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Bovine Anaplasmosis: Will there
ever be an almighty e�ective
vaccine?

Elizabeth Salinas-Estrella, Itzel Amaro-Estrada,

Mayra E. Cobaxin-Cárdenas, Jesús F. Preciado de la Torre and

Sergio D. Rodríguez*

Unidad de Anaplasmosis, Centro Nacional de Investigaciones Disciplinarias en Salud Animal e

Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Jiutepec,

Morelos, Mexico

Bovine anaplasmosis is a tick-borne bacterial disease with a worldwide

distribution and the cause of severe economic losses in the livestock industry

in many countries, including México. In the present work, we first review the

elements of the immune response of the bovine, which allows ameliorating the

clinical signs while eliminating the majority of the blood forms and generating

an immunologic memory such that future confrontations with the pathogen

will not end in disease. On the other hand, many vaccine candidates have been

evaluated for the control of bovine anaplasmosis yet without no commercial

worldwide e�ective vaccine. Lastly, the diversity of the pathogen and how this

diversity has impaired the many e�orts to control the disease are reviewed.

KEYWORDS
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Introduction

Bovine anaplasmosis is a tick-borne rickettsial disease with worldwide distribution.

It causes severe economic losses in the livestock industry in many countries, including

México (1, 2). Anaplasma marginale, the causative agent, is a vector-borne, Gram-

negative bacterium that replicates in mature erythrocytes of cattle and other ruminants

(3). The disease is more notorious in cattle older than 2 years old and is rarely apparent

in younger animals (1). Clinical signs include anorexia, jaundice, abortion, weight loss,

decreased meat and milk production, and, potentially, death (2). Losses due to bovine

anaplasmosis reach billions of dollars worldwide (4).

Cattle affected with any clinical form of anaplasmosis may recover when antibiotics

are administered promptly. Yet, the pathogen may not be completely eliminated; thus,

some cattle may be lifelong carriers (5, 6), acting as reservoirs for susceptible or healthy

animals under inappropriate veterinary practices (7).

A. marginale has a small genome composed roughly of 1.2 mega pair bases, with two

gene superfamilies and a highly diverse genetic composition among geographical isolates

(8, 9). This genetic composition provides the capability to produce different variants of

major surface proteins (MSPs) that help the pathogen evade the immune response and

remain within the animal throughout its life span (10).
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Ticks are an important A. marginale reservoir and maintain

the pathogen in nature. While one-host female ticks (e.g.,

Rhipicephalus microplus) do not readily move from one animal

to another, their male counterparts do so when cattle are

held nearby, enabling transmission from an infected to a non-

infected host (11, 12). Furthermore, unfed larvae from infected

female R. microplus ticks can transmit A. marginale when they

feed for the first time on a susceptible host (13).

Vaccination is considered the best option to control

infectious diseases. For some diseases, there may be several

vaccine options for different species, ages, or sexes (14), but

bovine anaplasmosis is not such a case. The problem of bovine

anaplasmosis is that several factors allow the pathogen to

remain in the host for its entire lifetime (1). There is still no

practical solution to eradicate the disease because the tick vector

would also have to be eradicated. The absence of immunity

in a large proportion of the herd in the presence of ixodicide

failure can cause disasters in the form of massive outbreaks

(15). Conversely, epidemiological stability, which refers to a

minimum of carriers of both ticks and Anaplasma, may not

be practical when new susceptible animals or a new strain is

introduced into an infected herd (16).

Here, we first reviewed the protective immune response

of bovine, which allows controlling A. marginale infections.

Then, we reviewed some of the most relevant efforts to develop

vaccines, their drawbacks, and their potential for success.

Finally, we question the possibility of a vaccine that could protect

cattle worldwide, even in the presence of controlled infection.

