analysis of all patient samples (Figure S8).
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Subclonal analysis of patient samples

We used liquidCNA to analyze emergent subclones in longitudinal cfDNA samples from patients with non-

small cell lung cancer (NSCLC) undergoing therapy, as previously reported by Chen et al. (2019). The liquid

biopsies were collected as part of the FIGARO study (GO27912, NCT01493843), a randomized phase II trial

designed to evaluate the efficacy of pictilisib, a selective inhibitor of phosphatidylinositol 3-kinase (Soria

et al., 2017). Pictilisib or placebo was given in combination with standard chemotherapy regimen which

was determined based on the subtype of NSCLC. Blood samples were taken at baseline (day 1 of the first

treatment cycle) and at 6-week intervals up to the end of treatment (EOT). DNA was isolated from the

plasma of liquid biopsies and sequenced using lpWGS to an average depth of 0.5x, as described in detail

in the study by Chen et al., 2019.

Chen et al. (2019) identified several SCNAs in EOT samples that were absent at baseline and described

several genes within these regions that might be associated with resistance. We sought to apply liquidCNA

to these cases to corroborate their observations and further to quantify the size of emergent subclones over

time in these patients.

We obtained the lpWGS data (fastq files) and performed CN profiling (see STARMethods) on patients with

cfDNA samples from R3 time points (n = 32). We identified three patients (1306, 2760, and 3209) whose

sample series fulfilled the following criteria: (i) had a cfDNA sample taken on the first day of therapy with

purity above ~20% and (ii) had at least two nonbaseline samples with purity above ~20%. Patients 1306

and 3209 were in the experimental arm of the study, while patient 2760 was assigned to the control arm;

all three patients have progressed during the course of the trial.

We ran liquidCNA on data from these selected patients, discarding samples with purity below 10% (Figure S9),

and examined the genomic segments that liquidCNA identified as subclonal relative to baseline samples (Fig-

ure 5).We also examinedgenes from theCatalog of SomaticMutations inCancer (COSMIC, Sondka et al. (2018))

Cancer Gene Census that were located in subclonal regions (see STAR Methods) and compared with the list of

genes identified by Chen et al as carrying therapy-specific SCNAs (Figure 5 and S8 of Chen et al., 2019).

We observed a good overlap with the gene set reported by Chen et al., with 15 of 16 and 24 of 35 therapy-

associated genes recovered by liquidCNA in patients 1306 and 3209, respectively (Figures S10A and S10B).

The direction of subclonality (loss or gain) aligned with the original study’s findings for all 39 subclonal

genes. In patient 1306, only gene MLL3 (on chromosome 7) was not identified by liquidCNA, which we

believe was a highly focal loss missed owing to the large bin size (500 kb) used in CN calls. In patient

3209, we found three gene clusters (8/35 genes, located on 1p, 5p and 5q) that were classified as clonal

rather than subclonal by liquidCNA. We found that SCNAs in these regions were reported in all samples

(including baseline) in the original study as well; although DCN from baseline was too small for liquidCNA

to declare these segments subclonal, the direction (sign) of DCN was in agreement with the original study.

Three of 35 genes fell into genomic regions that were filtered out during the quality control step, owing to

small size (PDE4DIP on chromosome 1) or inconsistent read mapping (IRF4 and TRIM27 on chromosome 6).

We also identified 7 and 32 ‘‘novel’’ subclonal genes not highlighted by Chen et al., 2019 in patients 1306

and 3209, respectively (in green in Figure 5 and S10A-B). The majority of these were in regions near previ-

ously identified genes, confirming that the discrepancy between the two studies is due to different SCNA

bin sizes. However, we also found a subclonal loss in patient 1306 (TP53 on chromosome 17) and multiple

losses in patient 3209 (chromosome 8 and 13), which had nondiploid CN in the baseline samples; therefore,

these did not pass the filtering criteria of the original study, but could be identified with liquidCNA.

Overall, we found that liquidCNA could reliably identify subclone-associated SCNAs but provided conser-

vative datasets of therapy-associated genes. We believe its sensitivity can be improved by appropriate

choice of bin size in case the data quality allows and detecting all candidate genes is of highest importance.

We also note that subclone-associated SCNAs might be ‘‘passengers’’ in the subclone and are not neces-

sarily enriched for genes with functional impact on therapeutic response, and therefore, subclone-associ-

ated driver genes should be regarded only as candidates.

Finally, we quantified the size of the emerging subclone and found that it accounted for 10 to 30% of the tu-

mor-derived DNA in the cfDNA in the three patients evaluated (Figure 5). Patient 2760 showed evidence of a
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Figure 5. Estimation in cfDNA samples from patient data

Subclone-specific copy number changes and subclonal ratio in lung cancer patients 1306 (A), 3209 (B), and 2760 (C) from

the study by Chen et al., 2019. Left: purity-corrected SCNA profiles. Yellow bars show the CN of each segment in the

baseline sample, and red bars indicate subclonal deviations from this value in nonbaseline samples. Regions of subclone-

specific CNAs are also indicated by darker colors. Shaded regions indicate the location of putatively therapy-associated

cancer genes identified in the original study with CN losses (in red) and CN gains (in blue) and newly identified in
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subclonal proportion consistently around 30%, which could be explained by samples from this patient taken at

later time points (24-36 weeks after the start of therapy). Patient 1306, on the other hand, showed a contracting

subclone that reduced in proportion from 20% presence at week 18 to <10% at the end of therapy. Samples

from patient 3209 obtained at 18 weeks and at the end of therapy contained less than 20% DNA derived from

subclonal tumor cells. However, this patient had only 3 samples passing quality control, which we showed can

lead to less accurate estimates (Figure S3). To explore accuracy in patient samples, we repeated subclonal

ratio estimation for patients 1306 and 2760 on only the last two time points and found the estimates were

consistent (Figure S10C), confirming that subclonal proportions for patient 3209 are robust. Overall, we could

track subclonal evolution and in case the total population size was known – which might be accessible from

additional measurements of the tumor-associated cfDNA pool – the tumor subclone fractions established

here could also be converted into growth rates to enable future predictions of the tumor dynamics.

DISCUSSION

We present liquidCNA, a computational algorithm to infer subclonal dynamics using low-coverage

sequencing measurements of aneuploidy in cfDNA samples. Our algorithm performs joint analysis of mul-

tiple longitudinal samples to identify sample purity, subclonal SCNAs, and the abundance of an emerging

subclone. LiquidCNA has been designed to work on depth-of-coverage CN information with low-pass

whole genome sequenced and liquid biopsies in mind, where matched normal baseline or single-nucleo-

tide polymorphisms required for most contemporary deconvolution algorithms are not available. Further-

more, liquidCNA utilizes joint analysis of samples from the same patient to distinguish SCNAs associated

with the emerging subclone and those showing unstable behavior and consequently is robust against un-

certain SCNA measurements.

We validate our method, both on synthetic SCNA datasets and in vitro and in silicomixtures of two ovarian

cancer cell lines.We successfully infer the proportion of the dominant subclone in all of the aforementioned

datasets, with good accuracy across a range of sample qualities defined by the noise level or sequenced

reads. We compare our results with ichorCNA, a state-of-the-art method for the analysis of low-coverage

cfDNA samples, and show that liquidCNA achieves similar accuracy in estimating tumor purity, while also

offering accurate reconstruction of subclonal structure, not available from other methods. In patients with

lung cancer, liquidCNA applied to lpWGS data derived from longitudinal cfDNA shows the emergence of

subclones during therapy and identifies genomic regions associated with the emergent tumor cells.

