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Abstract: In recent studies, iron overload has been reported in atypical parkinsonian syndromes. The
topographic patterns of iron distribution in deep brain nuclei vary by each subtype of parkinsonian
syndrome, which is affected by underlying disease pathologies. In this study, we developed a novel
framework that automatically analyzes the disease-specific patterns of iron accumulation using
susceptibility weighted imaging (SWI). We constructed various machine learning models that can
classify diseases using radiomic features extracted from SWI, representing distinctive iron distribution
patterns for each disorder. Since radiomic features are sensitive to the region of interest, we used
a combination of T1-weighted MRI and SWI to improve the segmentation of deep brain nuclei.
Radiomics was applied to SWI from 34 patients with a parkinsonian variant of multiple system
atrophy, 21 patients with cerebellar variant multiple system atrophy, 17 patients with progressive
supranuclear palsy, and 56 patients with Parkinson’s disease. The machine learning classifiers
that learn the radiomic features extracted from iron-reflected segmentation results produced an
average area under receiver operating characteristic curve (AUC) of 0.8607 on the training data and
0.8489 on the testing data, which is superior to the conventional classifier with segmentation using
only T1-weighted images. Our radiomic model based on the hybrid images is a promising tool for
automatically differentiating atypical parkinsonian syndromes.

Keywords: atypical parkinsonian syndromes; brain iron; SWI; radiomic; machine learning

1. Introduction

In neurodegenerative disease, abnormal neuronal cells die rapidly in parts of the ner-
vous system or the entire brain, resulting in loss of brain function, including cognitive and
motor abilities. Parkinson’s disease (PD) is the second most common neurodegenerative
disorder after Alzheimer’s and is accompanied by motor symptoms such as bradykine-
sia, tremor, and gait disturbance, making it difficult to conduct daily activities and many
nonmotor symptoms such as cognitive impairment, depression, autonomic dysfunction,
and sleep disturbance. Atypical parkinsonian syndromes (APSs), comprising of progressive
supranuclear palsy (PSP) and a parkinsonian variant of multiple system atrophy (MSA-P),
are degenerative diseases that share similar Parkinsonism symptoms and signs with PD [1]
but show additional symptoms and different rates of functional deterioration and progno-
sis [2]. Therefore, the development of methods for distinguishing between PD and APS has
clinical significance.

One of the main pathogenesis of PD is iron accumulation in the substantia nigra area
of the brain associated with the degeneration of dopaminergic neurons and accumulation
of misfolded proteins [3]. According to recent pathological studies, each parkinsonian
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syndrome has unique topographic patterns of iron distribution in deep brain nuclei, which
are influenced by underlying disease pathologies [4,5].

There have been many studies using advanced magnetic resonance images (MRI) to
detect the physiological mechanisms underlying PD and to distinguish APS from PD, such
as using resting-state functional MRI (fMRI) [6] or diffusion MRI [7], but these approaches
are not easy to apply in general clinical practice because they are time consuming and do
not guarantee consistent results [8]. In addition, various studies using other modalities,
including PET and SPECT, can achieve significant diagnostic relevance with respect to
imaging of PD and APS [9,10]. However, there are also some disadvantages of these
modalities, such as radiation exposure of CT [11], and obstacles to the clinical application
of PET by limited access and high examination costs [12]. These common advanced
neuroimaging techniques are summarized in Table 1.

Table 1. An overview of the common neuroimaging modalities (DTI, PET, SPECT, and SWI), role of
modality, and potential of differentiating PD and APS.

Neuroimaging Modality Role of Modality Potential of Differentiating PD and APS

Diffusion-tensor image (DTI) [7]
Detect characteristics such as fractional

anisotropy (FA) and mean diffusion
(MD)

Decreased FA and/or increased MD in
the substantia nigra, the corpus callosum,
the frontal lobes, the cingulum, and the

temporal cortex

Positron emission tomography (PET) [9]

Measure amyloid pathology, tau
pathology, a-Synuclein pathology,

metabolic activity by measuring changes
in the glucose consumption

PD-related spatial covariance pattern
may involve increased pallidothalamic

and pontine activity associated with
decreased metabolism in supplementary
motor area, premotor cortex, and parietal

association areas

Single photon emission computed
tomography (SPECT) [12]

Measure dopamine transporter (DAT)
density, dopamine D2 receptor, metabolic

activity by measuring changes in the
cerebral blood flow

Decreased striatal presynaptic DAT
binding contralateral to parkinsonian

symptomatology with greater reduction
in posterior putamen than in anterior

putamen or caudate nucleus

Susceptibility weighted image (SWI) [13] Visualize iron-related contents
sensitively

Substantia nigra pars compacta, globus
pallidus internus, the putamen, and

the red nucleus have been described as
regions with increased iron concentration

Susceptibility weighted imaging (SWI), a type of iron-sensitive MRI, is frequently
used to detect disease-specific patterns of uneven and localized iron concentration in
brain regions [13]. Figure 1 shows the sample SWI axial slices of the MSA-P, MSA-C, PSP,
and PD. Increases in iron-related signals in the anterior and medial aspects of the globus
pallidus of SWI are highly specific markers of PSP. For MSA-P, a significant accumulation
of iron is present in the lateral aspect of the globus pallidus adjacent to the putamen. In
addition, the posterolateral putaminal hypointensity and lateral-to-medial gradient appear
consistently in MSA-P SWI [14]. However, assessing the putaminal hypointensity by
focusing only on the signal intensity without accounting the distributional pattern fails to
differentiate between MSA-P from PD [15]. A generic and age-related sign of physiological
mineralization is slit-like hypointensity along the lateral margin of the putamen or evenly
distributed hypointensity throughout the putamen [16]. Therefore, finding a distinctive
pattern that distinguishes parkinsonian syndromes besides nonspecific and age-related
signs is challenging.
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Figure 1. SWI axial view of parkinsonian syndrome patients: parkinsonian variant multiple system
atrophy (MSA-P), cerebellar variant multiple system atrophy (MSA-C), progressive supranuclear
palsy (PSP), and Parkinson’s disease (PD). Increased iron-related signals in the anterior and medial as-
pects of the globus pallidus (open arrow) of SWI is a highly specific sign of PSP. For MSA-P, significant
accumulation of iron in the lateral aspect of the globus pallidus adjacent to putamen, posterolateral
putaminal hypointensity, (closed arrow) and lateral-to-medial gradient appear consistently.

To analyze the regional iron heterogeneity in deep brain nuclei without an expert
radiologist, radiomic features provide advanced quantification and classification method-
ologies based on machine learning algorithms. Radiomics can extract textural features
that express the relationship with neighboring voxels, allowing us to analyze the regional
iron deposition in the subcortical structures. It is suitable for SWI, where the signal itself
cannot be used because the SWI intensities of non-paramagnetic materials, such as white
matter (WM) and cerebrospinal fluid (CSF), are modified through the filtered phase mask
to emphasize the susceptibility in the image. There is considerable interest in the potential
of radiomics for non-invasive biomarkers in different organs and pathologies, including
neurodegenerative diseases [17].

Since radiomics is sensitive to changes in image intensities, accurate and robust
segmentation of deep gray matter (DGM) nuclei is required. Although manually viewing
the image and judging the lesion or progression is highly accurate when performed by an
expert radiologist, it has the disadvantages of high time consumption and monetary costs
to diagnose large numbers of patients. To overcome these problems, several automated
segmentation tools based on T1-weighted (T1w) images have been developed including
FreeSurfer [18,19], FMRIB software library (FSL) integrated registration and segmentation
tool (FIRST) [20], and others [21]. These techniques have been applied in multiple brain
imaging studies for examining volume and shape changes in subcortical brain regions
that may be linked to normal aging or neurodegenerative disorders. DGM segmentation
is scan–rescan reliable on the same scanning platform and between separate scanning
platforms, indicating that these tools may be used in large-scale longitudinal and multisite
studies [22,23]. However, if only T1w images are used as atlas-based tools, the segmentation
results tend to be inaccurate [24] and do not represent the patient’s hallmarks, because the
spatial correspondence of subcortical structures between an abnormal brain and standard
atlas is poor and the contrast of DGM in T1w images is insufficient [25]. Therefore, it is
necessary to develop a segmentation method that better reflects the distinctive features of
each disease using a modality other than T1w.

