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The association between acrylamide (AA) and the development of cancer has

been extensively discussed but the results remained controversial, especially in

population studies. Large prospective epidemiological studies on the

relationship of AA exposure with cancer mortality were still lacking.

Therefore, we aimed to assess the association between AA biomarkers and

cancer mortality in adult population from National Health and Nutrition

Examination Survey (NHANES) 2003-2014. We followed 3717 participants for

an average of 10.3 years. Cox regression models with multivariable adjustments

were performed to determine the relationship of acrylamide hemoglobin

adduct (HbAA) and glycidamide hemoglobin adduct (HbGA) with cancer

mortality. Mediation analysis was conducted to demonstrate the mediated

role of low-grade inflammation score (INFLA-score) in this correlation.

Compared with the lowest quintile, participants with the highest quintile of

HbAA, HbGA and HbAA+HbGA had increased cancer mortality risk, and the

hazard ratios(HRs) were 2.07 (95%CI:1.04-4.14) for HbAA, 2.39 (95%CI:1.29-

4.43) for HbGA and 2.48 (95%CI:1.28-4.80) for HbAA+HbGA, respectively. And

there was a considerable non-linearity association between HbAA and cancer

mortality (p for non-linearity = 0.0139). We further found that increased INFLA-

score significantly mediated 71.67% in the effect of HbGA exposure on

increased cancer mortality risk. This study demonstrates that hemoglobin
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biomarkers of AA are positively associated with cancer mortality in adult

American population and INFLA-score plays a mediated role in this process.

Our findings can raise public awareness of environmental and dietary exposure

to acrylamide and remind people to refrain from smoking or having

acrylamide-rich foods.
KEYWORDS
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Introduction

Acrylamide (AA), a well-documented animal carcinogen and

human neurotoxic compound, ubiquitously presents in industrial

wastewater, production of daily cosmetics, textiles, plastics, cigarette

mainstream smoke and baking and fried star chic foods (1–4). After

AA is absorbed by the body, some of AA is converted into

glycidamide (GA) by cytochrome P450 (5). Further, AA and GA

can bind hemoglobin (Hb) to form blood adducts (6). As well-

established internal biomarkers, HbAA and HbGA can provide

timely and accurate information about the amounts of AA in

human body for the past three months (7). AA has already been

identified as 2A-class carcinogen in 2020 and the safe limits in food

are determined. Therefore, the World Health Organization has

called for more researches on the health hazards of AA and issued

an international health alert on its health risks (8).

Animal studies showed that AA exposure could lead to scrotal

mesothelial tumor in male mice (9) and could cause an elevated

incidence of tumors of the central nervous system (CNS),

mammary gland, ovarian and thyroid gland in female mice (10–

12). Whereas in epidemiologic researches, the results for the

effects of AA on cancer were not consistent. A cross-section

study indicated that a 10 times increase of HbAA level was

related to a 90% increase of breast cancer risk (13). And in a

Netherlands cohort study, increased dietary AA intakes were

associated to higher ovarian and endometrial cancer risks in

postmenopausal women (14). Additionally, there were also

other studies demonstrating that no correlation existed between

intakes of dietary AA and increased risks of lung, liver, breast or

gastrointestinal cancer in Japanese population (15–18). Therefore,

a reliable cohort study is needed to provide direct evidence for the

effects of AA exposure on cancer mortality in general population.

Numerous studies have illustrated the relationship between

inflammation and cancer (19–21). Low-grade inflammation

score (INFLA-score), composed of C-reactive protein (CRP)

concentration, white blood cell (WBC) counts, platelet counts

and ratio of granulocyte/lymphocyte (G/L), has been widely used

in the Moli-sani studies to reflect low grade inflammatory

condition (22, 23). Moreover, a recent epidemiological study
02
indicated that AA exposure in daily life was positively associated

with systemic inflammation in general population (24).