Immunology of bovine anaplasmosis

Anaplasma marginale enters the vascular system through a

vector bite. Initial bodies contact bovine erythrocytes through

adhesins present on the outer surface of the bacteria (17) and

their (still uncharacterized) cognate receptors on the bovine

erythrocyte. This inclusion body releases the initial bodies,

which infect other erythrocytes, multiply, and promote further

infection. Erythrocytes are not destroyed by penetration or

release of the initial bodies from the bacteria (3).

The most accepted model for the protective immune

response indicates that IgG2 is necessary for the clearance of

A. marginale through neutralization of outer membrane B-cell

epitopes. At the same time, CD4+ T-cell-mediated macrophage

activation is essential for opsonization andmicrobial killing (18).

Many studies showed that specific antibodies directed

to relevant A. marginale protein epitopes correlate with the

protection against two of the most important clinical indicators

of disease: acute rickettsemia and anemia (19). In this model of

immunity, antibodies alone are insufficient for protection, but

they are required for macrophage opsonophagocytosis (19).

CD4+ T cells expressing interferon γ (IFN-γ) are central

to this model of protective immunity against A. marginale

(Figure 1). IFN-γ enhances IgG2 production in cattle (20), and

bovine CD4+ T cells expressing IFN-γ have been shown to

induce IgG2 secretion in B cells. Similarly, IFN-γ activates

macrophages to enhance Fc receptor expression, phagocytosis,

phagolysosomal fusion, and the production of rickettsiacidal

nitric oxide (21). This model provides the basis for specific

cell-mediated immunity against a pathogen limited strictly to

intraerythrocytic parasitism, which thus cannot be directly

targeted by major histocompatibility complex (MHC) class I-

restricted cytotoxic lymphocytes.

Immunization with Anaplasma outer membrane fractions

that have been cross-linked and consist of native proteins

induced a protective immune response dependent on Th1

lymphocytes (22, 23). This response is represented by the high

production of IgG2, IFN-γ, and IL-2 (21, 24). Unlike IgG1, IgG2

is an opsonizing immunoglobulin; once it binds with its epitope,

the immunoglobulin Fc region activates local macrophages and

neutrophils, which become more efficient in removing free

initial bodies. In turn, the secretion of IFN-γ by specific Th1

lymphocytes augments local phagocyte activity and eliminates

opsonized initial bodies [(21, 24); Figure 1].

This model of protective immune response wasmostly based

on immunization and challenge experiments carried out in

calves, mainly 6-month-olds. However, cattle younger than 12

months do not usually develop clinical disease, despite being

infected with A. marginale (1, 21). This model of protective

immunity was validated by inoculating heifers older than 1

year with an inactivated vaccine incorporated with Quil-A

saponin. This adjuvant is known to induce a Th1-type immune

response in humans (25). In this experiment, the vaccinated

animals showed a Th1-type immune response before and after

a challenge with a virulent Mexican strain. Most vaccinated

animals had higher IgG2 than IgG1 titers, a higher proportion of

CD4+ than CD8+ T cells, and produced IFN-γ. Moreover, few

animals that presented the inverse proportions of IgG and T cells

(IgG2< IgG1 and CD4+ < CD8+) suffered from acute clinical

signs of disease and required treatment to avoid death (26).

Although the mechanisms of CD4+ preference over CD8+

are still unknown, it is clear that the CD4+-lymphocyte immune

response is necessary for protection against natural infection or

under conditions of artificial immunization (26). Thus, recent

studies on potential native or recombinant antigens for vaccine

use include CD4+ T-cell epitopes. Here, we reviewed some of

the different efforts to produce an effective vaccine that will

stimulate the ideal type of immune response and solidly protect

cattle against anaplasmosis with the support of other practices.

