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Abstract

Mitochondria are semi-autonomous organelles of eukaryotic cells. They perform crucial functions such as 
generating most of the cellular energy through the oxidative phosphorylation (OXPHOS) system and some other 
metabolic processes. In addition, mitochondria are involved in regulation of cell death and reactive oxygen spe-
cies (ROS) generation. Also, mitochondria play important roles in carcinogenesis via altering energy metabolism, 
resistance to apoptosis, increase of production of ROS and mtDNA (mitochondrial genome) changes. Studies 
have suggested that aerobic glycolysis is high in malignant tumors. Probably, it correlates with high glucose in-
take of cancerous tissues. This observation is contrary to Warburg’s theory that the main way of energy genera-
tion in cancer cells is non-oxidative glycolysis. Further studies have suggested that in tumor cells both oxidative 
phosphorylation and glycolysis were active at various rates.

An increase of intracellular oxidative stress induces damage of cellular structure and somatic mutations. 
Further studies confirmed that permanent activity of oxidative stress and the influence of chronic inflammation 
damage the healthy neighboring epithelium and may lead to carcinogenesis. For instance, chronic inflammato-
ry bowel disease could be related to high risk of colon adenocarcinoma.

The data have shown a role of ROS generation, mtDNA or nDNA alterations and abnormal apoptotic ma-
chinery in endometrial cancer progress. Recent studies suggest that mtDNA mutations might play a potential 
role in endometrial cancer progress and indicate an increase of mitochondrial biogenesis in this cancer. The in-
vestigators suggested that MtCOI and MtND6 alteration has an influence on assembly of respiratory complexes 
in endometrial cancer. 

In many human cancers, there is a deregulation of the balance between cell growth and death. The tumor 
cells can avoid apoptosis through a loss of balance between anti- and pro-apoptotic proteins, reduced caspase 
function and impaired death receptor signaling. Over-expression of the anti-apoptotic BCL-2 gene has also 
been identified in numerous cancers including colon, thyroid, breast and endometrial cancer. Most studies have 
found low BCL-2 family gene expression, which could be a sign of blocking apoptosis in breast and endometrial 
cancer. Moreover, BCL-2 gene expression is correlated with the degree of aggressiveness and differentiation in 
endometrial cancer. As a result, it could be a valuable predictor of disease progression.
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Mitochondrial structure

Mitochondria are semi-autonomous, oval-shaped 
organelles of eukaryotic cells. On average, each hu-
man cell contains between a hundred and a thousand 
mitochondria. Cells that have a  greater demand for 
ATP (adenosine-5’-triphosphate) such as hepatic cells, 
muscular or gastric gland cells and nerve cells contain 
about 1-2 thousand mitochondria [1-3]. Structurally, 
mitochondria possess five compartments: the inner 
and outer membrane, inter-membrane space, cristae 
and matrix (the region within the inner membrane). 
The outer membrane contains multiple copies of porin, 

which is permeable to small molecules. Larger proteins 
can enter mitochondria if they bind to translocase pro-
teins of the outer membrane. The inner membrane is 
impermeable to most molecules. The transfer of mo-
lecules requires special membrane transporters. In 
addition, the inner membrane contains five types of 
proteins: respiratory chain protein, ATP synthase, pro-
tein import machinery, specific transport proteins that 
regulate metabolite passage into and out of the ma-
trix, and mitochondria fusion and fission protein [1, 2].  
The surface area of the inner membrane is compart-
mentalized into numerous cristae which can affect che-
miosmotic function. The matrix is the space inside the 

Corresponding author: 
Prof. Jacek R. Wilczyński, MD, PhD, Department of Gynecology and Oncologic Gynecology,  
“Polish Mother’s Health Center” Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland,  
tel. +48 42 271 11 51; fax: +48 42 271 11 50; e-mail: jrwil@post.pl

Mitochondrial dysfunction in cancer

Kinga Księżakowska-Łakoma1, Monika Żyła1, Jacek R. Wilczyński1,2

1Department of Gynecology, Chair of Obstetrics & Gynecological Surgery, Medical University of Lodz, Lodz, Poland 
2Department of Gynecology and Oncologic Gynecology, “Polish Mother’s Health Center” Research Institute, Lodz, Poland

review paper

 

Submitted: 30.11.2013
Accepted: 15.01.2014



Przegląd Menopauzalny/Menopause Review 13(2) 2014

137

inner mitochondrial membrane where most of the citric 
acid cycle activities and fatty acid oxidation take place 
[4, 5]. Mitochondria perform essential functions in gen-
erating most of the cellular energy through the oxida-
tive phosphorylation (OXPHOS) system and important 
metabolic intermediates in various pathways such as 
amino acids, fatty acids and carbohydrates. In addition, 
mitochondria are involved in the regulation of cell death 
and ROS (reactive oxygen species) generation [6-10].

Also, mitochondria play compelling roles in car-
cinogenesis via altered energy metabolism, resistance 
to apoptosis, increased production of ROS and mtDNA 
(mitochondrial genome) changes [11-14].