Accordingly, in our study, we intended to explore whether

high levels of serum AA biomarkers had an effect on cancer

mortality through mediated role of inflammation, using the

population in NHANES 2003-2014.
Materials and methods

Study population

NHANES is a stratified, multilevel study using a national

population sample in the United States. The details for NHANES

have been documented elsewhere (25). After excluding

participants with missing information of serum AA metabolites,

cancer mortality or other covariates, a total of 3717 participants

aged over 18 years old with data of interviews and examinations

were included in our study. The NHANES program was approved

by the National Center for Health Statistics and inform consents

were signed by the participants.
Main exposure and outcome

The main exposures in our study were HbAA, HbGA and

HbAA+HbGA. Besides, the main outcome was mortality status

ascertained by the National Death Index (NDI) records up to the

end of 2015. Cause-specific death was determined using

International Classification of Diseases, Tenth Revision (ICD-

10) and cancer mortality was defined as ICD-10 codes (C00-

C97). Finally, a total of 513 deaths, including 118 died from

cancer, were recorded for further analysis.
Measurements of HbAA and HbGA

The levels of HbAA and HbGA in the whole blood were

measured in 2003 or 2005 for one time using high-performance
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liquid chromatography/tandem mass spectrometry (HPLC-MS/

MS) as Vesper, et al. reported (26). Briefly, 350 ml of human

whole blood was treated with Edman reagent. Then AA and GA

could be isolated from Hb chain and were conducted with

HPLC-MS/MS. The threshold of the detection was 3 pmol/g

Hb for HbAA and 4 pmol/g Hb for HbGA. Sample weights for

measuring HbAA and HbGA are available in the NHANES

Analytic Guidelines and the on-line NHANES Tutorial at

https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L06AGE_C.

htm and https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/

AMDGYD_D.htm.
Covariates assessment

Potential covariates included age, sex (male/female), race

(Mexican American, other Hispanic, non-Hispanic white, non-

Hispanic black or other races), regular exercise (yes/no, defined

as having moderate to high-intensity physical exercise in the past

month), body mass index (BMI), education (< 9th Grade, 9-11th

Grade, High School Grade, GED or Equivalent, Some College or

AA degree, College Graduate or above), income (< $20,000,

$20,000-$45,000, $45,000-$75,000, $75,000-$100,000 or >

$100,000), current smoking (yes/no, defined as smoking in the

past five days), current drinker (yes/no, defined as drinking at

least 12 times in the past year), energy (kcal/d), cotinine (ng/ml),

diabetes (yes/no), hypertension (yes/no), dyslipidemia (yes/no)

and INFLA-score.
Statistical analyses

The mean levels of AA hemoglobin biomarkers were

displayed as mean (standard deviation) according to various

demographic characteristics of participants. General linear

models were applied to compare characteristics of baseline.

Statistical analyses were performed using R 4.1.2 software, all

the tests were two-tailed and P < 0.05 was regarded as

statistically significant difference.

Hazard ratios (HRs) with 95% confidence intervals (CIs)

were calculated using cox proportional hazards (CPH) models.

The follow-up time was defined by numbers of follow-up

person-months from interview date until death or end of 2015.

The hemoglobin adducts of AA were classified into quintiles,

with the lowest quintile considered as reference group. Then we

tested four models using stepwise method with adjustment of

multiple covariates. Model 1 adjusted age, sex, and race; Model 2

additionally adjusted smoking and drinking status, education

level, income, BMI, regular exercise, energy and cotinine. Model

3 further adjusted disease status of diabetes, hypertension and

dyslipidemia. Model 4 finally adjusted INFLA-score.

Furthermore, the dose-dependent relationship between

hemoglobin biomarkers of AA and cancer mortality was
Frontiers in Oncology 03
graphically characterized using restricted cubic spline