In this paper, we propose a novel framework that uses the SWI to automatically
analyzed the disease-specific patterns of iron accumulation. Our contributions to this study
are listed below:

• We proposed a fully automatic framework for the analysis of iron deposition patterns
in SWI.

• We developed segmentation that reflects more the contrast of iron accumulation than
conventional methods using a hybrid contrast image, which is created by image
processing and combining T1w and SWI.

• We designed machine learning classifiers trained using texture-representing features
extracted by our segmentation method.
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• We demonstrated the improved performance of the machine learning classifier for
differentiating APS using our segmentation framework.

The remainder of the paper is organized as follows. In Section 2, we propose an
automated framework for SWI segmentation and the radiomic learning model, including
hybrid image generation, DGM segmentation, radiomic feature extraction and selection,
and machine learning classifier validation. Experimental results are presented in Section 3,
wherein the proposed algorithm is validated using the patient datasets. Finally, the main
conclusions and discussions are made in Section 4.

2. Materials and Methods

In this section, we describe the details of our framework that automatically differentiate
APS using brain iron patterns in SWI. Figure 2 presents the overall framework of the
proposed method. First, a DGM mask using the advantages of both T1w and SWI was
obtained by optimally combining preprocessed and registered images. The radiomic
features were retrieved from the brain regions of interest (ROI) by adjusting the distance
between the neighboring voxels. Thereafter, a machine learning feature selection algorithm
was applied to select meaningful features that distinguish the diseases. Finally, various
machine learning classifiers were trained and tested using the selected features.

Figure 2. Overall flowchart of combining T1w and SWI, SWI segmentation, feature extraction
and selection, and disease classification. We create a hybrid image combining T1w and SWI for
iron-reflected DGM segmentation, extract texture representative features, and classify parkinsonian
disorders with the significant features selected using various machine learning algorithms.

2.1. Patients

A total of 34 MSA-P, 21 MSA-C, 17 PSP, and 56 PD patients were enrolled from the
Pusan University Yangsan Hospital. The following clinical diagnostic criteria were fulfilled
by the patients: PSP diagnosed according to the Litvan criteria [26], MSA according to clini-
cal consensus criteria [27], and PD according to the UK Brain Bank criteria [28]. Movement
Disorder Society (MDS) PSP criteria were retrospectively applied to all consecutive patients
with PSP. Twelve patients were classified as probable PSP Richardson’s syndrome (PSP-RS)
and five were classified as probable PSP with predominant Parkinsonism (PSP-P). Subjects
with microvascular lesions discovered from brain MRI were excluded. The Hoehn and
Yahr (H&Y) stage and motor examination part of the Unified Parkinson’s Disease Rating
Scale (UPDRS III) were used to measure disease severity and motor symptoms. Written
and informed consent was obtained from all subjects participating in the study, which was
approved by the Pusan National University Institutional Review Board, in accordance with
the guidelines of the Helsinki Declaration.



Diagnostics 2022, 12, 637 5 of 26

2.2. Imaging Acquisition

We obtained the 3D magnetization prepared rapid gradient echo (MPRAGE) axial or
sagittal T1w and SWI MRI volumes of 34 MSA-P, 21 cerebellar variants of MSA (MSA-C),
17 PSP, and 56 PD patients from the Pusan National University Yangsan Hospital using pro-
tocols approved by the institutional review board. The MRI scans were conducted using a
3.0T MRI scanner (Verio, Siemens, Erlangen, Germany). The T1w data were acquired under
the following sequence parameters: echo time (TE) = 2.2 ms, repetition time (TR) = 1900 ms,
inversion time (TI) = 900 ms, flip angle (FA) = 9, dimensions = 280 × 320 × 176, and voxel
size = 0.75 mm × 0.75 mm × 1 mm. The SWI data were acquired under the following
sequence parameters: TE = 20 ms, TR = 28 ms, FA = 15, dimensions = 260 × 320 × 64,
and voxel size = 0.6875 mm × 0.6875 mm × 2 mm.

2.3. Data Preprocessing and SWI Registration

We performed SWI postprocessing as the first step. Magnitude, high-pass filtered
phase images, and the processed SWI data were reconstructed automatically on a work-
station (Syngo, Siemens Medical Solution) as a DICOM file format for analysis. Then, we
created an initial segmentation mask for T1w to use when creating HC through FreeSurfer
reconstruction. Non-parametric non-uniform and intensity normalization (N4ITK) bias-
field correction [29] and intensity normalization were applied. We applied intensity nor-
malization to scale the T1w signal intensity to a predefined mean value of 110 in the white
matter (WM).

Subsequently, the SWI images were registered to the T1w images using affine trans-
form. Since the T1w and the SWI images of the same subject have identical anatomy and
head motion between scans, the two images were successfully aligned using an affine
registration. These data preprocessing are the steps before calculating weights, combining
the steps shown in Figure 3.

2.4. SWI Segmentation Using Hybrid Contrast Image

To obtain segmentation results reflecting iron-related signals, we used both the T1w
and SWI images simultaneously and merged them into a single hybrid contrast (HC)
image [30]. Since SWI provides superior contrast for iron-rich structures, while the T1w
images have greater contrast in the curvature of complicated gyrus and sulcus principally
used for registration, using the HC results in the DGM segmentation that reflects more iron
contents than using T1w alone, which better reflects the disease’s hallmarks such as nuclei
atrophy [31] caused by the iron deposition.

The HC image is defined by linearly combining T1w and SWI images:

HC = w1 · T1w + w2 · SWI , (1)

where w1 and w2 are weighting coefficients for T1w and SWI, respectively.
We adjusted the weighting coefficients w1 and w2 to make HC as close as possible

to the reference, Montreal Neurological Institute (MNI) template. We employed the MNI
template’s contrast as the target for the coefficient optimization because it has a typical
T1w contrast with outstanding DGM structural delineation. The optimized values of the
weighting coefficients w∗

1 , w∗
2 can be obtained by minimizing the squared difference of the

mean signal intensities in the target brain regions between the HC and MNI template:

(w∗
1 , w∗

2) = arg min
w1,w2

∥∥∥∥∥
[

IT1w
put ISWI

put
IT1w
pall ISWI

pall

][
w1
w2

]
−
[

IMNI
put

IMNI
pall

]∥∥∥∥∥
2

2

, (2)

where IT1w
put , ISWI

put , and IMNI
put are the mean values of the T1w, SWI, and MNI template images

in the putamen region, respectively, and IT1w
pall , ISWI

pall , and IMNI
pall are the mean values of the

T1w, SWI, and MNI template images in the globus pallidus region, respectively. We chose
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the putamen and globus pallidus for the target regions because of high-contrast signals in
the broad areas.

Figure 3. Flowchart of making a deep gray matter (DGM) mask using the T1w and SWI images. T1w
and SWI were preprocessed through normalization, bias correction, and registration. The merging
weight coefficients were calculated from initial DGM mask obtained using only T1w segmentation,
and a hybrid contrast image (HC) was created as a result. The DGM mask was obtained by registering
the HC to the MNI atlas space using non-linear registration. The final mask was obtained by applying
inverse warping to the original coordinates.

Then, we used advanced normalization tools (ANTs) to register the HC to the MNI
template by computing an initial affine registration and non-linear registration employing a
non-rigid diffeomorphic registration scheme [32]. The ANTs produced the most consistent
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and reliable registration results among 14 different registration methods [33]. The segmen-
tation results from the MNI space were inversely warped to the individual T1w image
space. The overall procedure of SWI segmentation is shown in Figure 3.