We demonstrate that liquidCNA can identify and quantify emerging subclones from cfDNA samples,

therefore enabling tracking of tumor subclone evolution through the course of therapy. Deciphering the

evolutionary trajectory of cancers can aid prognostic and therapeutic decision-making and further our

understanding of therapy-induced drug resistance. Measuring the dynamics of tumor composition is

particularly crucial for prospective monitoring during an adaptive therapy regime aiming to control resis-

tant subclones (Gatenby et al., 2009; Enriquez-Navas et al., 2015; Zhang et al., 2017). Furthermore, the pro-

portion of cfDNA that is tumor-derived (what we term ’purity’) in itself is a promising biomarker for deter-

mining initial therapy response and prognosis (Fernandez-Garcia et al., 2019; Choudhury et al., 2018), as

well as for tracking tumor progression during and after therapy (Ng et al., 2017; Newman et al., 2014; Con-

teduca et al., 2020; Chen et al., 2019).

In summary, we provide a robust tool to derive quantitative information about dynamic changes in clonal

composition from SCNA measurements derived from low-pass whole-genome sequenced cfDNA samples.

LiquidCNA enables cost-efficient real-time noninvasive tracking of subclonal tumor evolution, which can pro-

vide new insights into the evolution of SCNAs and the dynamical emergence of therapy-associated resistance.

Limitations of study

We note that there are limitations in our method, which should be taken into account when designing ex-

periments to be analyzed using liquidCNA.

Figure 5. Continued

liquidCNA (in green, see also Figure S10). A bar of CN > 8 on chromosome 3 (indicated by asterisk) has been omitted

from (B) for better visualization. Right: estimated subclonal proportion of each sample with 95% confidence intervals.

Note that only samples with >10% purity were analyzed (see also Figure S9) and patient 2760 had no gene annotation

in the study by Chen et al., 2019.

ll
OPEN ACCESS

iScience 24, 102889, August 20, 2021 11

iScience
Article



Since our inference relies on heterogeneous CN profiles (>10% genome altered) and subclone-specific

SCNAs (at least 3-5 segments), we cannot analyze cancer (sub)types with very low chromosomal instability,

for example, microsatellite unstable tumors. Conversely, extremely high levels of ongoing instability might

bias our analysis owing to the lack of a stable subclone-associated SCNA profile. Therefore, liquidCNA is

not suitable for oligo-metastatic disease if spatially separatemetastases carry distinct karyotypes. Similarly,

liquidCNA might give biased results if longitudinal samples are taken very sparsely, when enough time

elapses for clonal sweeps and substantial karyotype changes (e.g. due to novel metastases) that our

assumption of a smooth evolutionary trajectory does not hold anymore. We also note that liquidCNA tracks

a single dominant subclone associated with the largest set of subclone-specific SCNAs, and consequently,

if there are multiple smaller subclones (with less or no associated SCNAs), these will be ignored by the al-

gorithm. Similarly, the emerging subclonal karyotype identified by liquidCNA does not necessarily repre-

sent an evolutionary advantage, and therefore, we urge caution in interpreting it.

The accuracy of our estimation reduces at low purity, as purity-corrected CN values, and consequently sub-

clonal ratio estimates are sensitive to inaccuracy in purity estimation. Furthermore, the accuracy of our esti-

mation decreases with sequencing depth (increased noise), leading to a higher probability of misestimated

purity values if a sample has less than 10 million sequencing reads. Therefore, we advise to (i) further curate

purity estimates when possible and (ii) discard samples below ~10% purity, or <20% for samples sequenced

only to 5 million reads or lower. While this limits the number of samples, tumor fractions above this regime

were observed in a substantial number of patients, especially in late-stage disease where liquidCNA can

offer the largest benefit (Chen et al., 2019; Adalsteinsson et al., 2017; Conteduca et al., 2020; Bettegowda

et al., 2014; Hovelson et al., 2017; Phallen et al., 2017). In addition, recent studies have shown that the

unique fragment length of tumor-derived cfDNA can be utilized to enrich tumor purity either experimen-

tally or bioinformatically (Mouliere et al., 2011, 2018; Underhill et al., 2016).

Taken together, we believe liquidCNA is most suitable for applications where (blood) samples are taken

frequently – e.g. during prognostic monitoring – and sequenced to a depth to produce at least 10-15

million reads per sample. Such periodic samples ensure that between-time-point instability is minimal

and that an appropriate number of samples are available even following strict quality and purity control,

while obtaining >10 million reads of multiple samples is still possible at minimal cost.

We also note that although liquidCNA could potentially be used to track the emergence of subclonal pop-

ulation(s) under therapy, our in vitro validation did not test liquidCNA in such a setting. For this potential

application to be successful, we require that the emerging populations are uniquely marked by a number of

SCNAs. In some cases, treatment response appears to be driven by ‘‘phenotypic plasticity’’ where cellular

behavior changes without underlying genetic change (Turati et al., 2021; Shaffer et al., 2017). This scenario

violates a key assumption of liquidCNA that the emerging population is dominated by a subclone of

distinct karyotype, and so we would expect the application of liquidCNA to fail. While liquidCNA could

provide useful insights in tumor/treatment scenarios where SCNAs are known to dominate evolution dur-

ing treatment, other scenarios should be handled with caution, and the limitations of liquidCNA in an evo-

lution-of-resistance setting will have to be evaluated in future studies.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Material avalability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B CN measurements

B Segment classification

B Purity estimation

B Identifying subclonal segments

B Subclonal ratio estimation

ll
OPEN ACCESS

12 iScience 24, 102889, August 20, 2021

iScience
Article



B Generating synthetic and in silico datasets

B Processing lpWGS samples

B Subclone-associated gene analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102889.

ACKNOWLEDGMENTS

We thank Ann-Marie Baker for reviewing the clarity of the text and Steve Gendreau and Craig Cummings

from Genentech, Inc. for providing access to patient cfDNA sequencing results and for their critical com-

ments on the presentation of the data.

This work was supported by the Wellcome Trust (grant 202778/Z/16/Z to T.A.G.) and Cancer Research UK

(grant A19771 to T.A.G. supporting E.L.; Advanced Clinician Scientist Fellowship C41405/A19694 to M.L.;

Clinical Research Training Fellowship to H.H.). M.L. also received support from a Barts and The London

Charity Strategic Research Grant (467/2244). T.A.G. also received funding from the National Institutes of

Health, National Cancer Institute (grant U54 CA217376).

AUTHOR CONTRIBUTIONS

Conceptualization, E.L., W.H., M.L., and T.A.G.; Funding Acquisition, M.L. and T.A.G.; Methodology, E.L.,

M.M., and T.A.G.; Software, E.L.; Investigation, E.L., H.H., and M.M.; Visualization, E.L.; Resources, All au-

thors; Writing – Original Draft, E.L. and T.A.G.; Writing – Review & Editing, All authors.