(RCS) models.
Sensitivity analyses

Three sets of sensitivity analyses were performed in the

study. In the first set, participants with follow-up time less than 2

years (including deaths within 2 follow-up years) were excluded

to evaluate whether severe disease such as cardiovascular disease

could affect the results. In the second set, sub-group analysis in

the non-cancer population was conducted to exclude the effect of

cancer disease on cancer mortality induced by AA. In the third

set, we examined whether behavior of smoking or status of

diseases such as hypertension, dyslipidemia and diabetes would

interact with the effect of AA exposure on cancer mortality.
Results

Participants characteristics

The participants of the study consisted of 49.3% male and

50.7% female, and the mean levels of AA biomarkers for them

were 85.36 pmol/g Hb and 68.54 pmol/g Hb for HbAA, 65.36

pmol/g Hb and 63.17 pmol/g Hb for HbGA and 150.72 pmol/g

Hb and 131.70 pmol/g Hb for HbAA+HbGA, respectively. Levels

of HbAA differed significantly among different races (P for trend =

0.003). Large amounts of HbAA, HbGA and HbAA+HbGA were

mainly observed in participants with younger age, lower

educational attainment, lower family income, higher energy

intakes, higher cotinine and higher INFLA-score. Other details

for mean levels of AA biomarkers categorized by participants

characteristics were shown in Table 1.
AA exposure and cancer mortality

After a mean of 10.32 years of follow-up from NHANES

interview date, a total of 118 participants were reported to die

due to cancer. Analysis of CPH regression for the relationship

between hemoglobin biomarkers of AA and cancer mortality

was presented in Table 2. With the potential covariates adjusted,

HbAA, HbGA and HbAA + HbGA were found to be positively

associated with cancer mortality. In contrast to the lowest

quintile of HbAA, the HRs for cancer mortality in the highest

quintile were 2.75 (95%CI:1.61-4.70) for model 1, 2.08 (95%

CI:1.05-4.14) for model 2, 2.16 (95%CI:1.09-4.30) for model 3

and 2.07 (95%CI:1.04-4.14) for fully adjusted model 4.

Moreover, a significant linear correlation was observed

between HbGA and cancer mortality (P for trend < 0.05), with

the HRs in the highest quintile of 2.75 (95%CI:1.62-4.67) for

model 1, 2.34 (95%CI:1.27-4.31) for model 2, 2.47 (95%CI:1.34-
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TABLE 1 The levels of hemoglobin biomarkers of AA categorized by participants characteristics.

Characteristics No. HbAA (pmol/g Hb) HbGA (pmol/g Hb) HbAA +HbGA(pmol/g Hb)

(weighted %) Mean p for trend Mean p for trend Mean p for trend

Age <0.001 <0.001 <0.001

18~33 years 1234(33.2) 82.29(66.34) 70.85(46.24) 153.14(108.24)

34~56 years 1217(32.7) 86.23(68.49) 68.52(44.46) 154.76(107.02)

≥ 57 years 1266(34.1) 62.45(44.33) 53.70(33.19) 116.15(73.11)

Sex 0.157 <0.001 0.374

Male 1831(49.3) 85.36(69.79) 65.36(46.11) 150.72(111.54)

Female 1886(50.7) 68.54(50.71) 63.17(38.24) 131.70(83.76)

Race 0.003 0.071 0.345

Mexican American 817(22.0) 65.86(43.11) 62.45(35.24) 128.30(74.36)

Other Hispanic 114(3.1) 68.02(59.93) 59.95(43.64) 127.96(97.15)

Non-Hispanic White 1835(49.4) 79.54(64.32) 66.62(44.97) 146.16(104.44)

Non-Hispanic Black 790(21.3) 83.52(68.51) 61.50(41.74) 145.02(105.71)

Others 161(4.3) 74.87(63.88) 62.91(44.54) 137.78(103.49)

Current smoking <0.001 <0.001 <0.001

No 2779(74.8) 55.56(34.14) 52.86(30.27) 108.42(60.85)

Yes 938(25.2) 139.81(78.72) 97.99(53.45) 237.81(123.55)

Current drinking 0.241 0.491 0.703

No 1492(40.1) 69.09(53.23) 62.22(39.05) 131.31(88.35)

Yes 2225(59.9) 82.01(65.87) 65.61(44.31) 147.62(104.86)

Education level <0.001 <0.001 <0.001

<High school 923(24.8) 80.03(67.07) 65.76(44.57) 145.78(106.67)

High school 1139(30.6) 85.56(67.74) 71.12(47.38) 156.68(109.47)

Social college 1007(27.1) 75.63(58.45) 62.86(39.77) 138.49(93.37)

College or above 648(17.4) 58.75(37.42) 52.18(28.39) 110.93(62.59)

Income 0.848 0.621 0.730

Low 817(22.0) 84.69(72.66) 69.30(50.47) 153.99(117.36)

Middle 1984(53.4) 77.32(61.44) 64.21(41.73) 141.53(98.71)

High 916(24.6) 68.73(48.11) 59.82(34.37) 128.55(77.44)

BMI <0.001 0.258 <0.001

<24.94 1236(33.3) 91.00(75.72) 67.91(46.73) 158.92(117.30)

24.94~29.92 1241(33.4) 71.50(54.27) 62.39(40.62) 133.89(89.98)

≥29.93 1240(33.4) 68.02(48.46) 62.46(38.98) 130.47(83.80)

