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Abstract

Summary: OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual

populations with special focus on cancer progression. Fitness can be defined as an arbitrary func-

tion of genetic interactions between multiple genes or modules of genes, including epistasis, re-

strictions in the order of accumulation of mutations, and order effects. Mutation rates can differ

among genes, and can be affected by (anti)mutator genes. Also available are sampling from simu-

lations (including single-cell sampling), plotting the genealogical relationships of clones and gener-

ating and plotting fitness landscapes.

Availability and Implementation: Implemented in R and Cþþ, freely available from BioConductor

for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from:

http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html. GitHub repository at:

https://github.com/rdiaz02/OncoSimul

Contact: ramon.diaz@iib.uam.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Forward-time genetic simulations are used in population genetics

and cancer research to verify analytic results, to generate data to as-

sess the performance of statistical methods, and to examine complex

models that are mathematically intractable (Thornton, 2014).

Often, we will want to use a range of populations sizes, large gen-

omes and flexible mechanisms to specify the effects of mutations on

both fitness and mutation rates (to model mutator/antimutator

genes; Gerrish et al., 2007). If the effects of sampling are relevant

(e.g. Diaz-Uriarte, 2015), we will want to use different sampling

schemes and if understanding dynamics matters, we will want to

track the history of the clones. Many forward-time simulators are

available (see Peng et al., 2012; Thornton, 2014, and the Genetic

Simulation Resources page https://popmodels.cancercontrol.cancer.

gov/gsr/). Some of the tools closest to fulfill the above needs are

simuPOP (Peng et al., 2012), fwdpp (Thornton, 2014), FFPopSim

(Zanini and Neher, 2012) and TTP (Reiter et al., 2013); these pro-

grams, however, miss some of the above mentioned features,

especially flexible ways to specify fitness and mutator effects, order

effects or gene-specific mutation rates.

2 Functionality

OncoSimulR is an individual-based forward-time genetic simulator

for biallelic markers (wildtype versus mutated) in asexually repro-

ducing populations without spatial structure (perfect mixing). Its de-

sign emphasizes flexible specification of fitness and mutator effects.

OncoSimulR uses a standard continuous time model, where indi-

vidual cells divide, die and mutate with rates that can depend on

genotype and population size; over time the abundance of the differ-

ent genotypes changes by the action of selection (due to differences

in net growth rates among genotypes), drift and mutation. As a re-

sult of a mutation in a preexisting clone new clones arise, and the

birth rate of a newly arisen clone is determined at the time of its

emergence as a function of its genotype. Simulations can use an

exponential growth model or a model with carrying capacity
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(following McFarland et al., 2013). For the exponential growth

model, the death rate is fixed at one whereas in the model with car-

rying capacity death rate increases with population size. In both

cases, therefore, fitness differences among genotypes in a given

population at a given time are due to differences in the mapping be-

tween genotype and birth rate. A key feature of OncoSimulR is the

flexibility to specify the dependence of birth rates on genotype and,

thus, the flexibility to specify fitness. With OncoSimulR we can:

• Specify the fitness of each genotype.
• Use a system of blocks (that might share elements) to combine:

• Effects on fitness of individual genes and epistatic effects of

any order that involve an arbitrary number of genes.
• Order effects on fitness involving arbitrary numbers of genes.

With order effects (Ortmann et al., 2015) the fitness of a

genotype with genes A and B mutated depends on whether A

or B mutated first.
• Directed acyclic graphs (DAGs), as used in cancer progression

networks such as Oncogenetic Trees and Conjunctive

Bayesian Networks (Beerenwinkel et al., 2014), to specify re-

strictions in the order of accumulation of mutations.

Mutator/antimutator genes can be specified similar to fitness ef-

fects. Genes with mutator effects can also have direct effects on fit-

ness. Mutation rates can be gene-specific or common to all genes.

In addition to genes, we can specify fitness and mutator effects using

‘modules’ (pathways).

Typical use cases involve tens to thousands of genes on popula-

tion sizes up to 105 to 107 (see Supplementary documentation).

OncoSimulR uses the state-of-the-art BNB algorithm of Mather

et al. (2012). Simulations return the population size of every geno-

type/clone at each of the sampling periods. We can take samples

from those data with single-cell or whole-tumor resolution.

Additional functionality includes storing and plotting the parent-

child (genealogical) relationships of clones, generating random fit-

ness landscapes and plotting them (inspired by MAGELLAN:

Brouillet et al., 2015), statistics of evolutionary predictability, or

generating random DAGs of restrictions in the order of mutations.

3 Using OncoSimulR: examples

The next are some research questions where OncoSimulR could be

of help; full code is provided in the Supplementary documentation.

• Recovering restrictions in the order of accumulation of muta-

tions (Diaz-Uriarte, 2015). Run simulations on random DAGs to

obtain data to input to cancer progression network methods;

compare inferred versus true DAGs.
• Sign epistasis and crossing fitness valleys (Ochs and Desai,

2015). Specify epistatic interactions and run simulations until fix-

ation; examine proportion of genotypes fixed under different

scenarios.
• Predictability of evolution in complex fitness landscapes (Szendro

et al., 2013a). Run simulations under random fitness landscapes and

compare evolutionary predictability of trajectories.
• Mutator genes (Gerrish et al., 2007). Specify different numbers/

effects of mutator genes and examine how they affect cancer

progression.
• Epistatic interactions between drivers and passengers in cancer

(Bauer et al., 2014) and consequences of order effects (Ortmann

et al.,2015). Run simulations under different epistatic inter-

actions between drivers and passengers or under different

strengths of order effects and examine how often populations

reach a certain size.

4 Conclusion

Salient features of OncoSimulR compared to other simulators are

the unparalleled flexibility to specify fitness and mutator effects,

with modules and order effects as particularly unique, and the op-

tions for sampling and stopping the simulations, especially conveni-

ent in cancer evolution models. Also unique in this type of software

is the addition of functions for simulating fitness landscapes and as-

sessing evolutionary predictability. OncoSimulR can thus be used to

address questions that span from the effect of mutator genes in can-

cer, to the interplay between fitness landscapes and mutation rates.

OncoSimulR can therefore be of interest to computational oncolo-

gists and evolutionary geneticists working on problems specific to

asexual populations.
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