DECLARATION OF INTERESTS

The authors declare no competing interest.

Received: April 20, 2021

Revised: June 10, 2021

Accepted: July 15, 2021

Published: August 20, 2021

REFERENCES
Adalsteinsson, V.A., Ha, G., Freeman, S.S.,
Choudhury, A.D., Stover, D.G., Parsons, H.A.,
Gydush, G., Reed, S.C., Rotem, D., Rhoades,
J., et al. (2017). Scalable whole-exome
sequencing of cell-free DNA reveals high
concordance with metastatic tumors. Nat.
Commun. 8, 1324. https://doi.org/10.1038/
s41467-017-00965-y.

Beroukhim, R., Mermel, C.H., Porter, D., Wei,
G., Raychaudhuri, S., Donovan, J., Barretina,
J., Boehm, J.S., Dobson, J., Urashima, M.,
et al. (2010). The landscape of somatic copy-
number alteration across human cancers.
Nature 463, 899–905. https://doi.org/10.
1038/nature08822.

Bettegowda, C., Sausen, M., Leary, R.J.,
Kinde, I., Wang, Y., Agrawal, N., Bartlett,
B.R., Wang, H., Luber, B., Alani, R.M., et al.
(2014). Detection of circulating tumor DNA in
early- and late-stage human malignancies.
Sci. Transl. Med. 6, 224ra24. https://doi.org/
10.1126/scitranslmed.3007094.

Cancer Genome Atlas Research Network (2011).
Integrated genomic analyses of ovarian
carcinoma. Nature 474, 609–615. https://doi.org/
10.1038/nature10166.

Chen, X., Chang, C.-W., Spoerke, J.M., Yoh, K.E.,
Kapoor, V., Baudo, C., Aimi, J., Yu, M., Liang-Chu,
M.M., Suttmann, R., et al. (2019). Low-pass whole-
genome sequencing of circulating cell-free DNA
demonstrates dynamic changes in genomic copy
number in a squamous lung cancer clinical
cohort. Clin. Cancer Res. 25, 2254–2263. https://
doi.org/10.1158/1078-0432.CCR-18-1593.

Chin, S.-F., Santonja, A., Grzelak, M., Ahn, S.,
Sammut, S.-J., Clifford, H., Rueda, O.M., Pugh,
M., Goldgraben, M.A., Bardwell, H.A., et al.
(2018). Shallow whole genome sequencing for
robust copy number profiling of formalin-fixed
paraffin-embedded breast cancers. Exp. Mol.
Pathol. 104, 161–169. https://doi.org/10.1016/j.
yexmp.2018.03.006.

Choudhury, A.D., Werner, L., Francini, E., Wei,
X.X., Ha, G., Freeman, S.S., Rhoades, J., Reed,
S.C., Gydush, G., Rotem, D., et al. (2018). Tumor
fraction in cell-free DNA as a biomarker in
prostate cancer. JCI Insight 3. https://doi.org/10.
1172/jci.insight.122109.

Conteduca, V., Wetterskog, D., Scarpi, E.,
Romanel, A., Gurioli, G., Jayaram, A., Lolli, C.,
Tandefelt, D.G., Schepisi, G., Casadei, C., et al.
(2020). Plasma tumour DNA as an early indicator
of treatment response in metastatic castration-

resistant prostate cancer. Br. J. Cancer 123,
982–987. https://doi.org/10.1038/s41416-020-
0969-5.

Diaz, L.A.J., Williams, R.T., Wu, J., Kinde, I., Hecht,
J.R., Berlin, J., Allen, B., Bozic, I., Reiter, J.G.,
Nowak, M.A., et al. (2012). The molecular
evolution of acquired resistance to targeted
EGFR blockade in colorectal cancers. Nature 486,
537–540. https://doi.org/10.1038/nature11219.

Douville, C., Cohen, J.D., Ptak, J., Popoli, M.,
Schaefer, J., Silliman, N., Dobbyn, L., Schoen,
R.E., Tie, J., Gibbs, P., et al. (2020). Assessing
aneuploidy with repetitive element sequencing.
Proc. Natl. Acad. Sci. U S A 117, 4858–4863.
https://doi.org/10.1073/pnas.1910041117.

Enriquez-Navas, P.M., Wojtkowiak, J.W., and
Gatenby, R.A. (2015). Application of evolutionary
principles to cancer therapy. Cancer Res. 75,
4675–4680. https://doi.org/10.1158/0008-5472.
CAN-15-1337.

Fernandez-Garcia, D., Hills, A., Page, K.,
Hastings, R.K., Toghill, B., Goddard, K.S., Ion, C.,
Ogle, O., Boydell, A.R., Gleason, K., et al. (2019).
Plasma cell-free DNA (cfDNA) as a predictive and
prognostic marker in patients with metastatic

ll
OPEN ACCESS

iScience 24, 102889, August 20, 2021 13

iScience
Article

https://doi.org/10.1016/j.isci.2021.102889
https://doi.org/10.1038/s41467-017-00965-y
https://doi.org/10.1038/s41467-017-00965-y
https://doi.org/10.1038/nature08822
https://doi.org/10.1038/nature08822
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1038/nature10166
https://doi.org/10.1038/nature10166
https://doi.org/10.1158/1078-0432.CCR-18-1593
https://doi.org/10.1158/1078-0432.CCR-18-1593
https://doi.org/10.1016/j.yexmp.2018.03.006
https://doi.org/10.1016/j.yexmp.2018.03.006
https://doi.org/10.1172/jci.insight.122109
https://doi.org/10.1172/jci.insight.122109
https://doi.org/10.1038/s41416-020-0969-5
https://doi.org/10.1038/s41416-020-0969-5
https://doi.org/10.1038/nature11219
https://doi.org/10.1073/pnas.1910041117
https://doi.org/10.1158/0008-5472.CAN-15-1337
https://doi.org/10.1158/0008-5472.CAN-15-1337


breast cancer. Breast Cancer Res. 21, 149. https://
doi.org/10.1186/s13058-019-1235-8.

Fischer, A., Vázquez-Garcı́a, I., Illingworth, C.J.R.,
and Mustonen, V. (2014). High-definition
reconstruction of clonal composition in cancer.
Cell Rep. 7, 1740–1752. https://doi.org/10.1016/j.
celrep.2014.04.055.

Gatenby, R.A., Silva, A.S., Gillies, R.J., and
Frieden, B.R. (2009). Adaptive therapy. Cancer
Res. 69, 4894–4903. https://doi.org/10.1158/
0008-5472.CAN-08-3658.

Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D.,
Prentice, L.M., Melnyk, N., McPherson, A.,
Bashashati, A., Laks, E., et al. (2014). TITAN:
inference of copy number architectures in clonal
cell populations from tumor whole-genome
sequence data. Genome Res. 24, 1881–1893.
https://doi.org/10.1101/gr.180281.114.

Hanahan, D., and Weinberg, R.A. (2011).
Hallmarks of cancer: the next generation. Cell
144, 646–674. https://doi.org/10.1016/j.cell.2011.
02.013.

Hieronymus, H., Murali, R., Tin, A., Yadav, K.,
Abida, W., Moller, H., Berney, D., Scher, H.,
Carver, B., Scardino, P., et al. (2018). Tumor copy
number alteration burden is a pan-cancer
prognostic factor associated with recurrence and
death. Elife 7. https://doi.org/10.7554/eLife.
37294.