Antigenic diversity vs. antigenic
variability

Early studies hypothesized great diversity among A.

marginale strains from different geographical locations.
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FIGURE 1

Graphic representation of the “desired” Th1-type immune response in animals protected against bovine anaplasmosis. Initial bodies released

from the bovine erythrocyte encounter antigen-presenting cells (macrophages and/or dendritic cells), which engulf, process, and present

epitopes to both B and T cells. CD4+ T cells are activated when they encounter the appropriate epitopes in the context of class II major

histocompatibility receptors on antigen-presenting cells. These activated T cells secrete specific lymphokines, including IFNγ and IL-2. B cells

are activated and stimulated by CD4+ T-cell cytokines and become IgG2-producing plasma cells. The large quantities of IgG2 can neutralize

initial bodies, rendering them incapable of infecting normal erythrocytes. At the same time, activated macrophages destroy opsonized bacteria

faster in the presence of IFNγ, leading to recovery from the clinical syndrome.

Molecular analyses confirmed this diversity (27); for example,

the Msp1a gene, encoding for a major surface protein (Msp),

includes up to 11 highly similar tandem repeat sequences

(28). To date, there are over 700 accession numbers (NCBI)

for complete or partial amino acid sequences for this protein

alone (29–32). By analyzing isolates from different regions

and even among organisms isolated in the same location or

same animal, it has been shown that, while some proteins are

conserved, others are not (33). Furthermore, proteins encoded

by multigene families are even more diverse than proteins

encoded by a single gene. Msp1b, for instance, is encoded in

at least two complete and three partial genes that recombine

to produce variants of the same protein (28, 34). Other major

surface proteins like Msp4 or Msp5 are coded in single genes

and are highly conserved. Unfortunately, these proteins are not

good vaccine candidates; Msp4 immunization does not always

produce specific antibodies (35), whereas Msp5 induces large

amounts of antibodies that are not protective (36, 37).

Conversely, Msp2 and Msp3 proteins are each encoded in

multigene families composed of a main gene and a variable

number of (5–7) partial genes. The main gene recombines with

each partial gene fully or in segments through a mechanism

known as segmental gene conversion. Variants emerge at

cycles of 6–8 weeks throughout the host’s lifetime (38, 39).

This information indicates that none of these proteins are

suitable vaccine candidates despite their vital role in erythrocyte
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infection. Other bacterial proteins, like type 4 secretion system

(TFSS) proteins, react with IgG2 in vivo; however, they fail

to induce protective immunity when inoculated in cattle (40).

Future proposals of proteins as vaccine candidates should

consider their molecular and antigenic diversities.

Types of vaccines

Live vaccines

Live heterologous A. marginale vaccines have been used

since the early 20th century. Theiler reported the presence of

Anaplasma centrale as a different organism in South Africa (41),

which was less virulent and could be used for the immunization

of naive cattle against the more virulent A. marginale (42).

A. centrale is still being produced as a live—very often as

trivalent (Babesia bovis, B. bigemina, and A. centrale)—vaccine

in South Africa, Australia, Argentina, Brazil, Uruguay, Israel

(43–47), among others. Thousands of doses of these vaccines

are distributed every day, enabling more affordable cattle

production. However, a few reports identified A. centrale as

the cause of outbreaks with fatalities (48) or failure to induce

immunity against A. marginale challenge (49, 50). Potgieter

(42), citing Theiler, stated that immunization with A. centrale

attenuates the clinical presentation of A. marginale infection but

does not prevent the infection from occurring. Thus, live agents

should be used with caution.

Using live virulent A. marginale as an immunogen involves

the sub-inoculation of blood from infected carriers to susceptible

animals paired with treatment—premunition—to avoid acute

or fatal anaplasmosis (49–52). In turn, using infected blood

from a carrier or a patent animal implies injecting an unknown

number of infected erythrocytes; thus, the monitoring period

varies from one inoculation to another (53). The results of these

types of trials show the unreliability of the method: in some

animals, 10 µl of infected blood can induce an infection with

a delayed incubation period, while other animals showed no

clinical signs (53).

