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ABSTRACT: A combination of atomic numbers and bond-orientational order
parameters is considered a candidate for a simple representation that involves
information on both the atomic species and their positional relation. The 504
candidates are applied as the fingerprint of the molecules stored in QM9, a data set
of computed geometric, energetic, electronic, and thermodynamic properties for
133 885 stable small organic molecules made up of carbon, hydrogen, oxygen,
nitrogen, and fluorine atoms. To screen the fingerprints, a regression analysis of the
atomic charges given by Open Babel was performed by supervised machine
learning. The regression results indicate that the 60 fingerprints successfully
estimate Open Babel charges. The results of the dipole moments, an example of a
property expressed by charge and position, also had a high accuracy in comparison
with the values computed from Open Babel charges. Therefore, the screened 60
fingerprints have the potential to precisely describe the chemical and structural
information on the atomic environment of molecules.

■ INTRODUCTION

A representation of atomic environments has become more
needed than in the past decade because of the rapid
development of material informatics and related technol-
ogy.1−13 Chemical representations without real-space informa-
tion are mainstream because they are compact, lightweight,
and usually adopted for molecular informatics. Indeed, some
simple fingerprints, such as the simplified molecular-input line-
entry system (SMILES)14 and SYBYL line notation (SLN),15

are useful, for instance, for similarity measurements between
molecules as the simplest example. Structure representations
have been developed separately from the chemical representa-
tions, e.g., Voronoi polyhedron of a central atom, angular
Fourier series,1 partial and generalized radial distribution
functions, and the bond-orientational order parameter.16 These
were originally not intended for machine learning (ML)
applications but are promising. However, separating the
chemistry and structure of molecules is open to debate. For
example, the Hohenberg−Kohn theorem,17−19 which states
that all physical quantities of a system can in principle be
calculated from the electron density of the ground state,
implies that there is an inseparable relationship between
information about the electronic properties of atoms and the
direct function of the geometric location of nuclei. Therefore,
the species of atoms and their positional relations can hardly
be separated to provide information on the atomic environ-
ment. This fact means that there is a need to consider a more
proper representation of both chemistry and structure. One of
the simplest ideas for such a representation is a combination of

the existing chemical and structural representations. For
example, a Coulomb matrix20 is a generalization of an
adjacency matrix representation and has been extended as
the Ewald sum and the Sine matrix.5 More advanced methods
include histograms of distances (HDs), HD angles (HDAs),
HDA dihedrals,21 bag of bonds,22 and the smooth overlap of
atomic positions.23

The bond-orientational order parameter that uses spherical
harmonics exhibits a highly generic performance for describing
molecular local structures. It was first developed by Steinhardt
and co-workers to investigate the structures of supercooled
liquids and metallic glasses.16 Lechner and co-workers
improved the bond-orientational order parameter by locally
averaging neighborhood molecules.24 Their parameters
successfully distinguished body-centered cubic (bcc), face-
centered cubic (fcc), hexagonal close-packed (hcp), and liquid-
like local structures and have been widely used to classify
complex local structures.25−32 Further modifications have been
attempted to extend the entire accuracy or for a specific
use.33,34 The capability of their parameters has been reported
for the identification of the crystal-like structures of a
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Lennard−Jones fluid,35−37 water,38−45 polyethylene,46 and a
liquid crystal and its polymer.33,34 Such a high sensitivity for
local structures is desirable for the precise expression of the
structural contributions of the atomic environment.
In this work, we consider a combination of atomic numbers

and bond-orientational order parameters as a candidate for the
simple representation that involves information on both the
atomic species and their positional relationship. This is applied
as the fingerprint of the molecules stored in the QM9 data
set,47,48 which contains geometric, energetic, electronic, and
thermodynamic properties for 133 885 stable small organic
molecules made up of carbon, hydrogen, oxygen, nitrogen, and
fluorine. A total of 504 fingerprints were systematically
designed and then screened by the supervised ML for the
regression analysis for the atomic charges of molecules. The
results indicate that the 60 fingerprints successfully estimate
the atomic charges. These fingerprints were used to compute
the dipole moments of molecules as an example of a property
expressed by both charge and position, and a high accuracy
was obtained compared to the values computed from atomic
charges. Therefore, the 60 screened fingerprints have the
potential to precisely describe the chemical and structural
information about the atomic environments of molecules.