2.5. Feature Extraction and Selection

Radiomic features were extracted from the segmented DGM region of the SWI images
automatically computed in Section 2.4. The radiomic features included 19 first-order statis-
tical features, 10 2D shape-based features, 16 3D shape-based features and the following
texture-based features: 72 gray-level co-occurrence matrix (GLCM) features, 16 gray-level
run length matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features,
15 neighboring gray-tone difference matrix (NGTDM) features, and 14 gray-level depen-
dence matrix (GLDM) features [34], as shown in Figure 2. These matrices represent the
relationship with the surrounding voxels according to the kernel for each voxel. For exam-
ple, the (i, j)th element of the GLCM represents the number of times the combination of
levels i and j occur in two voxels in the image, which are separated by a distance of δ pixels
along the angle θ.

We added GLCM and NGTDM features while changing the distance to neighboring
voxels for which the relationship was calculated as four and seven voxels to the default
python radiomic package [35]. Since SWI does not provide quantitative measurements
of susceptibility, we excluded the signal-based features and focused on the texture-based
features. We subtracted the signal-based features such as the minimum, maximum, mean,
median, 10th percentile, 90th percentile of intensity, gray level range, and others. We use
only selected optimal features (see below).

Among the sub-cortical structures in the DGM, we chose the putamen to extract
radiomic features because comparing them is easy owing to the putamen’s large size and
high contrast. It shows a large difference between the mask segmented from the T1w-only
and the proposed methods. In addition, the radiomic results extracted from the putamen
showed the best performance in disease classification using machine learning [8].

Next, to avoid overfitting the learning model, feature selection was performed before
applying machine learning algorithms [36]. We employed the Fisher score algorithm to
rank the radiomic features and a filter-based method for supervised feature selection. It
chooses each feature independently according to its scores based on the Fisher criterion. We
selected the top-10 ranked features based on Fisher score. We finally applied these selected
features to classify the data using machine learning.

2.6. Machine Learning Classifier Training and Testing

To distinguish between subtypes of parkinsonian syndromes, we used the 10 most
popular machine learning classifiers [37] such as k-nearest neighbors (kNN) [38], linear
support vector machine classifier (linSVC) [39], support vector machine with radial basis
function (RBF) kernel classifier (RBFSVC) [40], Gaussian process classifier (GP) [41], random
forest classifier (RF) [42], decision tree classifier (DT) [43], multi-layer perceptron classifier
(MLP) [44], AdaBoost classifier (ADA) [45], Gaussian Naïve Bayes classifier (GNB) [46], and
quadratic discriminant analysis classifier (QDA) [47]. These classifiers have the potential
for radiomics to aid in the development of non-invasive biomarkers [48].

The total datasets were divided into training and testing sets at a 7:3 ratio. In the
training sets, features were selected, and 10 classifiers were constructed with 3-fold cross-
validation. To evaluate the performance of the classifiers for differentiation of APS, the area
under receiver operating characteristic curve (AUC), balanced accuracy (bAcc), sensitivity
(Sen), specificity (Spe), and accuracy (Acc) were measured as defined by:

Sen =
TP

TP + FN
(3)

Spe =
TN

TN + FP
(4)
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bAcc =
Sen + Spe

2
(5)

Acc =
TP + TN

TP + TN + FP + FN
(6)

where TP denotes the number of the actual positives that are correctly classified as positives,
FN denotes the number of the actual positives that are wrongly classified as negatives,
TN denotes the number of the actual negatives that are correctly classified as negatives,
and FP denotes the number of the actual negatives that are wrongly classified as positives.
The AUC metric is defined as the area under the receiver operating characteristic (ROC)
curve plotted by true positive rate (TPR, equivalent to sensitivity) against false positive
rate (FPR, equivalent to 1 − specificity) with varying thresholds. For statistical evaluation,
the performance metrics were obtained by randomly changing the training and testing
sets 100 times and averaged. The source code is available in GitHub: https://github.com/
KimYunSoo/classify_radiomic (accessed on 22 January 2022).

3. Results
3.1. Demographic Characteristics

The demographic and clinical characteristics of the subject groups are listed in Table 2.
There were no significant differences between subject groups in terms of gender distribution.
Age was higher in the PSP group than other groups. There was no discernible difference
in disease duration between MSA-P, MSA-C, PSP, and PD. The disease severity measured
using the UPDRS and H&Y scores was greater in the PSP and MSA groups than the PD
group, and MMSE was lower in the PSP and MSA groups than the PD group (p < 0.001).

Table 2. Clinical and demographic characteristics of patients.

MSA-P MSA-C PSP PD Significance

Gender (M/F) 13/21 9/12 11/6 32/24
p = 0.179

χ2(3) = 4.894

Age (years) 59.05 ± 7.83 58.95 ± 6.30 65.64 ± 5.58 56.85 ± 7.60
p < 0.001

F(3,124) = 6.052

UPDRS-III 39.73 ± 12.86 30.80 ± 9.73 35.94 ± 8.15 24.33 ± 9.57
p < 0.001

F(3,124) = 16.597

H-Y stage 3.10 ± 0.76 3.14 ± 0.61 3.5 ± 0.75 2.02 ± 0.51
p < 0.001

F(3,124) = 36.885

Duration (months) 30.23 ± 15.25 30.52 ± 13.62 31.11 ± 18.09 35.41 ± 22.23
p = 0.661

F(3,124) = 0.532

MMSE 25.44 ± 2.73 24.76 ± 3.23 23.82 ± 4.03 26.89 ± 2.41
p < 0.001

F(3,124) = 6.395

The data are presented as number or mean ± standard deviation. For continuous variables, values are expressed
as F statistics, while for categorical variables, values are expressed as χ2 statistics. MSA-P : parkinsonian variant
of multiple system atrophy, MSA-C: cerebellar variant of multiple system atrophy, PSP: progressive supranuclear
palsy, PD: Parkinson’s disease, UPDRS III: motor examination part of the Unified Parkinson’s Disease Rating
Scale, H-Y: Hoehn & Yahr.

3.2. SWI Segmentation Results

Figure 4 shows an example of axial slices around the DGM area in the T1w, SWI, and
HC images. The DGM contrast is weak and the cortex contrast is clear in the T1w, while the
trend is opposite for SWI. Whereas, the HC shows high contrast clearly for both the DGM
and cortex. Figure 5 shows that the proposed approach produces segmentation results that
better represent hypointensity indicating iron concentration in putamen SWI images. HC
segmentation masks that use both T1w and SWI simultaneously reflect more hallmarks
of parkinsonian disorders, such as iron accumulation and the resulting putamen atrophy,
than T1w-only masks.

https://github.com/KimYunSoo/classify_radiomic
https://github.com/KimYunSoo/classify_radiomic
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Figure 4. Deep gray matter (DGM) axial slice in T1w, SWI, and HC images. HC has both a high
contrast cortex, which is the advantage of T1w, and a more prominent DGM boundary, which is
visible in the SWI.

Figure 5. Putamen mask of segmentation result of using only T1-weighted image (FreeSurfer) and
using T1w and SWI (proposed method) with SWI overlaid. The segmentation result using only T1w
includes the part without iron accumulation when overlaid with the SWI (yellow). The proposed
method reflects more of the iron deposition (red).