Hoare, J., Hockings, H., Saxena, J., Silva, V.,
Maniati, E., Mirza, H., Huang, W., Wood, G.,
Nicolini, F., Graham, T., et al. (2020). Platinum
resistance induces diverse evolutionary
trajectories in high grade serous ovarian cancer.
bioRxiv. https://doi.org/10.1101/2020.07.23.
200378.

Hovelson, D.H., Liu, C.-J., Wang, Y., Kang, Q.,
Henderson, J., Gursky, A., Brockman, S.,
Ramnath, N., Krauss, J.C., Talpaz, M., et al. (2017).
Rapid, ultra low coverage copy number profiling
of cell-free DNA as a precision oncology
screening strategy. Oncotarget 8, 89848–89866.
https://doi.org/10.18632/oncotarget.21163.

Khan, K.H., Cunningham, D., Werner, B.,
Vlachogiannis, G., Spiteri, I., Heide, T., Mateos,
J.F., Vatsiou, A., Lampis, A., Damavandi, M.D.,
et al. (2018). Longitudinal liquid biopsy and
mathematical modeling of clonal evolution
forecast time to treatment failure in the
PROSPECT-C phase II colorectal cancer clinical
trial. Cancer Discov. 8, 1270–1285. https://doi.
org/10.1158/2159-8290.CD-17-0891.

Li, X., Galipeau, P.C., Paulson, T.G., Sanchez,
C.A., Arnaudo, J., Liu, K., Sather, C.L.,
Kostadinov, R.L., Odze, R.D., Kuhner, M.K., et al.
(2014). Temporal and spatial evolution of somatic
chromosomal alterations: a case-cohort study of
Barrett’s esophagus. Cancer Prev. Res. 7,
114–127. https://doi.org/10.1158/1940-6207.
CAPR-13-0289.

Mouliere, F., Chandrananda, D., Piskorz, A.M.,
Moore, E.K., Morris, J., Ahlborn, L.B., Mair, R.,
Goranova, T., Marass, F., Heider, K., et al. (2018).
Enhanced detection of circulating tumor DNA by
fragment size analysis. Sci. Transl. Med. 10.
https://doi.org/10.1126/scitranslmed.aat4921.

Mouliere, F., Robert, B., Arnau Peyrotte, E., Del
Rio, M., Ychou, M., Molina, F., Gongora, C., and

Thierry, A.R. (2011). High fragmentation
characterizes tumour-derived circulating DNA.
PLoS One 6, 1–10. https://doi.org/10.1371/
journal.pone.0023418.

Nakamura, Y., Taniguchi, H., Ikeda, M., Bando, H.,
Kato, K., Morizane, C., Esaki, T., Komatsu, Y.,
Kawamoto, Y., Takahashi, N., et al. (2020). Clinical
utility of circulating tumor DNA sequencing in
advanced gastrointestinal cancer: SCRUM-Japan
GI-SCREEN and GOZILA studies. Nat. Med. 26,
1859–1864. https://doi.org/10.1038/s41591-020-
1063-5.

Nelson, L., Tighe, A., Golder, A., Littler, S.,
Bakker, B., Moralli, D., Murtuza Baker, S.,
Donaldson, I.J., Spierings, D.C.J., Wardenaar, R.,
et al. (2020). A living biobank of ovarian cancer
ex vivo models reveals profound mitotic
heterogeneity. Nat. Commun. 11, 822. https://
doi.org/10.1038/s41467-020-14551-2.

Newman, A.M., Bratman, S.V., To, J., Wynne, J.F.,
Eclov, N.C.W., Modlin, L.A., Liu, C.L., Neal, J.W.,
Wakelee, H.A., Merritt, R.E., et al. (2014). An
ultrasensitive method for quantitating circulating
tumor DNA with broad patient coverage. Nat.
Med. 20, 548–554. https://doi.org/10.1038/nm.
3519.

Ng, S.B., Chua, C., Ng, M., Gan, A., Poon, P.S.,
Teo, M., Fu, C., Leow, W.Q., Lim, K.H., Chung, A.,
et al. (2017). Individualised multiplexed
circulating tumour DNA assays for monitoring of
tumour presence in patients after colorectal
cancer surgery. Sci. Rep. 7, 40737. https://doi.
org/10.1038/srep40737.

Oesper, L., Satas, G., and Raphael, B.J. (2014).
Quantifying tumor heterogeneity in whole-
genome and whole-exome sequencing data.
Bioinformatics 30, 3532–3540. https://doi.org/10.
1093/bioinformatics/btu651.

Parkinson, C.A., Gale, D., Piskorz, A.M., Biggs, H.,
Hodgkin, C., Addley, H., Freeman, S., Moyle, P.,
Sala, E., Sayal, K., et al. (2016). Exploratory
analysis of TP53 mutations in circulating tumour
DNA as biomarkers of treatment response for
patients with relapsed high-grade serous ovarian
carcinoma: a retrospective study. PLoS Med. 13,
e1002198. https://doi.org/10.1371/journal.pmed.
1002198.

Phallen, J., Sausen, M., Adleff, V., Leal, A.,
Hruban, C., White, J., Anagnostou, V., Fiksel, J.,
Cristiano, S., Papp, E., et al. (2017). Direct
detection of early-stage cancers using circulating
tumor DNA. Sci. Transl. Med. 9, eaan2415.
https://doi.org/10.1126/scitranslmed.aan2415.

Rothwell, D.G., Ayub, M., Cook, N.,
Thistlethwaite, F., Carter, L., Dean, E., Smith, N.,
Villa, S., Dransfield, J., Clipson, A., et al. (2019).
Utility of ctDNA to support patient selection for
early phase clinical trials: the target study. Nat.
Med. 25, 738–743. https://doi.org/10.1038/
s41591-019-0380-z.

Rubin, C.E., Haggitt, R.C., Burmer, G.C.,
Brentnall, T.A., Stevens, A.C., Levine, D.S., Dean,
P.J., Kimmey, M., Perera, D.R., and Rabinovitch,
P.S. (1992). DNA aneuploidy in colonic biopsies
predicts future development of dysplasia in
ulcerative colitis. Gastroenterology 103, 1611–
1620. https://doi.org/10.1016/0016-5085(92)
91185-7.

Sansregret, L., Vanhaesebroeck, B., and Swanton,
C. (2018). Determinants and clinical implications
of chromosomal instability in cancer. Nat. Rev.
Clin. Oncol. 15, 139–150. https://doi.org/10.1038/
nrclinonc.2017.198.

Scheinin, I., Sie, D., Bengtsson, H., van de
Wiel, M.A., Olshen, A.B., van Thuijl, H.F., van
Essen, H.F., Eijk, P.P., Rustenburg, F., Meijer,
G.A., et al. (2014). DNA copy number
analysis of fresh and formalin-fixed
specimens by shallow whole-genome
sequencing with identification and exclusion
of problematic regions in the genome
assembly. Genome Res. 24, 2022–2032.
https://doi.org/10.1101/gr.175141.114.