■ METHODOLOGY
Real-Space Fingerprint Using a Generic Local-Order

Parameter. Here we introduce the real-space fingerprint of
the atomic environment considered in this work. First, the
chemical information to be embedded is defined as the implant
function F(ai, rij, rc), where ai is the atomic number of atom i,
rij is the interatomic distance between atoms i and j, and rc is
the cutoff radius for judging whether particle j is a neighbor of
particle i. Here we use four cutoff radii of 1.50, 1.75, 2.00, and
2.50 Å to accommodate various molecular geometries. We
emphasize that F(ai, rij, rc) is basically a simple combination of
atomic numbers and distances among neighboring atoms. In
this work, a total of 18 species of F(ai, rij, rc) were calculated
for each rc, as shown in Table 1, where Nb(rc, i) is an array that
involves identifiers of neighboring atoms of atom i and N is the
number of neighboring atoms contained in Nb(rc, i). F was
designed based on the following rules: (i) it should be a
function of atomic number, (ii) the interaction distance to be
emphasized should change depending on the weighting, and
(iii) differences in the weighting with and without normal-
ization should be considered. Rule (i) is essential as a
fingerprint for the constituent elements of a molecule, but 0, 1,
and 1.5 powers were considered in order to have variations in
the effect of the atomic number. Rule (ii) is a concept similar
to that of the radial basis function G2 in Parrinello−Behler type
descriptors,1,49 where the weights are maximized for
interaction distances of 0.0, 1.5, 2.0, and 2.5 Å. Rule (iii)
was considered because the form of the function is clearly
different depending on the presence or absence of normal-
ization. From the above rules (i−iii), the number of implant
functions became 18. Note that other expressions of F are
possible for the chemical and physical properties as long as
these are defined as a single scalar function. Second, the
implant function was embedded in the bond-orientational
order parameter developed by Steinhardt and co-workers16 as
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where l is an arbitrary positive integer denoting the degree of
the harmonic function, m is an integer that runs from − l to + l,
Ylm is a spherical harmonics function, and rij is a vector from
particle j to particle i. In this work, we set l values as 4, 6, 8, 12,
15, 18, and 20. Therefore, the total number of representations
for the atomic environment for atom i becomes 504 (equal to
the number of l × the number of rc × the number of F). The
atomic number and all the representations for atom i are stored
in the atomic environment vector for atom i, di, which has 505
(504 + 1) elements. Finally, the atomic environment vectors
for all atoms are merged to the descriptor array D. In this work,
the number of elements of D was 505 × 133 885. This was
almost the same scale of data as that for the data set of a
conventional representation for the atomic environment.13

However, in order to attain an effective atomic environment it
is desirable to have fewer elements. Therefore, we attempted to
screen the fingerprints from 504 to a smaller number by means
of supervised ML for a regression analysis of the atomic
charges of molecules.

Machine Learning. To examine the capability of each
fingerprint and to screen the fingerprints, a regression analysis
of the atomic charges was performed in supervised ML. The
molecular geometry and atomic charge for each molecule
stored in QM9 were preliminarily optimized to the generalized
amber force field (GAFF)50 by Open Babel.51 Figure 1 shows
the actual ML flow used in this work. First, Nb(rc, i) was