Regular exercise 0.756 <0.001 0.028

Yes 1431(38.5) 74.83(57.63) 66.44(42.97) 140.95(100.60)

No 2286(61.5) 78.07(63.68) 62.88(41.83) 141.27(96.09)

Energy(kcal) <0.001 <0.001 <0.001

<1662.0 1237(33.3) 71.92(56.77) 61.65(39.32) 133.57(90.55)

1662.0~2346.5 1240(33.4) 70.54(52.57) 60.30(37.25) 130.84(85.41)

≥2346.5 1240(33.4) 88.00(71.77) 70.78(48.71) 158.78(115.64)

Cotinine(ng/ml) <0.001 <0.001 <0.001

<0.031 1237(33.3) 50.12(19.84) 50.53(24.36) 100.65(41.49)

0.031~0.738 1240(33.4) 53.51(28.41) 50.48(26.07) 104.00(50.82)

≥0.738 1240(33.4) 126.77(79.79) 91.70(54.45) 218.47(126.57)

Diabetes 0.135 0.729 0.289

Yes 445(12.0) 64.02(41.95) 57.69(34.49) 121.71(72.13)

No 3272(88.0) 78.56(63.43) 65.14(43.19) 143.70(101.70)

Hypertension 0.848 0.065 0.329

(Continued)
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4.56) for model 3 and 2.39 (95%CI:1.29-4.43) for model 4,

compared with the lowest quintile. And the HRs in the highest

quintile of HbAA + HbGA were 3.03 (95%CI:1.77-5.21), 2.43

(95%CI:1.26-4.69), 2.58 (95%CI:1.34-4.98) and 2.48 (95%

CI:1.28-4.80) for the four models, respectively. Whereas no
Frontiers in Oncology 05
significant association was found between the hemoglobin

biomarkers of AA and all-cause mortality (Supplementary

Table 1). Further, results for RCS models were showed in

Figure 1. With the increase of AA biomarkers, the HRs for

cancer mortality increased rapidly, presenting a dose-response
TABLE 1 Continued

Characteristics No. HbAA (pmol/g Hb) HbGA (pmol/g Hb) HbAA +HbGA(pmol/g Hb)

(weighted %) Mean p for trend Mean p for trend Mean p for trend

Yes 1360(36.6) 69.75(55.47) 57.96(37.14) 127.71(87.77)

No 2357(63.4) 80.90(64.28) 67.88(44.62) 148.78(103.99)

Dyslipidemia 0.899 0.110 0.503

Yes 1492(40.1) 72.49(56.14) 62.76(40.44) 135.25(91.63)

No 2225(59.9) 79.73(64.59) 65.25(43.49) 144.97(103.29)

INFLA-score 0.010 <0.001 <0.001

-16~-6 866(23.3) 75.06(59.63) 58.45(38.79) 133.51(94.11)

-5~5 2121(57.1) 75.58(60.64) 64.12(42.99) 139.70(98.79)

5~16 730(19.6) 82.51(65.43) 71.50(43.26) 154.01(103.46)
The levels of hemoglobin biomarkers of AA were presented as mean (standard deviation). BMI, body mass index; Diabetes was defined by a selfreported diagnosis, a hemoglobin A1c level
≥6.5%, a fasting plasma glucose level ≥7.0mmol/L or receiving medications for diabetes; Hypertension was defined by a self-reported diagnosis, the systolic blood pressure ≥140mmHg, the
diastolic blood pressure ≥90mmHg or receiving medications for hypertension; Dyslipidemia was defined by serum triglyceride ≥2.26 mmol/L, serum cholesterol ≥6.22 mmol/L, lowdensity
lipoprotein cholesterol ≥4.14 mmol/L or receiving medications for dyslipidemia; INFLA-score, low-grade inflammation score.
TABLE 2 Multivariate adjusted HRs of HbAA, HbGA and HbAA+HbGA for cancer mortality in total population.