Shaffer, S.M., Dunagin, M.C., Torborg, S.R.,
Torre, E.A., Emert, B., Krepler, C., Beqiri, M.,
Sproesser, K., Brafford, P.A., Xiao,M., et al. (2017).
Rare cell variability and drug-induced
reprogramming as a mode of cancer drug
resistance. Nature 546, 431–435. https://doi.org/
10.1038/nature22794.

Siravegna, G., Marsoni, S., Siena, S., and
Bardelli, A. (2017). Integrating liquid biopsies
into the management of cancer. Nat. Rev.
Clin. Oncol. 14, 531–548. https://doi.org/10.
1038/nrclinonc.2017.14.

Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A.,
Dunham, I., and Forbes, S.A. (2018). The COSMIC
Cancer Gene Census: describing genetic
dysfunction across all human cancers. Nat. Rev.
Cancer 18, 696–705. https://doi.org/10.1038/
s41568-018-0060-1.

Soria, J.-C., Adjei, A.A., Bahleda, R., Besse, B.,
Ferte, C., Planchard, D., Zhou, J., Ware, J.,
Morrissey, K., Shankar, G., et al. (2017). A phase IB
dose-escalation study of the safety and
pharmacokinetics of pictilisib in combination with
either paclitaxel and carboplatin (with or without
bevacizumab) or pemetrexed and cisplatin (with
or without bevacizumab) in patients with
advanced non–small cell lung cancer. Eur. J.
Cancer 86, 186–196. https://doi.org/10.1016/j.
ejca.2017.08.027.

Taylor, F., Bradford, J., Woll, P.J., Teare, D., and
Cox, A. (2016). Unbiased detection of somatic
copy number aberrations in cfDNA of lung cancer
cases and high-risk controls with low coverage
whole genome sequencing. Adv. Exp. Med. Biol.
924, 29–32. https://doi.org/10.1007/978-3-319-
42044-8_6.

Turati, V.A., Guerra-Assunção, J., Potter, N.E.,
Gupta, R., Ecker, S., Daneviciute, A., Tarabichi,
M., Webster, A.P., Ding, C., May, G., et al. (2021).
Chemotherapy induces canalization of cell state
in childhood B-cell precursor acute lymphoblastic
leukemia. Nat. Cancer. https://doi.org/10.1038/
s43018-021-00219-3.

Underhill, H.R., Kitzman, J.O., Hellwig, S.,
Welker, N.C., Daza, R., Baker, D.N.,
Gligorich, K.M., Rostomily, R.C., Bronner,
M.P., and Shendure, J. (2016). Fragment
length of circulating tumor DNA. PLoS
Genet. 12, 1–24. https://doi.org/10.1371/
journal.pgen.1006162.

Van Roy, N., Van Der Linden, M., Menten, B.,
Dheedene, A., Vandeputte, C., Van Dorpe, J.,
Laureys, G., Renard, M., Sante, T., Lammens, T.,
et al. (2017). Shallow whole genome sequencing
on circulating cell-free DNA allows reliable

ll
OPEN ACCESS

14 iScience 24, 102889, August 20, 2021

iScience
Article

https://doi.org/10.1186/s13058-019-1235-8
https://doi.org/10.1186/s13058-019-1235-8
https://doi.org/10.1016/j.celrep.2014.04.055
https://doi.org/10.1016/j.celrep.2014.04.055
https://doi.org/10.1158/0008-5472.CAN-08-3658
https://doi.org/10.1158/0008-5472.CAN-08-3658
https://doi.org/10.1101/gr.180281.114
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.7554/eLife.37294
https://doi.org/10.7554/eLife.37294
https://doi.org/10.1101/2020.07.23.200378
https://doi.org/10.1101/2020.07.23.200378
https://doi.org/10.18632/oncotarget.21163
https://doi.org/10.1158/2159-8290.CD-17-0891
https://doi.org/10.1158/2159-8290.CD-17-0891
https://doi.org/10.1158/1940-6207.CAPR-13-0289
https://doi.org/10.1158/1940-6207.CAPR-13-0289
https://doi.org/10.1126/scitranslmed.aat4921
https://doi.org/10.1371/journal.pone.0023418
https://doi.org/10.1371/journal.pone.0023418
https://doi.org/10.1038/s41591-020-1063-5
https://doi.org/10.1038/s41591-020-1063-5
https://doi.org/10.1038/s41467-020-14551-2
https://doi.org/10.1038/s41467-020-14551-2
https://doi.org/10.1038/nm.3519
https://doi.org/10.1038/nm.3519
https://doi.org/10.1038/srep40737
https://doi.org/10.1038/srep40737
https://doi.org/10.1093/bioinformatics/btu651
https://doi.org/10.1093/bioinformatics/btu651
https://doi.org/10.1371/journal.pmed.1002198
https://doi.org/10.1371/journal.pmed.1002198
https://doi.org/10.1126/scitranslmed.aan2415
https://doi.org/10.1038/s41591-019-0380-z
https://doi.org/10.1038/s41591-019-0380-z
https://doi.org/10.1016/0016-5085(92)91185-7
https://doi.org/10.1016/0016-5085(92)91185-7
https://doi.org/10.1038/nrclinonc.2017.198
https://doi.org/10.1038/nrclinonc.2017.198
https://doi.org/10.1101/gr.175141.114
https://doi.org/10.1038/nature22794
https://doi.org/10.1038/nature22794
https://doi.org/10.1038/nrclinonc.2017.14
https://doi.org/10.1038/nrclinonc.2017.14
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1016/j.ejca.2017.08.027
https://doi.org/10.1016/j.ejca.2017.08.027
https://doi.org/10.1007/978-3-319-42044-8_6
https://doi.org/10.1007/978-3-319-42044-8_6
https://doi.org/10.1038/s43018-021-00219-3
https://doi.org/10.1038/s43018-021-00219-3
https://doi.org/10.1371/journal.pgen.1006162
https://doi.org/10.1371/journal.pgen.1006162


noninvasive copy-number profiling in
neuroblastoma patients. Clin. Cancer Res. 23,
6305–6314. https://doi.org/10.1158/1078-0432.
CCR-17-0675.

Vanderstichele, A., Busschaert, P., Smeets, D.,
Landolfo, C., Van Nieuwenhuysen, E., Leunen, K.,
Neven, P., Amant, F., Mahner, S., Braicu, E.I., et al.
(2017). Chromosomal instability in cell-free DNA
as a highly specific biomarker for detection of
ovarian cancer in women with adnexal masses.
Clin. Cancer Res. 23, 2223–2231. https://doi.org/
10.1158/1078-0432.CCR-16-1078.

Venkatraman, E.S., and Olshen, A.B. (2007). A
faster circular binary segmentation algorithm for
the analysis of array CGH data. Bioinformatics 23,
657–663. https://doi.org/10.1093/bioinformatics/
btl646.

Yu, Z., Li, A., and Wang, M. (2016).
CloneCNA: detecting subclonal somatic
copy number alterations in heterogeneous
tumor samples from whole-exome
sequencing data. BMC Bioinformatics 17,
310. https://doi.org/10.1186/s12859-016-
1174-7.

Zaccaria, S., and Raphael, B.J. (2020).
Accurate quantification of copy-number
aberrations and whole-genome duplications
in multi-sample tumor sequencing data. Nat.
Commun. 11, 4301. https://doi.org/10.1038/
s41467-020-17967-y.