Mitochondrial energy metabolism  
in cancer cells

Under normoxic conditions normally cells rely on 
aerobic respiration through oxidation of glucose, fatty 
acids and amino acids. The glucose enters the cell via 
specific transporters and it is partially oxidized to pyru-
vate in the cytosol. Subsequently, the pyruvate can enter 
the mitochondria to fully undergo oxidation through the 
Krebs cycle and beta oxidation. The final products of tri-
carboxylic acid are two GTP (guanosine-5’-triphosphate) 
or ATP (adenosine-5’-triphosphate), six NADH (reduced 
form of nicotinamide adenine dinucleotide), two fuma-
rate ubiquinol and four carbon dioxide molecules [14]. 
Aerobic respiration is the most efficient method of ener-
gy generation in cells. Nevertheless, under hypoxic con-
ditions energy generation occurs through the cytosolic 
process. In the glycolysis process glucose is converted 
to pyruvate, and then pyruvate is reduced to lactate by 
NADH. This process is less effective than OXPHOS [15].

The first interest in tumor energy metabolism was 
brought by the work of Otto Warburg. According to 
Warburg’s observations, normal cells use lactic acid 
fermentation only in anaerobic conditions while cancer 
cells show an increased level of lactic acid production 
even under normal oxygen tension. Besides, Warburg 
proposed a  model of defect in the OXPHOS pathway 
which stimulates the increase of lactic acid fermenta-
tion in tumor cells [15, 16]. As a result, malignant cells 
produce their energy via a glycolytic mechanism rather 
than through the electron transport chain. Other works 
have suggested that aerobic glycolysis is high in malig-
nant tumors. Probably, it correlates with high glucose 
intake of cancerous tissues such as gliomas, meningi-
omas and sarcomas [16-20]. Further studies have sup-
posed that inside tumor cells both oxidative phospho-
rylation and glycolysis were active at various rates [21]. 
For instance, in MCF-7 cells originating from a mamma-
ry gland epithelial adenocarcinoma, the contribution of 
OXPHOS to the total cellular energy is 80% [22].

Anaerobic glycolysis is not a prerequisite of all tu-
mor cells but could be a response to micro-environmen-

tal conditions such as hypoxia which is observed inside 
the solid tumors or to glucose limitation. Additionally, 
the glycolysis advantage in cancer cells could be ac-
quired during the highest proliferation. This observa-
tion is contrary to Warburg’s theory that the main way 
of energy generation in cancer cells is non-oxidative 
glycolysis [23].

Oxidative stress

Oxidative stress reflects an imbalance between the 
production of reactive species (RS) and antioxidant 
defenses and leads to an increase in cellular levels of 
RS [24, 25]. Reactive species are chemically reactive 
molecules including reactive oxygen species (ROS). Ex-
amples include superoxide anion, hydrogen peroxide, 
and hydroxyl radical. Another group of RS consists of 
reactive nitrogen species (RNS) such as nitric oxide and 
nitrogen oxide radicals and reactive halogen or sulfur 
species [24, 26, 27]. The major source of ROS is mito-
chondria, where they are produced as a consequence 
of aerobic respiration and OXPHOS. Another endog-
enous source of reactive oxygen species is their pro-
duction by neutrophils, eosinophils, macrophages and 
peroxisomes. ROS could also be produced through an 
exogenous way including chlorinated compounds, radi-
ation, metal ions, hormone therapy, smoke and ethanol. 
Physiological roles of ROS include the effect on vascular 
tonus, platelet adhesion, regulating proliferation, gene 
transcription and metabolism [25, 28-31]. For instance, 
one of the RS, hydrogen peroxide (H

2O2), acts as an im-
portant intracellular messenger, and regulates apopto-
sis and senescence [29, 30].

Reactive oxygen species are eliminated by protec-
tive mechanisms, referred to as antioxidants. Anti-
oxidant mechanisms operate through both enzymatic 
and non-enzymatic mitochondrial components, cel-
lular membrane and extracellulary. The mitochondrial 
enzymatic defenses include manganese-superoxide 
dismutase (MnSOD2), glutathione peroxidase (GPx),  
glutathione reductase (GRed), peroxiredoxins, glutar-
edoxins and proteins such as cytochrome c. The non-
enzymatic defenses are reduced glutathione (GSH), and  
high NAD(P)II/NAD(P) ratio [32]. SOD2 is one of the 
most effective antioxidant enzymes. It has antitumor 
activity too. Therefore, over-expression of manganese-
superoxide dismutase leads to tumor growth retarda-
tion in several cell lines [33, 34]. The cellular membrane 
antioxidant mechanisms include vitamin E, β-carotene, 
and coenzyme Q. Thirdly, there is an extracellular mech-
anism including metal-binding proteins, bilirubin and 
vitamin C and extracellular forms of glutathione peroxi-
dases and superoxide dismutases [27].