Table 1. Description of the Implant Function F(aj, rij, rc)
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determined for each atom. Second, Ql(rc, F, i) values were
computed for each atom and were stored in di. The atomic
number ai was also stored in di. The di values for all atoms
were merged with D. Third, the atomic charges for all atoms
were merged with the response variable vector o. Note that the
response variable became the supervisor of the ML. Then, the
operator vector w, which satisfies the relation Dw = o, was
estimated through ML. The term w was estimated using the
random forest method52 implemented on Scikit-learn.53 The
random forest method has some useful characteristics as a
learning algorithm of ML: (i) the learning routine is simple
and thus has high performance of computing, (ii) the method
prevents an overlearning, (iii) little or no data cleansing is
needed, and (iv) the significance of data descriptors can be
easily quantified. Note that overlearning is the situation where
the learning results only fit to data used in the learning and do
not fit to any new data. w was checked through a k-fold cross-
validation implemented on Scikit-learn, where k denotes the
number of cross-validations. Note that k-fold cross-validation is
the method for checking overlearning. The fivefold cross-
validation was done considering the quality and quantity of our
data in this work. Namely, 1/5 of 2 407 756 local coordinates
(∼481 551) were used for each of a total of five cross-
validations. Finally, the fingerprints were screened based on the
function of the random forest method, which quantified the
importance of the data descriptors.

■ RESULTS AND DISCUSSION

The time consumption to compute our fingerprint for all the
molecules included in QM9 was approximately 72 h using an
AMD Ryzen Threadripper 1950X CPU. Note that the
fingerprints were eternally usable if these were prepared for
ML once. Table 2 shows fingerprints in order of importance
based on the random forest method. There is a bias in the
importance of the fingerprints, which means that the top
ranking fingerprints represent the typical chemical environ-
ments. Importantly, the development of highly sensitive
fingerprints that contain such biases can be left to machine
learning. Our proposed screening makes this possible, allowing
us to select a relatively small set of candidates for the best
fingerprint at any given time depending on the constantly
changing (and typically increasing) amount of data in the
database. The fingerprints ranked from first to 60th account for
97.3% of the importance. Figure 2 shows the importance of
fingerprints from the first rank to the 60th rank. After the 55th
rank, the importance level is generally saturated at about
0.0006. Therefore, in the following sections, only fingerprints
from the first rank to the 60th rank were used.
For the most basic assessment of the capability of our

fingerprint, the ML flow was performed using the GAFF
molecular geometries and atomic charges derived from
OpenBabel. Figure 3 shows the resulting regression curves
for (a) hydrogen, (b) carbon, (c) nitrogen, (d) oxygen, (e)
fluorine, and (f) total charges. The results for every atomic
species demonstrated the high coefficient of determination
(R2) value, which indicated that the fingerprint captured well
the charge variations derived from the difference of the atomic
environment. The statistic scores for the regression results are
shown in Table 3. The worst R2 value was for the nitrogen
charges. The mean squared error (MSE) was also the worst,
and the mean absolute error (MAE) was the second worst.
This implies that the variations in the charges of nitrogen
atoms assigned by GAFF include systematic outliers. In
contrast, the R2 value and MSE for hydrogen charges were the
best, and the MAE for hydrogen charges was second best. The
regression results were also examined from the values of the
molecular dipole moment. Figure 4 shows the resulting
regression curve for the molecular dipole moments. The
results demonstrated a high R2 value of 0.990, which indicated
that the fingerprint captured well the variations of dipole
moment values derived from the difference of the atomic
environment.
To evaluate the robustness of the fingerprints to variations in

molecular geometries, the ML flow was performed using the
DFT molecular geometries stored in QM9 before they were
optimized in OpenBabel. The atomic charges, as the response
variables, were the OpenBabel charges. We emphasize that
response variables can be used for more than just OpenBabel
charges. For example, not only the restrained electrostatic
potential (RESP) charges54 given by precise DFT calculations
but also the charge and Lennard−Jones potential parameters
given by CHARMM,55 COMPASS,56 and other force fields are
possible candidates. However, as a simple and easy way to
evaluate an example, we used the OpenBabel charge here.
Figure 5 shows the resulting regression curves for (a)
hydrogen, (b) carbon, (c) nitrogen, (d) oxygen, (e) fluorine,
and (f) total charges. The results for every atomic species
demonstrated high R2 values, which indicated that the selected
60 fingerprints demonstrated a high robustness against the

Figure 1. Machine learning flow for the regression analysis that
predicts the atomic charges of molecules stored in QM9.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06587
ACS Omega 2022, 7, 4606−4613