3.3. Feature Extraction and Selection Results

Table 3 shows the 10 most significant features selected from SWI for the differentiation
of MSA-P and PD when using HC and T1w-only (by FreeSurfer, FS) segmentation masks
and their mean values. Autocorrelation7, SumAverage4, JointAverage4, SumAverage7,
JointAverage7, and Imc24 in GLCM and HighGrayLevelEmphasis in GLDM were com-
monly selected both in HC and T1w-only segmentation. Imc24 is the correlation between
the probability distribution of intensity and occurrence number, quantifying the complex-
ity of the texture, by neighboring voxel distances of 4. JointAverage7 and SumAverage7
(JointAverage4 and SumAverage4) measure the relationship between occurrences of pairs
by neighboring voxel distances of 7 (4, respectively) with lower or higher intensity values.
These indicate that the number of pairs of lower or higher intensities helps to differentiate
between diseases. HighGrayLevelEmphasis in GLDM measures the distribution of the
higher gray-level values with a higher value indicating a greater concentration of high
gray-level values in the volume. In addition, in the case of comparison with other dis-
ease groups as shown in Tables A1–A5, ClusterShade4 and MCC4 were also found to be
common in HC and T1w-only. ClusterShade4 is a metric of the skewness and uniformity
of the GLCM by neighboring voxel distances of 4 [49]. MCC4 is the maximal correlation
coefficient for nearby voxel distances of 4, which also assesses the complexity of the texture.
These features represent how dependent and uniform the distributions are.
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Table 3. Mean values of top 10 features selected from SWI when comparing MSA-P and PD using HC
and T1w-only segmentation masks. Common features found both in HC and T1w-only segmentation
are indicated in bold.

Features by HC MSA-P PD Features by T1w-Only MSA-P PD

glrlm_ShortRunHigh-
GrayLevelEmphasis 51.2291 20.3952 glcm_MCC4 0.4166 0.2744

glcm_Autocorrelation7 69.2407 27.9998 glcm_Imc24 0.5665 0.364
glcm_JointAverage7 8.1353 5.1994 glcm_JointAverage7 8.4094 5.5243
glcm_SumAverage7 16.2706 10.3988 glcm_SumAverage7 16.8187 11.0487
gldm_HighGrayLevelEmphasis 64.9219 27.8777 gldm_DependenceVariance 23.2205 27.8954
glrlm_HighGrayLevelRunEmphasis 64.0086 28.202 glrlm_GrayLevelNonUniformity 344.9109 652.5307
glcm_Imc24 0.5442 0.3244 glcm_Autocorrelation7 72.6811 31.5304
glcm_Autocorrelation4 63.6349 26.3972 glcm_SumAverage4 16.1899 10.7769
glcm_SumAverage4 15.5239 10.0885 glcm_JointAverage4 8.095 5.3884
glcm_JointAverage4 7.762 5.0443 gldm_HighGrayLevelEmphasis 75.7005 32.9521

The significant features only selected using HC mask include Autocorrelation4 in
GLCM and HighGrayLevelRunEmphasis in GLRLM. Autocorrelation4 quantifies the mag-
nitude of texture coarseness by neighboring voxel distances of 4; therefore, it operates
more effectively in the HC segmentation mask as clusters of similar intensities appear
better in HC than in T1w-only mask, which includes regions that are not iron-deposited.
HighGrayLevelRunEmphasis in GLRLM measures the distribution of the higher gray-level
values. RunEntropy and ShortRunHighGrayLevelEmphasis in GLRLM are also common
when using HC masks in other disease group comparisons. RunEntropy is a metric that
evaluates the uncertainty and randomness in the distribution of run lengths and gray
levels. Therefore, heterogeneity in the texture patterns measure by RunEntropy is helpful
in classifying each disorder. ShortRunHighGrayLevelEmphasis assesses the distribution of
the high gray-level values and their joint distribution with shorter run lengths in GLRLM.
The feature indicates how concentrated hyperintensities in SWI are, which is significant for
distinguishing each subtype of parkinsonian disorder.

The significant features selected using T1w-only segmentation include GrayLevel-
NonUniformity in GLRLM and DependenceVariance in GLDM. GrayLevelNonUniformity
is a metric that compares the similarity of the SWI image’s gray-level intensity values.
The variance in dependence size in the image is measured by DependenceVariance. More-
over, in other disorder comparison cases, LargeDependenceHighGrayLevelEmphasis in the
GLDM and Strength in NGTDM were frequently selected features using the T1w-only mask.
LargeDependenceHighGrayLevelEmphasis in GLDM is the metric of joint distribution of
substantial reliance on it. Strength in NGTDM measures how easily defined and visible the
primitives in the image are. These all work mainly in the T1w-only mask, where there are
both hypo- and hyper-intensity clusters together, because the T1w-only mask is likely to
include the region without iron deposition (see Figure 5).

3.4. SVM Results

Table 4 lists the training and testing area under the receiver operating characteristic
curve (AUC) of the RBF SVM classifier employing features from the T1w-only and HC
masks. The SVM with RBF kernel that learns the radiomic features extracted from iron-
reflected segmentation results produced an average AUC of 0.8607 in training and 0.8489 in
testing. T1w-only mask-based radiomic training classifiers had an average AUC of 0.7570
in training and 0.7866 in testing. The classifier model trained with features extracted using
the HC mask shows better performance than the T1w-only mask-based SVM classifier.
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Table 4. RBF SVM classifier training and testing AUC when using HC and T1w-only segmenta-
tion masks. The classifier model trained with features extracted using HC masks showed 0.1037
higher AUC for training and 0.062 higher AUC for testing compared to the T1w-only mask-based
SVM classifier.

Differentiating
Diseases

Train AUC Test AUC
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8856 0.8242 0.8699 0.8263
MSA-P vs. PD 0.8938 0.8537 0.9032 0.8561
MSA-P vs. PSP 0.8825 0.8245 0.8869 0.8499
MSA-C vs. PD 0.6731 0.5878 0.6820 0.6193
MSA-C vs. PSP 0.8883 0.6796 0.8180 0.7578

PD vs. PSP 0.9411 0.7724 0.9338 0.8104
AUC: area under the receiver operating characteristic (ROC) curve.

The RBF SVM classifier receiver operating characteristic (ROC) curves for each disease
distinguishing case are shown in Figures A1–A6. Through other classification algorithms,
it was confirmed that the performance of the proposed method is improved compared to
the T1w-only method in the same way as the RBF SVM.

The balanced accuracy, sensitivity, and specificity of the RBF SVM classifier using
features from T1w-only masks and HC masks are listed in Table 5. The machine learning
classifier that learns the SWI-reflected radiomic features produced an average balanced
accuracy of 0.7666 for the training cohort and 0.7992 for the testing cohort. The classifier
model trained by radiomics extracted from T1w-only segmentation masks achieved 0.6557
in training and 0.7620 in testing.

Table 5. RBF SVM classifier training and testing balanced accuracy, sensitivity, and specificity when
using HC and T1w-only segmentation masks. The classifier model trained with features extracted
using HC masks outperformed the SVM classifier based on T1w-only masks by 0.1109 in training
and 0.0372 in testing in terms of the balanced accuracy.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7931 0.8472 0.7390 0.7005 0.8045 0.5963 0.7922 0.8662 0.7183 0.7313 0.8298 0.6327
MSA-P vs. PD 0.9120 0.8865 0.8937 0.8482 0.8316 0.8647 0.8981 0.9046 0.8917 0.8800 0.8958 0.8642
MSA-P vs. PSP 0.7790 0.8707 0.6874 0.6023 0.7854 0.4193 0.7862 0.8802 0.6922 0.7535 0.8345 0.6725
MSA-C vs. PD 0.7863 0.7727 0.7999 0.7516 0.7335 0.7698 0.7899 0.7988 0.7810 0.7872 0.8031 0.7714
MSA-C vs. PSP 0.7470 0.8045 0.6895 0.5491 0.6714 0.4269 0.7262 0.8020 0.6505 0.6828 0.6838 0.6818

PD vs. PSP 0.5823 0.7914 0.3732 0.4826 0.7757 0.1894 0.8027 0.8194 0.7860 0.7376 0.7807 0.0776

bAcc : balanced accuracy, Sen: sensitivity, Spe: specificity.

The classifier that was trained on the radiomic features extracted by the proposed
method achieved an average accuracy of 0.8000 in training and 0.8059 in testing, as shown
in Table 6. Conventional T1w-only segmentation classifiers had an accuracy of 0.7352 in
training and 0.7653 in testing.