AA Hemoglobin Biomarkers Case/N Model 1 a Model 2 b Model 3 c Model 4 d

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

HbAA(pmoL/g Hb)

Q1(≤38.9) 32/739 1 1 1 1

Q2(39.0-49.1) 23/741 0.98(0.57-1.67) 0.99(0.58-1.71) 1.01(0.59-1.73) 1.01(0.59-1.74)

Q3(49.2-60.9) 18/749 0.80(0.45-1.42) 0.86(0.48-1.54) 0.87(0.48-1.56) 0.90(0.50-1.62)

Q4(61.0-100.0) 15/742 0.81(0.44-1.51) 0.80(0.43-1.50) 0.82(0.44-1.54) 0.82(0.43-1.53)

Q5(≥101.0) 30/746 2.75(1.61-4.70) 2.08(1.05-4.14) 2.16(1.09-4.30) 2.07(1.04-4.14)

p for trend 0.014 0.356 0.297 0.341

HbGA(pmoL/g Hb)

Q1(≤34.6) 32/742 1 1 1 1

Q2(34.7-45.9) 16/742 0.70(0.39-1.29) 0.73(0.40-1.35) 0.76(0.41-1.40) 0.75(0.41-1.39)

Q3(46.0-59.9) 24/746 1.23(0.72-2.10) 1.34(0.78-2.31) 1.34(0.78-2.32) 1.35(0.79-2.34)

Q4(60.0-84.7) 17/743 1.14(0.62-2.08) 1.03(0.56-1.91) 1.04(0.56-1.93) 1.04(0.56-1.92)

Q5(≥84.8) 29/744 2.75(1.62-4.67) 2.34(1.27-4.31) 2.47(1.34-4.56) 2.39(1.29-4.43)

p for trend <0.001 0.016 0.011 0.014

HbAA+HbGA

Q1(≤75.8) 31/743 1 1 1 1

Q2(75.9-95.9) 21/739 0.99(0.57-1.73) 1.01(0.57-1.76) 1.04(0.59-1.83) 1.05(0.60-1.85)

Q3(96.1-121.4) 18/748 0.91(0.51-1.64) 0.95(0.53-1.72) 0.97(0.54-1.76) 0.99(0.55-1.79)

Q4(121.5-184.5) 19/743 1.27(0.71-2.26) 1.19(0.66-2.15) 1.22(0.67-2.21) 1.23(0.68-2.23)

Q5(≤184.7) 29/744 3.03(1.77-5.21) 2.43(1.26-4.69) 2.58(1.34-4.98) 2.48(1.28-4.80)

p for trend 0.001 0.044 0.031 0.039
The levels of hemoglobin biomarkers of AA were presented as HRs (95% CIs). a Model 1 adjusted for age, sex, and race. b Model 2 additionally adjusted for smoking and drinking status,
education level, income, BMI, regular exercise, energy and cotinine. c Model 3 further adjusted disease status of diabetes, hypertension and dyslipidemia. d Model 4 finally adjusted for
INFLA-score. In addition, log-transformed levels of HbAA, HbGA and HbAA+HbGA were adjusted when analyzing the association between hemoglobin biomarkers of AA and cancer
mortality. Q, quintile; HR, hazard ratio; CI, confidence interval.
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relationship. Besides, there was a considerable non-linearity

association between HbAA and cancer mortality (P for non-

linearity = 0.0139).
Mediated effects of INFLA-score

Mediated effects of INFLA-score on the relationship of

HbAA and HbGA with cancer mortality were shown in

Figure 2. The b1 and b2 values represented the indirect effect

of AA biomarkers on INFLA-score and INFLA-score on cancer

mortality, respectively. Moreover, the b direct-effect value

represented the direct effect of AA biomarkers on cancer

mortality. The results showed that INFLA-score significantly

mediated 71.67% for HbGA induced increased cancer mortality

risk, and the direct effect of HbGA on cancer mortality showed

no significance (P = 0.438), suggesting a complete mediated role

of INFLA-score on the association between HbGA and cancer

mortality. However, mediated effect of INFLA-score for HbAA

induced increased cancer mortality risk showed no significance

(P > 0.05).
Sensitivity analysis

In the first sensitivity analysis, after participants with less

than two years of follow-up were excluded, the association

between AA biomarkers and cancer mortality was still

significant, suggesting that the results were relatively robust

and were not affected by severe disease (Supplementary

Table 2). In the second sensitivity analysis, we performed our

analysis in the non-cancer group using step-by-step method to

identify whether the results were stable after excluding the effect

of cancer disease. The results showed a robust association

between AA biomarkers and cancer mortality, which was

consistent with our results of the total sample (Supplementary

Table 3). In the third sensitivity analysis, the results suggested

that behavior of smoking or status of diseases (hypertension,
Frontiers in Oncology 06
dyslipidemia and diabetes) could not interact with the effect of

AA exposure on cancer mortality (Supplementary Table 4).
Discussion

In the large cohort study, we innovatively found that

hemoglobin biomarkers of AA were positively associated with

cancer mortality among the U.S. general population after adjusting

sociodemographic factors, lifestyle factors and disease indicators.