Some virulent strains have been attenuated by passaging

organisms in “unnatural” hosts. A. marginale has been passaged

in splenectomized sheep and deer (53, 54). These organisms

were partially successful in several countries, including Mexico,

Perú, and Colombia (55–57). The efficacy of virulent, sheep-

attenuated, and deer-attenuated vaccines is different; the deer-

passaged strain failed to induce solid protection (56), and live

virulent and sheep-attenuated strains induced similar protection

(53). However, calves administered with virulent strains showed

less severity of the signs after an artificial or natural inoculation

challenge 6 months later than those previously administered

with the sheep-attenuated strain (54). The difference in the

presentation of clinical signs in the immunized animals has

been attributed to the lack of cross-protection between strains

or to the magnitude of the antibody response between the

immunizing and the challenge strains (57).

Anaplasma marginale strains of naturally low virulence have

also been tested as potential vaccines. One of the earliest efforts

(53) used the Florida strain. Further efforts using local strains

have been reported in Australia, Mexico, Brazil, to mention a

few (58–61). All these efforts have one thing in common: fresh

or frozen infected erythrocytes were inoculated to induce a mild

clinical syndrome (premunition). As occurs when using infected

blood, there is always the risk of transferring other blood-borne

pathogens, including Babesia, Ehrlichia, or virus. For example,

in Australia, the bovine leucosis virus (BLV) was transmitted in

BLV-free cattle with dire consequences (62).

One of the expected advances in bovine anaplasmosis is the

in vitro cultivation of the pathogen. This has been explored

for a long time in mammalian systems without success. Early

reports claimed that the pathogen could be grown in several

conditions, including rabbit bone marrow tissue cultures (63),

bovine erythrocytes (64, 65), bovine erythrocytes co-cultured

with endothelial cells (66), and endothelial cells (67). Most of

these efforts have not been replicated by others or even the

same authors.

More recently, A. marginale has been cultured in several

tick cell lines (68, 69). Some of these reports showed that major

surface proteins expressed in erythrocytic stages in A. marginale

and A. centrale are also expressed when cultured in vitro in tick

cell lines (70–72). Immunization of cattle with in vitro-cultured

A. marginale did induce an antibody immune response but not

to the expected protection level (68, 71). The protection level

was, at best, comparable to immunization with crude antigens

derived from initial bodies against a homologous challenge (72).

However, tick cell lines are still a tool to isolateA.marginale from

field outbreaks or even carriers, providing material for further

characterization (73, 74).

Inactivated vaccines

Facing the impossibility of using A. centrale, early vaccine

efforts used lyophilized blood with high numbers of infected

erythrocytes that was reconstituted with an oil adjuvant

and inoculated into susceptible hosts (53). Earlier inactivated

vaccines were unpractical due to the high content of erythrocyte

stroma that was probably related to cases of neonatal

isoerythrolysis in calves born to vaccinated dams (4).

Inactivated preparations of purified initial bodies from

bovine erythrocytes have also been used. A study immunized

adult cattle with the preparation of initial bodies solubilized

with detergent and incorporated with Quil-A saponin. After

immunization, the animals were challenge-inoculated with 1

× 109 infected erythrocytes of a heterologous strain, but the

vaccine was not effective (75). Similar observations were also

reported with other inactivated vaccines (76, 77). In an effort
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to cover a wider antigenic spectrum, a Mexican vaccine essay

used three strains that shared major surface proteins Msp1a

and Msp4; only the animals (yearlings) challenged with the

combination that included the homologous strain resisted the

challenge, while all other groups had to receive chemotherapy to

prevent death under stall conditions (78). By contrast, a similar

preparation [in adjuvant and antigen composition and applied

by the same route as in the study mentioned in Rodríguez

et al. (78)] was used to immunize yearlings under the same

regime as the previous experiment under ranch conditions; the

immunized animals produced specific antibodies (as determined

by iELISA) against all three strains and were protected against

naturally tick-transmitted anaplasmosis a year after a two-

dose vaccine application (79). In both of these studies, high

antibody titers were observed, regardless of the vaccination

settings. Although the results of these two experiments seem

contradictory, one major difference was the challenge dose and

settings: the first essay used 108 freshly reactivated infected

erythrocytes as inoculum under stall conditions, whereas in the

second experiment, animals acquired the infection gradually as

they were infested by ticks in the ranch where the experiment

was carried out.