4608

https://pubs.acs.org/doi/10.1021/acsomega.1c06587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06587?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06587?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


deviation of the molecular geometries. The statistic scores for
the regression results are shown in Table 4. The worst R2 value
was that for the fluorine charges. However, MAE and MSE
values for fluorine charges were the smallest. This was because
the charge variations of fluorine atoms were basically small.
Thus, the regression accuracy for the fluorine charges was
never low. The trends for the statistic scores for nitrogen
charges were almost the same as those the regression results
from the GAFF structures and OpenBabel charges. The
regression results were also examined for the molecular dipole
moment. Figure 6 shows the regression curve for molecular

dipole moments. The results demonstrated an R2 value of
0.990, which is comparable to that for the regression from
GAFF structures and OpenBabel charges. Again, the accurate
prediction of OpenBabel charges and dipole moments for DFT
structures shows the high robustness of the 60 fingerprints for
the molecular geometries.
Finally, to examine the prediction capability of the trained

model from GAFF structures and OpenBabel charges, the
charges were predicted from the trained operator vector wGAFF,

Table 2. Fingerprints in Order of Importance Based on the Random Forest Method

rank l rc (Å) F importance

1 12 1.75 F13 0.688213177
2 6 1.50 F8 0.092358318
3 12 2.50 F11 0.028534423
4 6 1.75 F15 0.023667266
5 12 1.50 F13 0.016632251
6 12 2.50 F9 0.014181471
7 12 1.50 F8 0.012526058
8 6 1.75 F8 0.011079143
9 4 2.50 F8 0.006942812
10 6 1.50 F15 0.004692287
11 12 2.50 F17 0.004414363
12 12 1.75 F12 0.003995392
13 12 1.75 F8 0.003751858
14 4 1.75 F16 0.003325598
15 12 2.50 F10 0.002796547
16 6 2.50 F17 0.002704569
17 4 2.50 F13 0.002336904
18 4 2.50 F14 0.002325804
19 12 2.50 F15 0.002142383
20 8 2.50 F10 0.002134398
21 6 2.50 F13 0.002012958
22 12 2.50 F8 0.001898805
23 4 2.50 F10 0.001880449
24 6 2.50 F8 0.001702691
25 6 2.00 F14 0.001672374
26 8 2.50 F8 0.001621629
27 6 2.50 F9 0.001594413
28 4 1.75 F8 0.001559824
29 12 1.75 F16 0.001545018
30 8 1.75 F8 0.001538792

rank l rc (Å) F importance

31 12 2.50 F14 0.001531455
32 8 2.50 F9 0.001471098
33 6 2.50 F11 0.001456022
34 6 2.50 F10 0.001254301
35 8 2.00 F8 0.001153517
36 4 1.50 F8 0.001143127
37 8 2.50 F16 0.001135169
38 4 2.50 F11 0.001103377
39 12 1.75 F10 0.001053001
40 4 2.50 F9 0.000982597
41 8 2.50 F11 0.000970519
42 4 1.75 F17 0.000890206
43 8 2.50 F17 0.000877437
44 12 2.00 F8 0.000846427
45 4 2.50 F15 0.000787806
46 4 2.50 F17 0.000771686
47 6 2.00 F15 0.000742759
48 4 2.50 F16 0.000736547
49 6 2.50 F14 0.000732413
50 4 1.75 F14 0.000720596
51 12 2.50 F16 0.000718018
52 12 2.00 F10 0.000707675
53 6 2.00 F8 0.000698370
54 8 2.50 F15 0.000695468
55 4 2.00 F8 0.000657664
56 8 1.50 F17 0.000655981
57 4 2.00 F14 0.000639511
58 6 2.50 F15 0.000630099
59 12 1.75 F11 0.000611518
60 4 1.50 F16 0.000594030

Figure 2. A logarithmic plot of the importance of the fingerprints
from the first to the 60th rank.

Figure 3. Regression curves for (a) hydrogen, (b) carbon, (c)
nitrogen, (d) oxygen, (e) fluorine, and (f) total charges by the
fingerprint of the GAFF structures.
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and the descriptor array was predicted from DFT structures
DDFT. Figure 7 shows a comparison of the predicted charges
with OpenBabel charges for (a) hydrogen, (b) carbon, (c)
nitrogen, (d) oxygen, (e) fluorine, and (f) total charges. The
results for carbon and hydrogen had high R2 values, and the
other atomic species exhibited reasonable R2 values. The
statistical scores for the comparison results are shown in Table
5. The worst R2, MAE, and MSE values were found for
nitrogen charges, a feature consistent with the other results.