Interestingly, inflammation played a mediated role in this process.

Moreover, consistent results could also be observed in subgroup

sensitivity analyses, and behavior of smoke or status of diseases

(hypertension, dyslipidemia and diabetes) could not modify the

association, indicating that the results were considerably stable and

robust. Therefore, our study provided direct evidence for the effects

of AA exposure on cancer mortality in general population and

reminded the public to pay more attention to AA exposure.

There have been plenty of studies demonstrating that AA

exposure was associated with the development of inflammation.

In animal researches, exposure to different doses of AA could

significantly increase the levels of inflammatory cytokines in

serum or plasma (27–29). Additionally, vitro studies showed

that AA treatment could induce expression of pro-inflammatory

factors including interleukin-6 (IL-6), interleukin-1b (IL-1b),
tumor necrosis factor-a (TNF-a) and granulocyte colony-

stimulating factor (G-CSF) via nuclear factor-kB (NF-kB)
pathway (30, 31). Whereas only a few population-based

studies on AA induced inflammation were documented. A

pilot study showed that intakes of food containing AA could

elevate levels of CRP in plasma, and a recent epidemiological

study mentioned that AA exposure in daily life was positively

associated with systemic inflammation in general population

(24), which was consistent with our study.

Inflammatory markers in blood circulation are risk factors of

numerous diseases, including atherosclerosis, neurological

conditions and neoplastic progression (32–34). IL-1b was

reported to be associated with gastric cancer (35), and TNF-a
B CA

FIGURE 1

Association between HbAA (A), HbGA (B) and HbAA+HbGA (C) with cancer mortality in total population. HRs were adjusted for age, sex (male/
female), race (Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black or other races), regular exercise (yes/no), body mass
index (BMI), education (< 9th Grade, 9-11th Grade, High School Grade, GED or Equivalent, Some College or AA degree, College Graduate or
above), income (< $20,000, $20,000-$45,000, $45,000-$75,000, $75,000-$100,000 or > $100,000), current smoker (yes/no), current drinker
(yes/no), energy (kcal/d), cotinine (ng/ml), diabetes (yes/no), hypertension (yes/no), dyslipidemia (yes/no) and INFLA-score. HR, hazard ratio.
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could function as a tumor promoter in the development of

cancer (36–38). Noteworthily, NF-kB played a vitally important

role in the progression of inflammation-associated tumors by

promoting growth, survival and vascularization of carcinoma

cells (39). The Cellular and immune changes caused by

inflammatory response can lead to repeated tissue damage and

tissue repair (21), which could interact with DNA in

proliferating epithelial cells and result in permanent genomic

mutations (33), in the environment of abundant reactive oxygen

species (ROS) and reactive nitrogen species (RNS) induced by

inflammatory cells (40). Indeed, the inflammatory environment

contributes to cell proliferation (38, 41), survival (42) and

migration (43), all of which provides the base for

tumorigenesis (44). Additionally, indirect damage by

inflammation such as apoptosis (45) and necrosis (46), can

significantly affect homeostas is and generate a fi t

microenvironment for tumor growth (47). Taken together, AA

could induce releases of inflammatory factors, and the latter

were associated with the development of tumors. Therefore, for

the first time, we took inflammatory indicators into account, to

investigate the impact of AA exposure on cancer mortality in

general population and found that AA biomarkers were

positively associated with cancer mortality, with INFLA-score

playing a mediated role in this process. In addition, to explore

what types of cancer were more prone to be affected by AA, we

performed a logistic regression analysis between AA biomarkers

and specific cancer. We found HbGA was positively associated

with uterine cancer among women after adjusting potential

covariates (Supplementary Table 5). Compared to the lowest

HbGA group, the OR (95%CI) of the highest group was 4.26

(95%CI: 1.04-17.54) for prevalence of uterine cancer. This result

was consistent with a prospective cohort study illustrating that

high acrylamide consumers had an increased risk for

endometrial cancer (12), and some animal studies

demonstrating that exposure to glycidamide could induce

uterine adenocarcinoma and endometrial hyperplasia in

female rats (48, 49). It has been reported that acrylamide

exposure could reduce serum progesterone and estradiol
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concentrations in female rats (50), and a recent Canada case-