University Products LLC (Louisiana, USA) currently

offers the only inactivated commercial vaccine against bovine

anaplasmosis (https://www.prnewswire.com/news/university-

products-llc/). The producer claims that, while the vaccine does

not prevent infection with virulent A. marginale, it induces

enough immunity to protect cattle against the clinical syndrome.

This vaccine has been used in thousands of animals for over two

decades since its development. The methodology for extracting

the initial bodies is referred to in the study mentioned in

Orozco-Vega et al. (80), McCorkle et al. (81).

New-generation vaccines

DNA and recombinant proteins

The search for immunodominant and subdominant proteins

in the published A. marginale genomes has yielded lists

of potential vaccine candidates, including outer membrane

proteins (OMPs), major surface proteins (MSPs), and several

type 4 secretion system (TFSS) proteins (82). Early reports

explored Msp1a, Msp1b, Msp2, Msp3, Msp4, and Msp5 (83)

recombinant proteins for the immunization of calves. Table 1

shows a list of MSPs and other membrane proteins that

have been studied as potential candidates for immunization

in the form of DNA, plasmids, recombinant proteins, or even

synthetic peptides.

One of the first attempts to produce a recombinant

DNA vaccine included the msp1a gene coupled to promoters

of different origins into a vaccinia virus vector (84). After

inoculating it into mice, this immunogen induced limited

production of specific antibodies in experimental subjects.

Another DNA vaccine was constructed by fusing a sequence

encoding B- and T-cell antigens from the A. marginale msp1a

gene with a BVP22 domain and an invariant-chain MHC

class II-targeting motif (fetal liver tyrosine kinase) capable of

enhancing dendritic cell antigen uptake and presentation (85).

This vaccine was inoculated in 6-month-old calves; it induced

proliferative responses and expansion of gamma interferon-

positive CD4+ T cells and immunoglobulin G responses against

the linked B-cell epitope. However, no challenge with the live

agent was reported.

A similar experiment used msp1a, msp1b, and msp5 in the

form of recombinant plasmids pET102-msp1α, pET101-msp1β,

and pRSET-msp5. Inoculating a mixture of these plasmids

primarily induced a Th2-type immune response in mice, and

inoculating pET102-msp1α only induced an immunoglobulin

response slightly higher than that of negative controls (86).

Using recombinant proteins is the next best choice. A

mixture of rMSP1a, rMSP1b, rMSP4, and rMSP5 incorporated

into ISCOM and ISCOMATRIX adjuvants induced the

production of IgG1 and IgG2 in mice (86). A similar complex of

the same recombinant MSPs stimulated the production of IgG,

IgG1, and IgG2 when inoculated in mice (87, 93). Recombinant

VirB2, VirB4-1, VirB4-2, VirB6-1, VirB7, VirB8-2, VirB9-1,

VirB9-2, VirB10, VirB11, and VirD4 of the TFSS proteins were

linked to major histocompatibility complex class II DRB3

antigens and were shown to induce IgG and stimulate CD4+

T cells from A. marginale membrane-immunized cattle. In

these experiments, not all immunized animals responded to all

TFSS proteins, yet most responded to recombinant VirB9-1,

VirB9-2, and VirB10 both in antibody production and Th cell

lines (96, 97). Inoculation of mice with recombinant VirB9-1

and VirB10 expressed in Pichia pastoris formulated with the

self-adjuvanting silica vesicles, SV-100, and 200 µg of VirB9-1

and VirB10 induced higher antibody responses than a similar

Quil-A saponin formulation (98). This same preparation

induced a strong T-cell reaction in cells from calves previously

immunized with A. marginale outer membranes (88).