The AUC, balanced accuracy, sensitivity, specificity, and accuracy of all other classifiers
are listed in Tables A6–A32. Similar to the RBF SVM, in other classifier models, the AUC,
balanced accuracy, and accuracy increased when HC masks reflecting iron-related signal
were used.
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Table 6. RBF SVM classifier training and testing accuracy when using HC and T1w-only segmentation
masks. The HC trained classifier distinguishes disorders better than the T1w-only trained classifier
by 0.0648 in training and 0.0406 in testing.

Differentiating
Diseases

Train ACC Test ACC
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7972 0.7336 0.8018 0.7552
MSA-P vs. PD 0.8944 0.8544 0.8928 0.8571
MSA-P vs. PSP 0.8087 0.6902 0.8135 0.7692
MSA-C vs. PD 0.7960 0.7682 0.7804 0.7708
MSA-C vs. PSP 0.7172 0.5973 0.7288 0.6616

PD vs. PSP 0.7867 0.7676 0.8184 0.778
ACC: accuracy.

4. Discussion and Conclusions

In this paper, we proposed a novel framework that automatically analyzes the disease-
specific patterns of iron deposition using SWI. Through this proposed framework, by di-
rectly inputting raw data, the results of disease classification by automated processing
without any human intervention can be applied to diagnosis.

Atypical Parkinsonian syndromes, such as MSA-P, MSA-C, and PSP, can be mistaken
for PD, especially in the early stages of the disease. This is because both APS and PD
are present with Parkinsonism. Therefore, it is critical to distinguish between PD and
APS; nevertheless, conventional MRI still makes it difficult to discriminate between these
neurodegenerative disorders.

We demonstrated that in individuals with abnormal brain anatomy, the commonly
used T1w-only segmentation pipeline produces erroneous subcortical segmentation. The
goal of this study was to overcome this issue by modifying the conventional pipeline that
incorporates nonlinear registration and by using a dedicated hybrid image contrast created
by combining standard T1w images with SWI. By using the HC, which is a combination
of the T1w and SWI, for the DGM segmentation, it is possible to identify iron deposition
automatically without manual segmentation by expert radiologists, as was done in the past.
We have visually shown that putamen segmentation performance was improved by using
both the T1w and SWI.

We conducted a qualitative assessment of the visual delineation of our segmentation
framework results. If there is a manual segmentation mask by an expert, it can be used as
the gold standard, and objective and quantitative evaluation can be performed through
metrics such as the dice coefficient. However, manual segmentation performed by experts
is costly and time consuming. Some studies have used visual ratings as metrics [50].

Another goal of the present study was to a create machine learning classifier that can
distinguish APS from PD using image texture-based features derived from basal nuclei on
SWI. Different iron deposition patterns for each disease were compared by extracting quan-
tified radiomic features. The distinction between each subtype of parkinsonian disorder
groups was better exposed by the features retrieved with the SWI-reflected mask. When
classifying diseases using various machine learning algorithms, it was confirmed that the
performance of the classifier improved by training features extracted from the HC.

We recognize the lack of pathological confirmation for diagnosis and phenotypic
categorization, which remain the gold standard for the diagnosis of PSP. However, we
selected patients with the typical clinical characteristics of MSA, PSP and PD, and assessed
these patients over several years.

We used the texture features of the signal intensity contrast to train the machine
learning classifiers. Since SWI does not represent a quantified value of iron content,
the quantitative values of iron deposition were not measured. We used only texture
features because we intended to classify disorders by analyzing the image patterns of
each disease and not to create a reference point or threshold with a quantified number.
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Although we did not directly compare the quantitative values, we indirectly demonstrated
the improvement of segmentation through outperforming the machine learning classifier.

In future work, we will validate the proposed framework more clinically using R2*. In
addition, we will aim to apply our hybrid approach of brain tissue segmentation in other
PET-MRI modalities.
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Appendix A

Figures A1–A6 show the receiver operating characteristic (ROC) curves for each
differentiating disease case. As in the RBF SVM, in other algorithms, the classifiers that
learned the features extracted using HC masks performed better overall in terms of the AUC,
balanced accuracy, and accuracy compared to the models trained using the conventional
T1w-only masks.

Figure A1. Receiver operating characteristic (ROC) curves of the RBF SVM classifier for MSA-P
vs. MSA-C.
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Figure A2. Receiver operating characteristic (ROC) curves of the RBF SVM classifier for MSA-P
vs. PD.

Figure A3. Receiver-operating characteristic (ROC) curves of the RBF SVM classifier for MSA-P
vs. PSP.

Figure A4. Receiver operating characteristic (ROC) curves of the RBF SVM classifier for MSA-C
vs. PD.
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Figure A5. Receiver operating characteristic (ROC) curves of the RBF SVM classifier for MSA-C
vs. PSP.

Figure A6. Receiver operating characteristic (ROC) curves of the RBF SVM classifier for PD vs. PSP.

Appendix B

Appendix B.1

Table A1 list the mean values of the features with HC and T1w-only masks when
comparing MSA-P and MSA-C.
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Table A1. Mean values of the features of each subtype of disease.

HC Features MSA-P MSA-C T1w-Only Features MSA-P MSA-C

glszm_GrayLevelVariance 6.8645 4.0758 glcm_Id4 0.4473 0.5428
glszm_HighGrayLevel-ZoneEmphasis 70.981 40.6072 glcm_ClusterTendency7 8.4945 3.201
ngtdm_Strength 0.2515 0.0898 ngtdm_Strength 0.2409 0.085
ngtdm_Strength4 0.1409 0.0534 gldm_SmallDependenceEmphasis 0.0638 0.0331

ngtdm_Strength7 0.1223 0.0495 gldm_SmallDependence- 0.0021 0.0016LowGrayLevelEmphasis
glrlm_ShortRunHigh- 51.2291 24.4967 glcm_ClusterShade −61.4694 −7.7083GrayLevelEmphasis
glcm_Imc24 0.5442 0.3803 glcm_SumSquares4 6.3807 1.9578
glcm_JointAverage7 8.1353 5.728 glcm_Idm4 0.3788 0.4915
glcm_SumAverage7 16.2706 11.4561 glcm_ClusterShade4 −12.6393 −2.0909
glszm_SmallAreaHigh- 34.8355 18.1394 gldm_DependenceVariance 23.2205 27.458
GrayLevelEmphasis

Appendix B.2

Table A2 lists the mean values of the features with HC and T1w-only masks when
comparing MSA-P and PSP.

Table A2. Mean values of the features of each subtype of disease.

HC Features MSA-P PD T1w-Only Features MSA-P PD

glszm_ZoneVariance 10,415.4 16,002.22 ngtdm_Busyness4 6.2355 13.1834
ngtdm_Busyness 3.2868 6.393 glcm_DifferenceAverage7 2.6958 1.9655
glcm_JointAverage4 7.762 5.2133 gldm_GrayLevelNonUniformity 556.3621 736.7501

glcm_ClusterShade4 −11.6021 −0.0316
gldm_LargeDependence-
HighGrayLevelEmphasis 7484.096 3824.813

gldm_SmallDependence-
LowGrayLevelEmphasis 0.0027 0.0028 ngtdm_Strength 0.2409 0.1118

gldm_GrayLevelNonUniformity 438.2295 550.6763 gldm_HighGrayLevelEmphasis 75.7005 38.6685
gldm_DependenceNonUniformity 186.9766 175.5947 glcm_Idn4 0.8595 0.8683
glcm_Imc14 −0.074 −0.0451 glcm_DifferenceVariance4 4.8392 2.0783
glcm_MCC4 0.3823 0.2921 glrlm_GrayLevelNonUniformity 344.9109 470.024

glcm_Autocorrelation4 63.6349 28.8556
glszm_HighGrayLevel-
ZoneEmphasis 75.1588 47.8979

Appendix B.3

Table A3 lists the mean values of the features with HC and T1w-only masks when
comparing MSA-C and PD.

Table A3. Mean values of the features of each subtype of disease.