control study found a relationship between low estrogens and

high endometrial cancer risk (51), which partly supported our

finding. Our results are in conflict with some epidemiological

studies demonstrating that dietary intakes of AA were not

associated with some tissue-specific cancers including lung,

liver, breast and gastrointestinal cancer in Japanese population

(15–18). A possible explanation for these inverse results is that

intakes of AA in these studies were only estimated from food

frequency questionnaire (FFQ), which could lead to inaccurate

calculation of AA and thus cause insufficient correlation

assessment. Nevertheless, A Swedish prospective cohort study

found a positive association between AA hemoglobin adducts

and risk of breast cancer with an estimated incidence rate ratio of

2.7 (95%CI:1.1-6.6) (13), which was in line with our findings.

Furthermore, in addition to inflammatory factors, other

potential mechanisms may also explain the process of cancer

induced by AA. Human and animal studies have illustrated that

exposure to AA could cause DNA damage, activate Kirsten-ras

(KRAS) mutation, promote cell proliferation and thus lead to

carcinogenesis (52–54). Besides, there were also studies

demonstrating that carcinogenicity of AA depended on

metabolic conversion to GA (55, 56). GA-induced adducts

might be involved in spontaneous depurination or tissue-

specific repair, which could induce tumors (57). Further, a

prospective pilot study of 62573 women illustrated that ovarian

cancer might be caused through effects of AA on single nucleotide

polymorphisms (SNPs) of genes involved in sex hormones system

(P for interaction = 0.04) (58). The studies above, through different

mechanisms, supported our finding that AA was positively

associated with cancer mortality in general population.

To our best knowledge, this study was the first one to confirm

the significant association between AA exposure and cancer

mortality in general population, and proposed that inflammation

played a mediated role in this process. We took advantage of the

reliable blood indicators of AA and avoided the miscalculation of

dietary AA intakes from FFQ. Our study, therefore, could highlight

public concern about the effects of widespread exposure to AA on
BA

FIGURE 2

Mediated effects of INFLA-score on the association between HbAA (A) and HbGA (B) and cancer mortality. Mediation analysis was adjusted for
age, sex (male/female), race (Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black or other races), regular exercise (yes/
no), body mass index (BMI), education (< 9th Grade, 9-11th Grade, High School Grade, GED or Equivalent, Some College or AA degree, College
Graduate or above), income (< $20,000, $20,000-$45,000, $45,000-$75,000, $75,000-$100,000 or > $100,000), current smoker (yes/no),
current drinker (yes/no), energy (kcal/d), cotinine (ng/ml), diabetes (yes/no), hypertension (yes/no), dyslipidemia (yes/no) and INFLA-score. b1,
the indirect effect of AA biomarkers on INFLA-score; b2, the indirect effect of INFLA-score on cancer mortality; b direct-effect, the direct effect of
AA biomarkers on cancer mortality; *p < 0.05.
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residents’ health, and provided an alternative method to reduce

cancer mortality risk induced by AA through anti-inflammatory

effects. The government should formulate relevant policies or

recommendations to authorize the restriction or control of public

exposure to AA from various sources, in particular, smoking or

intakes of AA-rich foods such as fried foods and coffee. The

association between hemoglobin biomarkers of AA and cancer

mortality in our study was relatively stable and robust after

adjusting a series of covariates. However, there were still several

limitations that should be taken into consideration when

interpreting these findings. Firstly, though we took advantage of

this representative cohort and comprehensively evaluated the effects

of AA exposure on cancer mortality, the survival of cancer depends

onmany factors, such as type, stage and site of cancer, as well as age

and sex of patients. Therefore, future studies are needed to elucidate

the possible mechanism in the association between AA exposure

and specific cancer. Secondly, the concentration of AA biomarkers

was only tested once, which may cause insufficient correlation

assessment. Thirdly, since we adjusted a large number of covariables

to reduce residual confounders, the risk of over-adjustment may be

increased. Finally, this cohort was mainly representative of the U.S.

general population, so the results should be verified in

other populations.
Conclusion

In conclusion, exposure of AA is positively associated with

cancer mortality in adult American population, and INFLA-score

plays a mediated role in the association. It can emphasize public

concern about AA exposure and remind people to stay away from

tobacco smoke and AA-rich foods, and have a healthy diet.
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