Overall, the model trained from GAFF structures and
OpenBabel charges can adequately predict the OpenBabel
charges for DFT molecular structures. However, the molecular
dipole moments were not determined accurately when the
predicted charges were used (data not shown). Despite the
success of machine learning in predicting charges at a certain
level, the low prediction accuracy of the dipole moment
implies that the gap in molecular geometries between GAFF
and DFT is not small.

Table 3. Statistic Scores for the Regression Results of the
Fingerprint of the GAFF Structures

atom R2 MAE MSE

H 0.984 0.002 0.00004
C 0.974 0.007 0.00020
N 0.951 0.006 0.00030
O 0.983 0.003 0.00006
F 0.967 0.001 0.00008
total 0.993 0.004 0.00012

Figure 4. Regression curve for molecular dipole moments from the
fingerprint of the GAFF structures.

Figure 5. Regression curves for (a) hydrogen, (b) carbon, (c)
nitrogen, (d) oxygen, (e) fluorine, and (f) total charges from the
fingerprint of the DFT structures.

Table 4. Statistic Scores for the Regression Results from the
Fingerprint of the DFT Structures

atom R2 MAE MSE

H 0.995 0.003 0.00009
C 0.983 0.005 0.00010
N 0.947 0.006 0.00040
O 0.971 0.003 0.00010
F 0.944 0.001 0.00001
total 0.995 0.003 0.00009

Figure 6. Regression curve for molecular dipole moments from the
fingerprint of the DFT structures.

Figure 7. Comparison of predicted charges with OpenBabel charges
for (a) hydrogen, (b) carbon, (c) nitrogen, (d) oxygen, (e) fluorine,
and (f) total charges.
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■ CONCLUSIONS
We developed a candidate for simple representation that
combines atomic species and the bond-orientational order
parameter. The 504 candidates were applied as the fingerprint
of molecules stored in QM9. To screen the fingerprints, a
regression analysis of the atomic charges given by OpenBabel
was performed by a supervised ML flow. The 60 fingerprints
were selected based on importance value of the random forest
method. The selected fingerprints was applied for the
regression analysis of OpenBabel charges, which used GAFF
molecular structures. The results exhibited high statistic scores
for both the atomic charge and the dipole moment, which
indicated that the fingerprint captured well the variations of
charge derived from the difference of the atomic environment.
Then, the regression analysis was performed using the DFT
structures to assess the robustness of 60 fingerprints against the
deviation of the molecular structures. The results exhibited
high statistical scores, which indicated that the fingerprints
demonstrated a high robustness against the deviation of the
molecular structures. Finally, the atomic charges were
predicted from wDFT and DGAFF to examine the prediction
capability of the trained model from GAFF structures and
OpenBabel charges. The results showed that the trained model
can adequately predict the OpenBabel charges for DFT
molecular structures. Therefore, the screened 60 fingerprints
have the potential to precisely describe the chemical and
structural information on the atomic environment of
molecules. Importantly, only 60 chemical representations
give the exact atomic charges for 133 885 different molecular
geometries. This fact means that our chemical representation
successfully compresses the information content of fingerprints
based on 3D molecular geometries. The robustness of the
fingerprints to molecular geometries and the robustness of the
learning model to charge prediction also indicate that our
chemical representation can be used for iterations that
simultaneously determine molecular geometries and charges.
Furthermore, our representation can be used in combination
with many other conventional atomic representations.2−5,7,13

Thus, the prediction capability of the above-mentioned trained
model may be improved for the deviation of molecular
structures and molecules never included in training data. In
addition to constructing precise big data for molecular
structures, the development of atomic representations might
assist in the high-throughput design of molecular models that
include intra- and intermolecular interaction parameters
without computationally expensive first-principles simulation
techniques.
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