HC Features MSA-C PD T1w-Only Features MSA-C PD

glcm_ClusterShade −7.7694 −1.3529 glcm_ClusterShade4 −2.0909 0.5222
glcm_ClusterShade4 −2.4839 −0.4058 glcm_ClusterShade −7.7083 −0.0626
glcm_MCC4 0.2742 0.2319 glcm_MCC4 0.3167 0.2744
glcm_Imc14 −0.0384 −0.0291 glcm_JointAverage7 5.8946 5.5243
glcm_Imc24 0.3803 0.3244 glcm_ClusterShade7 −1.1194 −0.1304
glrlm_RunEntropy 3.8955 3.7793 gldm_DependenceVariance 27.458 27.8954
glcm_ClusterShade7 −1.1463 −0.3319 glcm_Imc24 0.422 0.364
gldm_DependenceEntropy 6.499 6.3396 glcm_Imc1 −0.2039 −0.1892
glrlm_GrayLevelNon-
UniformityNormalized 0.2082 0.2397 gldm_DependenceEntropy 6.6475 6.518

glcm_SumEntropy 3.1802 2.9418 glcm_MCC 0.6602 0.6362
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Appendix B.4

Table A4 lists the mean values of the features with HC and T1w-only masks when
comparing MSA-C and PSP.

Table A4. Mean values of the features of each subtype of disease.

HC Features MSA-P PD T1w-Only Features MSA-P PD

glcm_MCC 0.6103 0.6006 gldm_DependenceVariance 27.458 21.3893

glrlm_RunEntropy 3.8955 3.8289
gldm_DependenceNon-
UniformityNormalized 0.0555 0.0642

glcm_JointAverage7 5.728 5.4607 ngtdm_Coarseness 0.0024 0.0028
glcm_Imc24 0.3803 0.4196 glrlm_RunEntropy 4.0075 4.0395

glcm_MCC4 0.2742 0.2921
glszm_LargeAreaHigh-
GrayLevelEmphasis 1,495,719 946,080.3

gldm_LargeDependence-
LowGrayLevelEmphasis 6.085 6.0346

glszm_LargeAreaLow-
GrayLevelEmphasis 1948.349 1398.383

gldm_DependenceNonUniformity 195.5685 175.5947 glszm_LowGrayLevelZoneEmphasis 0.0673 0.0777
glszm_ZoneVariance 31,931.73 16,002.22 gldm_LargeDependenceEmphasis 138.6942 109.827
glszm_SmallAreaLow-
GrayLevelEmphasis 0.0275 0.0305 gldm_GrayLevelVariance 2.1446 2.9733

glszm_ZoneEntropy 5.0788 5.0619
gldm_SmallDependence-
LowGrayLevelEmphasis 0.0016 0.002

Appendix B.5

Table A5 lists the mean values of the features with HC and T1w-only masks when
comparing PD and PSP.

Table A5. Mean values of the features of each subtype of disease.

HC Features MSA-P PD T1w-Only Features MSA-P PD

glcm_Autocorrelation7 27.9998 31.5698 glcm_SumEntropy4 2.7913 3.1555
glcm_Contrast7 2.7699 4.5716 glcm_SumAverage7 11.0487 11.8343
gldm_LargeDependenceHigh-
GrayLevelEmphasis 3796.027 2722.489 gldm_HighGrayLevelEmphasis 32.9521 38.6685

glrlm_RunEntropy 3.7793 3.8289
gldm_LargeDependence-
HighGrayLevelEmphasis 4652.988 3824.813

glcm_DifferenceAverage4 1.1238 1.4629 gldm_LowGrayLevelEmphasis 0.0474 0.0488
gldm_DependenceVariance 27.5647 19.9317 glszm_ZonePercentage 0.0192 0.0266
glcm_ClusterProminence4 29.37 74.0809 glcm_JointEnergy4 0.0702 0.0402
glcm_JointAverage4 5.0443 5.2133 glcm_ClusterShade -0.0626 0.2446
glcm_Imc24 0.3244 0.4196 glcm_DifferenceEntropy4 2.007 2.306
glrlm_RunPercentage 0.6247 0.6961 glszm_SizeZoneNonUniformity 17.0448 19.3692

Appendix C

Appendix C.1

Tables A6–A8 list the results of the classifier trained with k-nearest neighbor (kNN).
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Table A6. kNN classifier training and testing AUC when using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8589 0.7677 0.8621 0.7910
MSA-P vs. PD 0.8839 0.8203 0.8865 0.8340
MSA-P vs. PSP 0.8357 0.8356 0.8569 0.8272
MSA-C vs. PD 0.6870 0.6613 0.6805 0.6613
MSA-C vs. PSP 0.7908 0.7855 0.7932 0.7813

PD vs. PSP 0.8895 0.7323 0.8761 0.8369

Table A7. kNN classifier training and testing balanced accuracy, sensitivity, and specificity using HC
and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7915 0.8581 0.7250 0.6843 0.7889 0.5797 0.7906 0.8542 0.7269 0.7108 0.8054 0.6161
MSA-P vs. PD 0.8775 0.8682 0.8868 0.8057 0.7711 0.8402 0.8569 0.8259 0.8879 0.7924 0.7226 0.8622
MSA-P vs. PSP 0.7791 0.8574 0.7009 0.7712 0.8403 0.7020 0.8101 0.8803 0.7399 0.7867 0.8860 0.6874
MSA-C vs. PD 0.6513 0.4944 0.8082 0.6604 0.5292 0.7915 0.6779 0.5617 0.7949 0.6347 0.4776 0.7918
MSA-C vs. PSP 0.7196 0.7360 0.7032 0.6741 0.7237 0.6246 0.7242 0.7380 0.7103 0.6973 0.7305 0.6642

PD vs. PSP 0.8315 0.9033 0.7597 0.6147 0.8178 0.4116 0.8094 0.8981 0.7207 0.7330 0.8731 0.5928

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A8. kNN classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7955 0.6970 0.8006 0.7333
MSA-P vs. PD 0.8789 0.8163 0.8642 0.8095
MSA-P vs. PSP 0.8055 0.7929 0.8277 0.8123
MSA-C vs. PD 0.7387 0.7379 0.7420 0.722
MSA-C vs. PSP 0.7070 0.6644 0.7167 0.7016

PD vs. PSP 0.8667 0.7324 0.8569 0.8116

Appendix C.2

Comparison of the linear support vector machine (linSVM) classifier is given in
Tables A9–A11.

Table A9. linSVM classifier training and testing AUC when using HC and T1w-only segmenta-
tion masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8809 0.8790 0.8703 0.8631
MSA-P vs. PD 0.9159 0.8902 0.9156 0.8799
MSA-P vs. PSP 0.8840 0.8882 0.8928 0.8821
MSA-C vs. PD 0.7314 0.7097 0.7408 0.7261
MSA-C vs. PSP 0.9694 0.9349 0.9381 0.9300

PD vs. PSP 0.9433 0.8232 0.9346 0.8294
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Table A10. linSVM classifier training and testing balanced accuracy, sensitivity, and specificity using
HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7995 0.8693 0.7297 0.7540 0.8907 0.6173 0.7832 0.8562 0.7102 0.7700 0.8962 0.6437
MSA-P vs. PD 0.8998 0.9178 0.8818 0.8593 0.8524 0.8662 0.8964 0.9075 0.8854 0.8495 0.8383 0.8607
MSA-P vs. PSP 0.7720 0.8705 0.6735 0.7459 0.8376 0.6542 0.7904 0.8824 0.6983 0.7733 0.8834 0.6633
MSA-C vs. PD 0.7830 0.7737 0.7923 0.7899 0.8111 0.7687 0.8212 0.8753 0.7670 0.7854 0.8026 0.7682
MSA-C vs. PSP 0.9038 0.8987 0.9089 0.8210 0.8166 0.8254 0.8573 0.8552 0.8594 0.8500 0.8355 0.8645

PD vs. PSP 0.8291 0.9108 0.7475 0.6747 0.8329 0.5166 0.8314 0.9140 0.7489 0.7377 0.8481 0.6272

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A11. linSVM classifier training and testing accuracy using HC and T1w-only segmenta-
tion masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8052 0.7890 0.7921 0.7738
MSA-P vs. PD 0.8926 0.8619 0.8892 0.8392
MSA-P vs. PSP 0.8002 0.7732 0.8161 0.8019
MSA-C vs. PD 0.7883 0.7697 0.7691 0.7670
MSA-C vs. PSP 0.8907 0.8125 0.8419 0.8340

PD vs. PSP 0.8638 0.7781 0.8742 0.8127

Appendix C.3

Tables A12–A14 list the results of the Gaussian process (GP) based classifier.