Many studies used various options for immunizing mice,

rabbits, or calves, from vector DNA vaccines to recombinant

proteins with different adjuvants (Table 1). These studies

include MSPs, TFSS proteins, outer membrane proteins, and

other subdominant proteins, exemplifying many attempts

for an immunoprophylactic solution to bovine anaplasmosis.

Recombinant proteins have been tested in mice or calves for

the type of immune response (Th1 or 2) (89, 110). In one

case, steers immunized with a mixture of VirB9.1, VirB9.2,

VirB10, VirB11, and EfTu produced the desired Th1-type

immune response, but this response did not correlate with

protection (40).

In addition to the “usual suspects,” other subdominant

proteins with putative functions (at least in A. marginale)

have been expressed in bacterial systems and used for

immunization. Inoculation of AM854 (OmpA equivalent) and
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TABLE 1 A summary of some of the many vaccine candidates, animal models, the stage of the study and adjuvants used for immunization against

bovine anaplasmosis.

Molecule/gene Putative function - Feature Localization Stage of study Adjuvant References

msp-1α Adhesin to red blood cells &

tick epithelial cells

R-DNA MSP Immunization of mice and/or

bovines

DNA (83–85)

rMSP1a, rMSP1b,

rMSP4,

and rMSP5

Adhesion, molecular marker R-proteins MSP Immunization of mice and/or

bovines

ISCOM/and

ISCOMATRIX

(86, 87)

Msp1a Adhesin to RBC & Tick

epithelial cells

R-proteins MSP Immunization of mice and/or

bovines with nanotubes

Quil-A/SV-100 silica

vesicles; Carbon

nanotubes/Emulsigen
R©

(88, 89)

Ear implant & SC inoculation in

yearlings

Quil A and

Montanide/ISA201

(90)

Msp1b Adhesin to RBC & Tick

epithelial cells

R-proteins MSP Characterization/immunization

of bovines

Saponin (26)

msp1β DNA-plasmid Dextran and Quil-A/

Montanide ISA 61 VG

(91)

Msp2 &/or Msp3 Immune response

evasion/antigenic variants

R-proteins MSP Characterization/immunization

of mice and/or bovines

Saponin (24)

Msp4 Molecular marker/Unknown

function

R-proteins MSP Characterization/immunization

of rabbits and bovines

ISCOM/ DNA (87, 92, 93)

Msp5 Immune response evasion Plasmid-

Vectored/recombinant

Prime-booster-

vaccine

MSP Characterization/immunization

of rabbits and bovines

DNA vaccine (94)

msp5 MSP Characterization/immunization

of mice

Titermax adjuvant (95)

MSP2, MSP3,

VirB9, &VirB10;

OMP4, OMP9,

Ef-Tu, Ana29,

OMA87.

Dominant and subdominant

antigens

R-proteins MSP’s, T4SS and

other membrane

proteins

Characterization/immune

response

Saponin (94)

rVirB9.1, rVirB9.2,

rVirB10, rVirB11,

and rEf-Tu

Dominant and subdominant

antigens

R-proteins T4SS Characterization/immune

response

Saponin (40)

VirB2, VirB4-1,

VirB4-2, VirB6-1,

VirB7, VirB8-2,

VirB9-1, VirB9-2,

VirB10, VirB11, and

VirD4

Dominant and subdominant

antigens

R-proteins T4SS/Synthetic

overlapping

peptides &

recombinant

proteins

Characterization/immune

response

TiterMax Gold; silica

vesicles, SV-100;

Quil-A

(88, 96–98)

OmpA Adhesin/invasin R-proteins Outer membrane

protein

Characterization/Immune

response

– (23, 99, 100)

Subdominant proteins

OMPs Am854 and

Am779

Unknown function Genomic study OMP’s Conservation of candidate

proteins

– (101)

AM854, AM936 Mediate host cell invasion R-proteins OMP’S Characterization/immune

response

Saponin (102)

(Continued)
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TABLE 1 (Continued)

Molecule/gene Putative function - Feature Localization Stage of study Adjuvant References

AM779 Unknown function R-proteins OMP’s Characterization/immune

response

Saponin (103)

