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Tau is abundantly expressed in neurons, however previous reports and our

recent study showed tau also exist in oligodendrocytes. Also the expression

levels of tau are dramatical changed in hypomyelination model rat and in

demyelination region of stroke model mice. The review demonstrate

microtubule and its binding partner Tau might be necessary for

oligodendrocyte function based on previous reports.
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Microtubules and the binding partners essentially control cellular functions

during cell proliferation, differentiation, and migration in mammalian cells

(Brouhard and Rice, 2018). Microtubules are polymers of alpha-tubulin/beta-

tubulin subunits, and the stability and/or instability of microtubules

(microtubule dynamics) are controlled by several microtubule-associated protein

family proteins.

Among them, Tau is expressed mainly in neurons in the brain and has been used as

a neuronal (and axonal) marker. However, its expression in oligodendrocytes has also

been implicated (LoPresti et al., 1995; Bonetto et al., 2021). Recent studies

unambiguously showed that tau is expressed in olig2-positive oligodendrocytes of

mouse brain (Kubo et al., 2019) (Figure 1B) and in myelin basic protein (MBP)-

positive cells of adult rat brain (Kanaan and Grabinski, 2020) using well-validated

antibodies. These studies also confirmed that Tau does not present in NG2-positive

oligodendrocyte precursor cells (OPCs), astrocytes, and microglia. Based on

these findings, Tau is recognized to exists in mature oligodendrocytes as well

as in neurons of central nervous system (CNS) (Figure 1). However, the

physiological roles of Tau in oligodendrocytes is not well-understood, as the

normal myelination observed in Tau conventional knockout mice (Takei et al.,

2000) implicates that Tau is not indispensable for OPC migration, differentiation,

and myelination.
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In contrast, insights into the pathological roles of Tau in

oligodendrocytes have emerged from a number of studies

using human patient postmortem tissues and animal

models. Aggregation of the phosphorylated tau, that is

detected with the anti-AT8 antibody, is observed in

astrocytes as well as in oligodendrocytes in the brains of

patients with globular glial tauopathy (GGT) (Ahmed et al.,

2013). Also, rats harboring mutation in the Tubulin beta 4a

gene (Tubb4a), which exhibit hypo- and/or de-myelination,

also show elevated Tau expression in oligodendrocytes (in

culture) (Song et al., 1999). The Tubb4a mutation has been

shown to affect microtubule dynamics such as its elongation,

length, duration, and the frequency of them in

oligodendrocytes of dystonia or hypomyelination with

atrophy of the basal ganglia and cerebellum (H-ABC)

(Figure 2B (Krajka et al., 2022). Similarly, a Tubb4a

mutagenesis result in abnormal myelination and

microtubule accumulation in oligodendrocytes (not in axon

of neurons) (Duncan et al., 1992) (Figure 2A). Tau isoform

with three repeats of the microtubule-binding motif (3R-

Tau) has also been shown to be up-regulated or

accumulated in damaged area (demyelination lesion) of

stroke model mice (Villa González et al., 2020) (Figure 2C).

Similarly, a FTDP-17 mutation, delK280, in the tau gene

enhances the expression of 3R-Tau and also is associated

with tau inclusions in oligodendrocytes (van Swieten et al.,

2007).

These findings implicate that 1) microtubule-stability and

dynamics, and 2) abnormal expression, phosphorylation, and

aggregation of Tau are associated with pathological

FIGURE 1
(A) Schematic representation of the developmental stages
and stage-specific markers of the oligodendrocytes lineage. OPC,
pre-myelinating oligodendrocytes, or myelinating
oligodendrocytes (mature oligodendrocytes) are identified
by each marker as shown. Olig2 is expressed in all cells of the
lineage during development. O4, GPR17, BCAS1, and SOX10
(Ulloa-Navas et al., 2021) are pre-myelinating oligodendrocyte
markers. Platelet-derived growth factorα: PDGFRα; neuron-glial
antigen 2: NG2; Oligodendrocyte marker O4: O4; G-protein
coupled receptor 17: GPR17; breast carcinoma amplified sequence
1: BCAS1; myelin basic protein: MBP; proteolipid protein 1: PLP1;
kallikrein related peptidase: Klk6. (B) Representation of Tau and
olig2 distribution in oligodendrocytes of adult mice brain.
Cytoplasmic localization of Tau in mature oligodendrocytes of
corpus callosum are shown, respectively.

FIGURE 2
(A) A model of hypomyelination and/or demyelination
through Tubb4a and possibly Tau in Taubb4a mutant mice. (B) A
possibly molecular pathogenesis through Tubb4a mutation in
oligodendrocytes (Krajka et al., 2022). (C) Up-regulation or
accumulation of 3R-Tau in ischemic stroke model mice and a
possible model of pathogenesis of demyelination through Tau in
the mice. Representation of 3R and 4R Tau isoform structure (Villa
González et al., 2020).
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dysfunction of oligodendrocytes. Tau might be needed to

compensate the dysfunctions of microtubules in

oligodendrocytes, or excess tau possibly induces

hypomyelination and/or demyelination. Therefore, studying

Tau in various models of oligodendrocyte disorders would

benefit the understanding of the pathophysiology, which

might identify tau as a new therapeutic target for these

diseases, and also may provide insights into the

physiological roles of Tau in oligodendrocytes.
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