Table A12. GP classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7420 0.6935 0.8529 0.6632
MSA-P vs. PD 0.9243 0.8753 0.9141 0.8790
MSA-P vs. PSP 0.8880 0.8277 0.8936 0.8735
MSA-C vs. PD 0.7018 0.6893 0.7185 0.6957
MSA-C vs. PSP 0.7354 0.7274 0.7574 0.7322

PD vs. PSP 0.6305 0.5029 0.5221 0.5000

Table A13. GP classifier training and testing balanced accuracy, sensitivity, and specificity when
using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7357 0.7826 0.6887 0.6948 0.7990 0.5905 0.7868 0.8738 0.6998 0.7388 0.8015 0.6762
MSA-P vs. PD 0.8916 0.8982 0.8849 0.8449 0.8238 0.8661 0.9024 0.9097 0.8951 0.8800 0.8958 0.8642
MSA-P vs. PSP 0.7412 0.8423 0.6401 0.7171 0.8159 0.6182 0.7590 0.8596 0.6584 0.7393 0.8532 0.6253
MSA-C vs. PD 0.7858 0.7922 0.7794 0.7781 0.7555 0.8006 0.7993 0.818 0.7806 0.7824 0.7836 0.7812
MSA-C vs. PSP 0.6655 0.7110 0.6201 0.6098 0.5594 0.6603 0.7171 0.7104 0.7238 0.6076 0.5661 0.6491

PD vs. PSP 0.7260 0.7909 0.6611 0.5803 0.8032 0.3574 0.7718 0.8081 0.7355 0.7699 0.7990 0.7408

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.
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Table A14. GP classifier training and testing accuracy when using HC and T1w-only segmenta-
tion masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7515 0.7369 0.7933 0.7682
MSA-P vs. PD 0.8901 0.8530 0.8964 0.8571
MSA-P vs. PSP 0.7918 0.7690 0.8032 0.7884
MSA-C vs. PD 0.7929 0.78 0.7816 0.7770
MSA-C vs. PSP 0.6720 0.5594 0.7096 0.5661

PD vs. PSP 0.7857 0.7505 0.8033 0.8009

Appendix C.4

Tables A15–A17 list the performances of the classifier that learned radiomic features
based on random forest (RF).

Table A15. RF classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8725 0.7894 0.8840 0.8504
MSA-P vs. PD 0.9135 0.8400 0.9078 0.8553
MSA-P vs. PSP 0.8462 0.8418 0.8632 0.8497
MSA-C vs. PD 0.7159 0.6951 0.7099 0.6649
MSA-C vs. PSP 0.9641 0.8880 0.9458 0.8152

PD vs. PSP 0.8896 0.8260 0.8869 0.8648

Table A16. RF classifier training and testing balanced accuracy, sensitivity, and specificity using HC
and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.8168 0.8737 0.7599 0.7366 0.8170 0.6561 0.8138 0.8863 0.7412 0.7826 0.8847 0.6804
MSA-P vs. PD 0.8879 0.8924 0.8833 0.8301 0.8088 0.8514 0.8924 0.9013 0.8835 0.8645 0.8573 0.8717
MSA-P vs. PSP 0.7734 0.8299 0.7169 0.7262 0.8144 0.6380 0.7781 0.8530 0.7032 0.7753 0.8529 0.6976
MSA-C vs. PD 0.7196 0.6327 0.8065 0.7101 0.6278 0.7924 0.7359 0.6821 0.7898 0.7192 0.6453 0.7932
MSA-C vs. PSP 0.8920 0.8921 0.8918 0.7960 0.8117 0.7803 0.8674 0.8612 0.8736 0.8192 0.8233 0.8152

PD vs. PSP 0.7798 0.8696 0.6901 0.6968 0.8322 0.5614 0.7822 0.8772 0.6872 0.7234 0.8523 0.5945

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A17. RF classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.826 0.7475 0.8212 0.7902
MSA-P vs. PD 0.8855 0.8363 0.8857 0.8571
MSA-P vs. PSP 0.7941 0.7643 0.7994 0.7987
MSA-C vs. PD 0.7762 0.7639 0.7691 0.7670
MSA-C vs. PSP 0.8884 0.7839 0.8517 0.8083

PD vs. PSP 0.8295 0.7762 0.8336 0.8051

Appendix C.5

Decision tree (DT) classifier results are listed in Tables A18–A20.
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Table A18. DT classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7789 0.6615 0.7528 0.7000
MSA-P vs. PD 0.8568 0.7556 0.8688 0.7521
MSA-P vs. PSP 0.7426 0.7495 0.7631 0.7577
MSA-C vs. PD 0.6427 0.6192 0.6465 0.6208
MSA-C vs. PSP 0.8734 0.7890 0.8412 0.8180

PD vs. PSP 0.7453 0.6802 0.7433 0.7119

Table A19. DT classifier training and testing balanced accuracy, sensitivity, and specificity using HC
and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7650 0.8261 0.7040 0.6463 0.7504 0.5423 0.7409 0.8213 0.6605 0.6976 0.7371 0.6581
MSA-P vs. PD 0.8510 0.8383 0.8637 0.7745 0.7153 0.8337 0.8439 0.8189 0.8689 0.7752 0.6838 0.8666
MSA-P vs. PSP 0.7487 0.8268 0.6706 0.7375 0.8244 0.6507 0.7317 0.8353 0.6280 0.7271 0.8210 0.6332
MSA-C vs. PD 0.6842 0.5587 0.8096 0.6366 0.4693 0.8039 0.6529 0.5105 0.7953 0.6483 0.5017 0.7948
MSA-C vs. PSP 0.8725 0.8911 0.8539 0.7911 0.8082 0.7741 0.8438 0.8618 0.8257 0.8316 0.8295 0.8336

PD vs. PSP 0.7743 0.8768 0.6718 0.6794 0.8506 0.5082 0.7390 0.8808 0.5971 0.6934 0.8588 0.5281

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A20. DT classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7712 0.6859 0.7539 0.7132
MSA-P vs. PD 0.8528 0.7888 0.8517 0.8035
MSA-P vs. PSP 0.7714 0.7746 0.7574 0.7561
MSA-C vs. PD 0.7497 0.7247 0.7329 0.7141
MSA-C vs. PSP 0.8712 0.7757 0.8378 0.8267

PD vs. PSP 0.8295 0.7581 0.8116 0.7878

Appendix C.6

The performances of the classifier trained with multi-layer perceptron (MLP), also
known as Neural Net (NN), are listed in Tables A21–A23.