Zhang, J., Cunningham, J.J., Brown, J.S., and
Gatenby, R.A. (2017). Integrating evolutionary
dynamics into treatment of metastatic
castrate-resistant prostate cancer. Nat.
Commun. 8, 1816. https://doi.org/10.1038/
s41467-017-01968-5.

ll
OPEN ACCESS

iScience 24, 102889, August 20, 2021 15

iScience
Article

https://doi.org/10.1158/1078-0432.CCR-17-0675
https://doi.org/10.1158/1078-0432.CCR-17-0675
https://doi.org/10.1158/1078-0432.CCR-16-1078
https://doi.org/10.1158/1078-0432.CCR-16-1078
https://doi.org/10.1093/bioinformatics/btl646
https://doi.org/10.1093/bioinformatics/btl646
https://doi.org/10.1186/s12859-016-1174-7
https://doi.org/10.1186/s12859-016-1174-7
https://doi.org/10.1038/s41467-020-17967-y
https://doi.org/10.1038/s41467-020-17967-y
https://doi.org/10.1038/s41467-017-01968-5
https://doi.org/10.1038/s41467-017-01968-5


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Trevor Graham (t.graham@qmul.ac.uk).

Material avalability

This study did not generate any new unique reagents.

Data and code availability

d Aligned sequencing data from HGSOC cell lines and in vitro mixtures (listed in Table S1) are available

from the European Nucleotide Archive (ENA: PRJEB42332). Raw and postsegmentation CN values for

these samples are available from https://github.com/elakatos/liquidCNA_data. Therapy-associated

gene CNs from patients 1306 and 3209 of the FIGARO trial are also available at https://github.com/

elakatos/liquidCNA_data.

d Estimation functions of liquidCNA implemented in R (version 4.0.3), an illustrative example in a Jupyter

notebook, and code generating and analyzing synthetic and in silico data are available from https://

github.com/elakatos/liquidCNA.

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

NEBNext Ultra II kit New England Biolabs Cat# E7645S

NovaSeq 6000 Illumina RRID: SCR_016387

Deposited data

Raw sequencing data of HGSOC cell line mixtures This study ENA: PRJEB42332

Copy number call data from in vitro and

in silico mixtures

This study https://github.com/elakatos/liquidCNA_data

Human reference genome hg19 Genome Reference Consortium http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/

Cancer driver genes COSMIC Cancer Gene Census,

Sondka et al. (2018)

https://cancer.sanger.ac.uk/census

Genomic location of genes Ensembl BioMart https://www.ensembl.org/biomart/martview

Experimental models: cell lines

Human: Sensitive HGSOC cell line Laboratory of Prof Fran Balkwill HGSOC cell line OVCAR4

Human: resistant HGSOC cell line Laboratory of Dr Michelle Lockley,

Hoare et al. (2020)

HGSOC cell line Ov4Cis

Software and algorithms

LiquidCNA This study https://github.com/elakatos/liquidCNA

Scripts for generating and analyzing

synthetic mixtures

This study https://github.com/elakatos/liquidCNA

QDNAseq Scheinin et al., 2014 https://bioconductor.org/packages/release/bioc/

html/QDNAseq.html

ichorCNA Adalsteinsson et al. (2017) https://github.com/broadinstitute/ichorCNA

Other

Sequencing data of cfDNA samples from

the FIGARO trial

Chen et al. (2019) Available from the original authors
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HGSOC cell line OVCAR4 was obtained from Prof Fran Balkwill (Barts Cancer Institute, UK) and grown in

Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin. A resistant/subclonal HGSOC cell line (Ov4Cis) was generated by culturing an aliquot of

the ancestral OVCAR4 cell line in increasing concentrations of cisplatin. For further details on cell culture

and the cell lines, refer to the study by Hoare et al., 2020.

We then extracted genomic DNA from both cell lines and from blood samples from healthy volunteers us-

ing QIAampDNAMicro Kit (Qiagen, Hilden, Germany). Genomic DNA from the three sources was mixed in

varying proportions (Table S1), measured as the mass of DNA inputted from each source, to a total of 20 ng

of DNA per sample, and subjected to sonication using the Covaris M220 system. Libraries were prepared

using the NEBNext Ultra II kit (New England Biolabs, Hitchin, United Kingdom) with 4 cycles of PCR ampli-

fication, indexed with unique dual-indexing primers, and sequenced on Illumina NovaSeq 6000 to a mean

depth of 1.3x.

METHOD DETAILS

CN measurements

We consider a tumor that consists of two distinct cell populations, ancestral (A) and subclonal (S) tumor

cells, and continuously sheds cfDNA into the blood circulation. A typical scenario would be ancestral cells

representing drug-sensitive tumor cells present before cancer therapy and subclonal cells denoting the

emerging subclone with resistance to therapy. The proportion of DNA originating from these two cell types

changes over time as we take measurements via blood samples (Figure 1). Since cfDNA found in blood can

also originate from normal (nontumor) cells of the body, the measured DNA is contributed by a mixture of

the two tumor cell populations (A and S) and normal cells (N). At each time point i, the proportion of

these three populations in the measured sample, si, depends on the proportion of all tumor-derived

DNA (the purity of the sample, pi) and the proportion of subclone-derived DNA from the tumor (the sub-

clonal ratio, ri):

Ni = 1� pi; Ai =pi,ð1� riÞ; Si =pi,ri : (Equation 2)

Our aim is to track the dynamics of the subclonal (putatively resistant) population by determining the sub-

clonal ratio for each time point, ri or the change in subclonal ratio between time points, ri/rk = rik. To this

end, we use the CN values as typically measured by lpWGS of the sequential cfDNA samples.

Let us consider distinct genomic regions with homogeneous CN state, segments. We assume that the CN

state of most segments stays constant over time in a particular population. Therefore, the jth segment is

characterized by a set of three time-independent absolute CN states, C(N)j,C(A)j,C(S)j, corresponding to

the local CN in normal, ancestral, and subclonal cells, respectively. The CN of segment j as measured in

the ith sample, Cj
i , is the combination of these three absolute CNs, weighted by the proportions of DNA

derived from the three cell populations at that time point (Ni, Ai, Si). We know that normal cells are at a

diploid state, and hence, C(N)j = 2 for all j. Therefore, using the purity and subclonal ratio defined in

Equation (2),

Cj
i = 2+pi

�ð1� riÞCðAÞj + riCðSÞj � 2
�
: (Equation 3)

Since all cells in a cell population share the absolute CN for a given segment, the values C(S)j and C(A)j are

always integers. Therefore, in theory, measured CNs from a given sample should be limited to a discrete set

of values defined by these integer states, making it possible to solve the set of equations formed by Equa-

tion (3) for pi and ri using linear algebra.

However, we have to take into account that all real sequencing measurements have a level of imprecision

introducing variation on top of this relationship. Using the term sij to represent the noise in the ith measure-

ment of segment j, Equation (3) becomes

Cj
i = 2+pi

�ð1� riÞCðAÞj + riCðSÞj � 2
�
+ sij: (Equation 4)
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with the magnitude and family of this noise depending on the specifics of the technology used for CNmea-

surement, especially the sequencing depth (Scheinin et al., 2014). This measurement noise – associated

with a continuous distribution – broadens the set of Cj
i values, rendering a linear algebra solution impos-

sible. Hence, our aim becomes to derive an inference of pi and ri despite this unknown noise, sij.