AM1108, AM127,

and AM216

Unknown

function/recombinant OMP’s

R-proteins OMP’s Characterization/immune

response

– (104)

Ana-29 Unknown function

/recombinant OMP’s

R-proteins OMP’s Characterization/immune

response

Quil-a; Quil A,

Montanide ISA 50V

and DEAE dextran mix

(105)

Live, genetically modified organism

A. marginale St. Maries- green-fluorescent

protein expressing mutant

In vitro cultured Live genetically

modified organism

Characterization/immune

response

Live agent (106, 107)

A. marginale Virginia-omp10:himar1

transposon mutant

In vitro cultured Live genetically

modified organism

Characterization/replication in

bovines

Live agent (108, 109)

List of some of the most important efforts to produce vaccines based on new approaches including DNA vaccines, recombinant antigens, synthetic peptides etc.

AM936 (Asp14 equivalent) incorporated with saponin induced

both antigen-specific IgG1 and IgG2 in steers. Vaccinated

animals developed higher levels of rickettsemia and greater

packed cell volume (PCV) losses than controls immunized

with A. marginale membrane fragments or negative controls

when challenged with 10 Anaplasma–Dermacentor andersoni-

infected ticks (102). In this study, E. coli-expressed recombinant

antigens caused more severe bacteremia and clinical syndrome

after a challenge. By contrast, the animals inoculated with

membrane fractions, which included other proteins in addition

to the native proteins of interest, did develop the desired Th-1

immune response.

Finally, a proof-of-concept study used an eight-branched

multiple antigenic peptide (R10K-MAP) derived from Msp1a

tandem repeat K;S as the antigen (90). The vaccination

scheme comprised three doses (a prime boost-like scheme).

The first dose consisted of a soluble inoculum applied

subcutaneously on one side of the neck. The second dose

was an ear implant that included (1) the antigen and one

of two adjuvants, DEAE-dextran or Quil A (saponin), or (2)

the same antigen with the two adjuvants. The third dose

was either a second implant of the antigen with the same

adjuvant or the antigen with the alternative adjuvant. After

immunization, the experimental animals were challenged with

a dose of 109 recently thawed erythrocytes infected with a

heterologous strain.

According to the clinical signs developed upon the challenge,

the authors suggested that all (three) animals receiving a single

adjuvant and one from each group receiving the two adjuvants

were not protected from the disease (90). On the one hand,

the results of this study are relatively consistent with the use

of several adjuvants to increase the antigenicity of the chosen

protein (105). On the other hand, this study only included

three animals per group, so it is difficult to predict the effects

on a larger group of animals. While initially promising, many

questions should be answered before such a vaccine can be

commercially released. For instance, what is the shortest time

between implant application and exposure to a natural challenge

in order to ensure adequate protection? Is this antigen the best

option for immunization? Can other antigens be included in the

implant? Finally, is the implant affordable?

Genetically modified organisms

Recombinant organisms are used for the

immunoprophylaxis of many diseases (111). Transformation

of A. marginale was only recently generated by transposon

mutagenesis of the A. marginale Virginia strain. This mutant

has extremely reduced expression of outer membrane protein

(Omp)9, Omp8, Omp7, and Omp6 genes (108); it can be

transmitted by ticks and shows reduced infectivity in both

intact and splenectomized cattle (109). The authors did not test

for protection against the Virginia wild type or a heterologous

challenge. Another vaccine candidate was generated from a St.

Maries strain with a transposon-mediated insertion of a 4.5-kb

construct containing antibiotic resistance genes for selection and

Turbo GFP as a marker. This strain, called AmStM-GFP, grows

more slowly than the parent strain in culture (106). It induces

immunity and similar clinical parameters for immunization

with A. centrale but a lower maximum percentage of infected

erythrocytes, a smaller drop in packed cell volume, and a longer

time to reach peak bacteremia than wild-type AmStM (107).