Table A21. MLP classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8750 0.7818 0.8768 0.8620
MSA-P vs. PD 0.9029 0.8714 0.9157 0.8770
MSA-P vs. PSP 0.8924 0.8753 0.9072 0.9000
MSA-C vs. PD 0.8084 0.7798 0.7900 0.7841
MSA-C vs. PSP 0.7850 0.6870 0.7597 0.6539

PD vs. PSP 0.8564 0.8097 0.8145 0.7541
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Table A22. MLP classifier training and testing balanced accuracy, sensitivity, and specificity using
HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.6173 0.7607 0.4738 0.5687 0.6483 0.4891 0.7645 0.8367 0.6922 0.7135 0.8134 0.6136
MSA-P vs. PD 0.8054 0.8361 0.7748 0.6748 0.7015 0.6481 0.8951 0.9073 0.8830 0.8800 0.8958 0.8642
MSA-P vs. PSP 0.6904 0.8071 0.5738 0.6786 0.8146 0.5426 0.6416 0.8138 0.4693 0.6128 0.8051 0.4205
MSA-C vs. PD 0.7680 0.7275 0.8084 0.7364 0.6929 0.7798 0.7707 0.7514 0.7900 0.7386 0.6932 0.7841
MSA-C vs. PSP 0.5938 0.6532 0.5343 0.5134 0.5657 0.4612 0.5476 0.6254 0.4698 0.5056 0.4102 0.6010

PD vs. PSP 0.6555 0.7990 0.5121 0.6426 0.7833 0.5019 0.6943 0.7969 0.5918 0.6826 0.8099 0.5552

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A23. MLP classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7021 0.6444 0.7812 0.7575
MSA-P vs. PD 0.8153 0.7072 0.8875 0.8571
MSA-P vs. PSP 0.7886 0.7740 0.7890 0.7748
MSA-C vs. PD 0.7956 0.7685 0.7829 0.7725
MSA-C vs. PSP 0.6643 0.5643 0.6493 0.5172

PD vs. PSP 0.7705 0.7562 0.7551 0.7502

Appendix C.7

The results of the classifier trained based on AdaBoost (ADA) are listed in Tables A24–A26.

Table A24. ADA classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8470 0.7486 0.8487 0.8287
MSA-P vs. PD 0.9079 0.8164 0.9021 0.8328
MSA-P vs. PSP 0.8697 0.8534 0.8426 0.8417
MSA-C vs. PD 0.7000 0.6536 0.6999 0.6743
MSA-C vs. PSP 0.9508 0.8884 0.9281 0.8939

PD vs. PSP 0.8789 0.7960 0.8806 0.8538

Table A25. ADA classifier training and testing balanced accuracy, sensitivity, and specificity using
HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7619 0.8150 0.7088 0.6497 0.7368 0.5626 0.7486 0.8155 0.6816 0.7431 0.8158 0.6705
MSA-P vs. PD 0.8467 0.8163 0.8771 0.7562 0.6793 0.8330 0.8390 0.7969 0.8811 0.7770 0.7254 0.8286
MSA-P vs. PSP 0.7742 0.8378 0.7105 0.7450 0.8252 0.6648 0.7442 0.8369 0.6514 0.7275 0.8311 0.6239
MSA-C vs. PD 0.6421 0.4887 0.7956 0.6340 0.4683 0.7997 0.6632 0.5359 0.7906 0.6255 0.4586 0.7924
MSA-C vs. PSP 0.8725 0.8733 0.8716 0.8176 0.8336 0.8015 0.8656 0.8792 0.8521 0.8189 0.8321 0.8057

PD vs. PSP 0.7710 0.8879 0.6542 0.6861 0.8432 0.5290 0.7481 0.8743 0.6218 0.7143 0.8648 0.5638

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.
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Table A26. ADA classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.77 0.6896 0.7529 0.7563
MSA-P vs. PD 0.8535 0.7760 0.85 0.7976
MSA-P vs. PSP 0.7960 0.7728 0.7690 0.7587
MSA-C vs. PD 0.7262 0.7254 0.7279 0.7145
MSA-C vs. PSP 0.8696 0.8062 0.8588 0.8094

PD vs. PSP 0.8333 0.7733 0.8176 0.8036

Appendix C.8

Results of classifier using Gaussian naïve Bayes (GNB) are listed in Tables A27–A29.

Table A27. GNB classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8915 0.8397 0.8849 0.8683
MSA-P vs. PD 0.9279 0.8787 0.9245 0.8817
MSA-P vs. PSP 0.9054 0.8765 0.8961 0.8777
MSA-C vs. PD 0.7088 0.6610 0.7120 0.6652
MSA-C vs. PSP 0.9658 0.8840 0.9493 0.8721

PD vs. PSP 0.9198 0.8600 0.9154 0.8657

Table A28. GNB classifier training and testing balanced accuracy, sensitivity, and specificity using
HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.8417 0.9317 0.7517 0.7596 0.8622 0.6571 0.8225 0.9231 0.7218 0.8138 0.9066 0.7210
MSA-P vs. PD 0.8938 0.8860 0.9016 0.8434 0.7991 0.8876 0.8922 0.8713 0.9132 0.8073 0.7518 0.8629
MSA-P vs. PSP 0.7722 0.8789 0.6656 0.7670 0.9023 0.6317 0.7867 0.8889 0.6845 0.7626 0.8838 0.6413
MSA-C vs. PD 0.6767 0.5359 0.8175 0.6600 0.5099 0.8100 0.7179 0.6320 0.8039 0.6850 0.5569 0.8132
MSA-C vs. PSP 0.8806 0.9005 0.8607 0.7567 0.7839 0.7295 0.8383 0.8792 0.7974 0.7493 0.7840 0.7146

PD vs. PSP 0.7566 0.9218 0.5913 0.7179 0.8922 0.5435 0.7515 0.9353 0.5676 0.7083 0.9123 0.5042

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A29. GNB classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8465 0.7705 0.8308 0.8272
MSA-P vs. PD 0.8948 0.8557 0.8964 0.8125
MSA-P vs. PSP 0.8030 0.7988 0.8135 0.7890
MSA-C vs. PD 0.7579 0.7322 0.7691 0.7562
MSA-C vs. PSP 0.8774 0.7556 0.8362 0.7581

PD vs. PSP 0.8162 0.7857 0.8133 0.7807

Appendix C.9

Tables A30–A32 list the results of the quadratic discriminant analysis (QDA) classifier.
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Table A30. QDA classifier training and testing AUC using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.8953 0.8550 0.9029 0.8749
MSA-P vs. PD 0.9317 0.8898 0.9200 0.9000
MSA-P vs. PSP 0.8915 0.8929 0.9150 0.9091
MSA-C vs. PD 0.6925 0.6929 0.7457 0.6580
MSA-C vs. PSP 0.9368 0.8589 0.9056 0.8382

PD vs. PSP 0.8870 0.7944 0.8951 0.8638

Table A31. QDA classifier training and testing balanced accuracy, sensitivity, and specificity using
HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test

HC T1w-Only HC T1w-Only
bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe bAcc Sen Spe

MSA-P vs. MSA-C 0.7903 0.8005 0.7801 0.6847 0.7916 0.5778 0.8179 0.8595 0.7762 0.7937 0.8567 0.7307
MSA-P vs. PD 0.8818 0.8510 0.9126 0.8445 0.8005 0.8885 0.8804 0.8501 0.9107 0.8273 0.7688 0.8858
MSA-P vs. PSP 0.7996 0.7916 0.8076 0.7877 0.7975 0.7779 0.8381 0.8561 0.8201 0.8199 0.8655 0.7742
MSA-C vs. PD 0.7051 0.5971 0.8130 0.6555 0.5179 0.7932 0.7204 0.6295 0.8112 0.6669 0.5567 0.7772
MSA-C vs. PSP 0.8885 0.8281 0.9489 0.7630 0.7646 0.7614 0.7948 0.7871 0.8025 0.7655 0.7607 0.7704

PD vs. PSP 0.7868 0.8655 0.7081 0.7213 0.8434 0.5991 0.7841 0.8926 0.6755 0.7414 0.8892 0.5937

bAcc: balanced accuracy, Sen: sensitivity, Spe: specificity.

Table A32. QDA classifier training and testing accuracy using HC and T1w-only segmentation masks.

Differentiating
Diseases

Train Test
HC T1w-Only HC T1w-Only

MSA-P vs. MSA-C 0.7921 0.7478 0.8266 0.8111
MSA-P vs. PD 0.8880 0.8564 0.8857 0.8392
MSA-P vs. PSP 0.7944 0.7816 0.8445 0.8374
MSA-C vs. PD 0.7706 0.7362 0.7741 0.7341
MSA-C vs. PSP 0.8479 0.7287 0.7812 0.7478

PD vs. PSP 0.8314 0.7933 0.8407 0.8180
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