Segment classification

Each segment can fall into three categories depending on their respective CN states in the two types of

cells. (i) Clonal segments have the same absolute CN in ancestral and subclonal tumor cells, C(A)j =

C(S)j. A special case of clonal segments are segments of normal (diploid) CN, where C(A)j = C(S)j = 2. (ii)

Subclonal segments have different absolute CNs in the ancestral and subclonal tumor population,

C(A)jsC(S)j. These segments represent SCNAs that distinguish the subclone from its ancestor, even

though they are not necessarily associated with a selective/phenotypic difference (e.g. drug resistance)

directly. (iii)Unstable segments are neither clonal nor associated with the emergent subclone and therefore

are best described by a time-dependent tumor-wide CN value, zðTÞji , that does not depend on ri. These

segments can arise if a genomic region cannot be measured reliably or if ongoing genomic instability in-

troduces novel SCNAs during the time tracked by our samples. We can assume that the number of such

segments is small compared with the total number of measured segments.

Depending on whether segments are clonal, subclonal, or unstable, their measured CN across samples will

change according to the subclonal ratio and purity of each sample:

Cj
i = 2+pi

�
CðAÞj � 2

�
; if the segment is clonal; (Equation 5)

Cj
i = 2+pi

�
CðAÞj � 2 + ri

�
CðSÞj �CðAÞj��; if the segment is subclonal; (Equation 6)

Cj
i = 2 + pi

�
zðTÞji

��
(Equation 7)

For simplicity, we omit the term sij and its derivatives, but the reader should keep in mind that all equations

are subject to measurement noise. Figure 1 illustrates how the measured CN of segments depends on the

parameters ri and pi highlighted above. In the following sections, we use Equations (5) and (6) to estimate

the underlying parameters, pi and ri, via three steps (Figure 2).

Purity estimation

Purity estimation is carried out based on clonal (including normal/diploid) segments. In general, we expect

the majority of segments to fall into this category. Consequently, for the majority of segments, their

measured CN follows Equation (5). Since C(A)j can take only integer values, the distribution of segment

CNs is expected to have distinct peaks at regular intervals of pi.

Using a peak-finder algorithm on the smoothed distribution of measured CN values, we directly compare

the peaks to the values expected at a given purity, f2 � pi;2; 2 +pi ;2 + 2pi;.g, as shown in Figure 2B. The

error of the fit to a purity, pi, is evaluated as the summed squared distance between each peak and the

closest observed peak,

X
CðAÞ

min
��
2+pi

�
C
�
A
�� 2

��� peaks
�2�

(Equation 8)

As the detected peaks of the data depend on the smoothing kernel used on the distribution, we perform

this computation for a wide range of smoothing bandwidths (0.53�2.53 the default value) and derive the

purity estimate, bpi, as the value that minimizes the mean and/or median error across the range (Figure 2C).

Then, we use the derived bpi to renormalize the measured CN values and thus eliminate normal contami-

nation. We gain an estimate of the tumor-specific CN (CðTÞji ), a mixture of ancestral and subclonal CNs:

bCðTÞji =
1
bpi

,
�
Cj

i � 2
�
+ 2zCðAÞj + ri

�
CðSÞj �CðAÞj�: (Equation 9)

Note that, due to the noise inmeasurements, peaks from close absolute CNs can become indistinguishable

in low-purity samples. Therefore, we expect purity values below 5% to be indistinguishable (unless high-

sequencing depth is available) and also advise to discard samples with low purity (typically pi < 0.1) as erro-

neous purity estimations can bias downstream computation.
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Identifying subclonal segments

Next, we aim to identify the subset of segments with subclone-specific subclonal SCNAs that reflect the

changes in subclonal ratio over time. To easily assess the change in segment CNs, we designate a sample

as baseline and compute the change in segment CN,DCN, between each sample and this baseline sample.

Typically, the sample taken upon diagnosis or before the start of therapy (usually the first time point, s1) can

be used. We can assume that this sample has no or only negligible population of the emerging subclone

and therefore represents a pure ancestral population:

r1 z0/CðTÞj1zCðAÞj:
Hence, the change in CN of a subclonal segment compared with the baseline becomes

DCðTÞji = CðTÞji � CðTÞj1 = ri
�
CðSÞj �CðAÞj�: (Equation 10)

Furthermore, Equation (10) provides an informative quantity even if the baseline sample is not pure, as

DCðTÞji nonetheless describes the change in subclone-specific SCNAs.

In order to uncover which segments are truly subclonal, and how the subclonal ratio changes over measure-

ments, we need to identify a pervasive pattern across samples, and the subset of segments that consis-

tently follows it. If the samples were taken so that the subclonal population increases over time points,

this pattern would be a monotone increase or decrease for all segments with subclone-specific SCNAs.

While we cannot assume that the samples are taken in order of increasing subclonal proportions (e.g. a

change of treatment between sampling times might lead to fluctuating population size in a resistance-

associated subclone), we can aim to rearrange them to follow this rule.

Consequently, we rephrase our aim as deriving (i) a set of subclonal segments that follow a monotone

pattern across ordered samples and (ii) an ordering of samples that is correlated with by the maximum

number of (subclonal) segments. Formally, we are looking for a subset of segments, fj1; j2;.g, and a per-

mutation of samples (starting from the designated baseline sample), s1;si;.;sN, where for every segment.

j˛fj1; j2;.g

either

DCðTÞji + 1 � DCðTÞji>� ε; ci

or

DCðTÞji + 1 � DCðTÞji<ε; ci

(Equation 11)

holds for all i for a predefined accuracy level, ε. We use an ε>0 accuracy level to allow for samples with near-

equal subclonal ratio measured with uncertainty. We find that for typical lpWGS datasets, εz 0:02� 0:05

works well to account for the underlying measurement noise.

Figures 2D–2F illustrate the derivation of optimal sample order and subclonal segment set. We first sepa-

rate clonal segments: since these have relative CN values of 0, apart from some measurement noise, we

filter out any segment that has a standard deviation below a predefined threshold. We then evaluate Equa-

tion (11) over all remaining segments and over all orderings of the samples. As we expect 4-6 time points

per dataset, an exhaustive search of all possible permutations is feasible. Given a permutation, each

segment is classified according to whether it follows Equation (11) – these are candidate subclone-specific

and unstable segments, respectively (Figure 2E). The optimal sample order is defined as the permutation

that maximizes the number of subclonal segments (Figure 2F).

Subclonal ratio estimation

Finally, we use the set of segments identified as subclonal and compute the subclonal ratio of each time

point. We derive the (absolute) subclonal ratio, ri, for each sample using Equation (10). As both C(A)j

and C(S)j are assumed to be integers, and we know that CðAÞjsCðSÞj,

DCðTÞji ˛ f.; � 2ri; � ri; ri; 2ri;.g; c j˛fj1; j2;.g: (Equation 12)

To take into account that themeasuredDCNs compared with the baseline, D bCðTÞji, are influenced by noise,

we fit these values with a mixture of Gaussian distributions where the mean of the Gaussians follows Equa-

tion (12), as illustrated in Figure 2H. The subclonal ratio of a sample is derived as the constrained mean
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parameter, ri, of the Gaussian mixture optimizing the fit (Figure 2I). The 95% confidence interval of the in-

ferred subclonal ratio is computed based on the (shared) variance of the fitted constrained Gaussians.