These new developments represent efforts to control the disease

by means of live genetically modified organisms. However,

their condition of live agents enables them to transmit other

organisms like mycoplasmas and even viruses present in the

culture systems.
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Perspectives and concluding
remarks

More than a century has passed since Theiler (41) described

both A. marginale and A. centrale as independent causal agents

of bovine anaplasmosis and used the latter as a live vaccine. Until

now, none of the options for vaccination against anaplasmosis

prevent infection. Furthermore, vaccination is only expected

to ameliorate the clinical signs should the animal get infected

with A. marginale (42). This fact may be advantageous since,

once an animal gets infected, it acquires a degree of permanent

(concomitant) immunity that lasts throughout the animal’s

life span.

Since the early use of the A. centrale live vaccine,

vaccination has not progressed beyond the use of an inactivated

vaccine (in the United States). However, new advances include

live attenuated A. marginale, recombinant proteins, synthetic

peptides, genetically modified organisms, and an array of

adjuvants and delivery systems like IL-2 and antigens linked to

MHC class II molecules.

Vaccine design entails many obstacles, including, but

is not restricted to, the induction of the desired immune

response, the search for the ideal antigen(s) in terms of their

contribution to virulence or metabolism, the expression

of the antigens of interest at the key moment of pathogen

development, and the feasibility of vaccine production,

application, and commercialization. Furthermore, saponin has

been the most widely used adjuvant for A. marginale vaccine

production, followed by water-in-oil (w/o) and water-in-oil-

in-water (w/o/w) emulsions, dextrans, and other commercially

available mixtures. However, the results of the two trials

mentioned previously showed that more than one adjuvant

may be needed to stimulate several types of immune cells

(90, 105).

In the case of recombinant or synthetic peptides or proteins,

one should consider whether the protein is immunogenic and

if the relevant epitopes are in the right conformation and

within reach of the antibodies. Native proteins embedded within

the membrane are immunogenic enough to induce protective

immunity, but their recombinant counterparts might not be

enough (22, 23). Furthermore, the fact that an antigen triggers

the right immune response (IgG2) does not imply that the

antigen is immunogenic enough to induce the same response

alone or even that it is immunoprotective (40, 102). For

example, subdominant proteins such as TFSS proteins appear

as suitable vaccine candidates based on their location and

function, but they did not induce immunoprotective immunity

when tested.

The bleak panorama seems to indicate that we will never

achieve cattle immunization against this formidable pathogen.

However, the development of inactivated and mRNA vaccines

against SARS-CoV-2 is a reminder of humanity’s ability to

confront health problems.

Live vaccines (A. centrale) have been an alternative for mass

vaccination in several countries; vaccination with live cultivable

GMOs may be a future alternative. New mutagenic techniques

should be considered while designing live vaccines.

Furthermore, while it may seem that we are far from

achieving the goal, the publication of more than 20 genome

sequences of A. marginale at the NCBI should aid in the

search for better vaccine candidates. Many outer membrane

proteins and membrane-associated proteins have been tested as

vaccine candidates and are yet to be developed into commercial

vaccines. Small genomes of A. marginale comprise ∼1,000

genes, with many of them (≥60%) still not described (8, 112).

This fact should bring hope that other proteins involved in

replication ormetabolic or signaling pathwaysmay be conserved

among strains or may perform vital functions for the parasite

survival, providing antigen candidates. New forms of antigen

delivery (microtubules, nanoparticles, MAP, etc.) (88, 89, 98,

110) should also be tested to provide promising antigens with

the best chance to induce the desired immune response. Finally,

the experience of live and whole-cell immunogens suggests

that a single antigen hardly induces the appropriate immune

response or protects against deliberate or natural challenges.

Thus, vaccination experiments with recombinant or synthetic

proteins/peptides should include many candidates to mimic the

immune response of the whole-cell inactivated or live vaccines.

Thus, we expect bovine anaplasmosis immunization to be

realized in the near future, contributing to safer and more

profitable cattle production.
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