The measurement noise propagated from segment CNs can lead to high spread in values, making esti-

mates less robust and rendering the resolution of low subclonal ratios (ri % 0.1) challenging, occasionally

leading to the Gaussian-fitting step to fail. Therefore, we also derive relative subclonal ratios, which allow

for a more general application not limited to good-quality samples. In particular, relative values are

compared with the maximal sample since its subclonal ratio is assumed to be the most robust against mea-

surement noise. We compute the relative deviation of each normalized subclonal tumor segment CN

DCj
iN =

DCðTÞji
DCðTÞjN

=
ri
�
CðSÞj � CðAÞj�

rN
�
CðSÞj � CðAÞj�=

ri
rN
; (Equation 13)

giving rise to a distribution of relative subclonal ratio estimates (Figure 2G). We derive a point estimate for

the relative ri of each sample as the median of this set,

br iN = median
�
DCj

iN

�
; j˛fj1; j2;.g: (Equation 14)

Absolute subclonal ratio estimates can then be derived using these relative estimates in a two-step estima-

tion process (as opposed to the direct estimation above): we derive rN based on Equation (12) and subse-

quently compute riN,rN to retrieve ri.

Generating synthetic and in silico datasets

We constructed synthetic datasets of 80 segments (of length varying between 120 and 800 bins) and 5 time

points (unless stated otherwise) as illustrated in Figure 3A. For each segment, we generated sensitive

segment CN states (C(S)j) by randomly sampling from f1; 2; 3; 4; 5g, with diploid and close-to-diploid states

occurring with higher frequency. Subclone-specific absolute CNs (CðSÞj ) were assigned by randomly sam-

pling fromCðAÞj + f� 2; � 1; 0; 1; 2g, with no change (giving rise to clonal segments) having a higher weight.

For each sample, si, we assigned purity and subclonal ratio randomly from the ranges 0.04 < pi < 0.45 and

0.05 < ri < 0.8, with the exception of the baseline samples, where r1 < 0.04. We then recreated the measure-

ment procedure of computing noise-ridden raw CN values in a given segment, j, by adding a normally

distributed noise. Themagnitude (standard deviation) of the noise was controlled by the noise level param-

eter, s (representing differences arising from, e.g. sequencing depth) and the CN of the segment (reflect-

ing higher variance in higher CN states):

rawCbin
i = 2+pi

�ð1� riÞCðAÞj + riCðSÞj � 2
�
+Normal

�
0; f

�
s;Cj

i

��
: (Equation 15)

The final CN value of each segments, bCj

i, was computed as the mean of all rawCbin
i contained in the

segment. In addition, we selected 2.5-15% of segments as unstable and resampled their tumor-specific

CN value to be independent of ri. Figures 3B and 3C show parameters of a synthetic sample and its CN

profile.

In silico mixtures were generated by bioinformatically mixing sequencing reads of DNA derived from the

ancestral/sensitive, subclonal/resistant tumor cell lines and healthy blood cells. Similarly to synthetic sam-

ples, for each in silico sample, we randomly assigned purity, 0.1 < pi < 0.45, and subclonal ratio, 0.05 < ri <

0.8. We then sampled reads (using samtools view -s) from aligned read (bam) files of ‘pure’ ancestral,

subclonal, and normal samples (B0, B1 and N0) in proportions to match pi(1�ri), piri and 1�pi, respectively.

We also varied the total number of reads per sample (as a proxy for sequencing depth and consequently

measurement noise) and generated 30-30 samples with 50, 20, 10, and 5 million total reads each.

Processing lpWGS samples

Fastq files derived from lpWGS samples (generated via sequencing cell line mixtures or obtained from the

study by Chen et al., 2019) were aligned to the human reference genome (version hg19, using bwa). We

then processed bam files using theQDNAseq R package (Scheinin et al., 2014) using DNAcopy for segmen-

tation (Venkatraman and Olshen, 2007). QDNAseq produced two CN values for each genomic bin: a raw

presegmentation value and a segmented value grouping bins of equal CN together. The CN of bins on

the predefined blacklist of QDNAseq and of those with <75% mappability was set to NA. Raw and
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segmented CN values for all cell line samples are available from https://github.com/elakatos/

liquidCNA_data.

Since QDNAseq returns normalized CN values (with normal/diploid state at value 1), we multiplied all

values by 2 before proceeding with the estimation algorithm and renormalized segment CN values to

be centered at 2 exactly. We then redefined segment boundaries using the ensemble of samples as regions

of constant CN in all samples. This way break points present in only a subset of samples (such as a subclone-

specific SCNA) gave rise to segments handled separately for all samples. Updated segments with length

below 6 mega-bases (120 bins of 50kb [cell line mixtures] or 12 bins of 500kb [patient cfDNA samples])

were excluded from the downstream analysis to filter out short segments sensitive to localized measure-

ment biases.

Finally, we curated each segment CN by discarding bins with the most extreme 2.5% of raw segment values

and recalculating the segment CN value as themean of normal distribution fitted to the remaining raw CNs.

We found that this curation had negligible effect for most segments but successfully improved assigned

segment CN values for more error-prone genomic regions.

We also ran ichorCNA (Adalsteinsson et al., 2017) on the aligned bam files of cell line mixture samples. We

used the snakemake workflow available from within ichorCNA, using bin sizes of 500 kb with corresponding

GC and mappability files, no matched normal panel, maximum allowed CN of 6, and default parameter

values otherwise. We defined ichorCNA-estimated estimates as the outputted tumor fraction value and

subclonal ratio as the best estimate out of the outputted subclone fraction or (1�subclone fraction), ac-

counting for that ichorCNA was agnostic to ancestral/subclonal identities.

Subclone-associated gene analysis

We extracted genomic coordinates of segments identified as subclonal from cfDNA samples from patients

1306 and 3209 of the FIGARO trial. We downloaded the latest release of the COSMIC Cancer Gene Census

(Sondka et al., 2018) and retrieved gene locations for each gene using Ensembl BioMart (https://www.

ensembl.org/biomart/martview). We defined genes as subclone-associated drivers that (i) fell in subclonal

segments and (ii) were listed with a somatic-mutation-based association to any type of lung cancer or un-

defined (‘other’) cancer. We also extracted a gene list for each patient from Figure 5 and S8 of the study by

Chen et al., 2019, together with the directionality each gene’s SCNA (loss or gain) identified by Chen et al.

We then evaluated the DCN values measured at locations of genes from the study by Chen et al., 2019 (ir-

respective of whether these were identified as subclonal) and expanded their list with COSMIC cancer

genes ‘newly’ identified in liquidCNA. The final gene tables were used to generate heatmaps (using

ggplot2) in Figure S10 and are available from https://github.com/elakatos/liquidCNA_data.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were carried out in R (version 4.0.3) and plots created using ggplot2 (version 3.3.3). Correlation

coefficients were computed using the stat_cor function from ggpubr (version 0.4.0).
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