An increase of intracellular oxidative stress induces 
damage of cellular structure and somatic mutations, 
leading to cancerous transformation. Moreover, senes-
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aflatoxins, estrogens, phenols, and polycyclic aromatic 
hydrocarbons by ROS-dependent mechanisms. ROS and 
genomic instability can also activate certain signaling 
pathways and thus they contribute to cancerous pro-
liferation, angiogenesis and metastasis [50-53]. On the 
other hand, ROS can perform a role of anti-tumorigenic 
agents through the induction of cellular aging and cell 
death [54]. 

Oxidative status has been reported to play a  role 
in NF-κB regulation. NF-κB influences the regulation 
of several genes involved in tumor development [55]. 
The role of ROS in activation of NF-κB is still unknown. 
Some studies suggest that ROS are indirect messengers 
in activation of NF-κB by TNF and IL-1. It is reported that 
TNF and IL-1 suppression leads to downregulation of 
the expression of active NF-κB and could inhibit prolif-
eration of lymphoma and myelogenous leukemia cells 
[56, 57]. Inhibition or activation of NF-κB is dependent 
on intensity of oxidative stress [58]. 

Reactive oxygen species are also reported to en-
hance tumor invasion and metastasis. Cancerous cells 
modify their morphology and adhesive mode, losing 
their normal epithelial polarization and differentiation. 
Then, these cells increase mobility, changing their phe-
notype to an invasive phenotype [59]. Oxidative stress 
can also activate the expression of intercellular adhe-
sion protein-1 (ICAM-1), which regulates the transen-
dothelial migration of neutrophils together with IL-8. It 
could play a potential role in tumor metastasis [60]. 

Some investigators report that the increase of ex-
pression of the matrix metalloproteinases (MMPs) 
could correlate with the invasion and metastasis of ma-
lignant tumor of different histogenetic origin. One of 
the MMP subgroups, gelatinase (MMP-2 and -9), plays 
a critical role in tumor invasion and metastasis. Their 
activation is high under prolonged oxidative stress [61]. 

Solid tumors induce an angiogenic response under 
the influence of stress factors such as hypoxia, nutrient 
deficiency and ROS. Tumoral angiogenesis is controlled 
by angiogenic factors including vascular endothelial 
growth factor (VEGF), fibroblast growth factor (FGF), 
and platelet-derived growth factor (PDGF) released by 
tumor and inflammatory cells in response to ROS pro-
duction [62, 63]. The release of VEGF causes a massive 
signaling cascade in endothelial cells that leads to an 
increasing number of blood vessels [64, 65]. 

Mitochondrial DNA alteration

Mitochondria possess their own genome (mtDNA) 
which is inherited only through the mother (Fig. 1). The 
mtDNA is located in the mitochondrial matrix and it 
is a circular, double-stranded molecule of 16,569 base 
pairs in length containing 37 genes. These genes encode 
13 polypeptides of the enzyme complexes of the elec-
tron transport chain, 2 ribosomal ribonucleic acid (rRNA) 

cence causes an increase of intracellular oxidative 
stress and a decrease of antioxidants and accumulation 
of molecular damage in DNA. These processes, nascent 
as a result of aging, can lead to an increase of the risk 
of mutagenesis [35-37].

In cancer cells, ROS generation is often increased. 
This could be the effect of exposure to the hypoxic 
micro-environment inside the tumor. This increase may 
contribute to induction of mtDNA alterations. Cells 
counteract the destructive effects of ROS increase; 
therefore, they imply genomic instability. For instance, 
the hydroxyl radical could activate oncogenes or inac-
tivate tumor suppressor genes and prevent DNA repair 
[28, 38]. MtDNA mutations correlate with the highest 
level of antioxidant enzymes such as CAT and PRX3 in 
endometrial cancer. It could be suggested that mtDNA 
mutations contribute to increased ROS generation, as 
a result, leading to compensatory antioxidant mecha-
nisms [39].

The studies suggest that secular inflammation could 
predispose the host to an increased risk of cancers 
[40]. For instance, chronic inflammatory bowel disease 
could be related to high risk of colon adenocarcinoma 
or chronic pancreatitis may lead to an increased risk of 
pancreatic cancer [41, 42]. Rudolf Virchow was the first 
to get interested in the influence of chronic inflamma-
tion for cancer development. He demonstrated the pres-
ence of inflammatory cells within tumors and growth of 
tumor as a result of maintaining chronic inflammation 
[43]. Further studies confirmed that the permanent in-
fluence of chronic inflammation and activity of oxida-
tive stress damage the healthy neighboring epithelial 
and stromal cells and they may lead to carcinogenesis. 
Inflammatory cells produce essential mediators such as 
cytokines, chemokines and metabolites of arachidonic 
acid which activate signal transduction cascades. These 
mediators also induce alterations in transcription fac-
tors including nuclear factor kappa B (NF-κB), signal  
transducer and activator of transcription 3 (STAT3), hyp- 
 oxia-inducible factor-1α (HIF-1α), activator protein-1 
(AP-1), nuclear factor of activated T cells (NFAT) and  
NF-E2 related factor-2 (Nrf-2). They are directly re-
sponsible for activation of oxidative stress responses. 
These processes can activate genetic and epigenetic al-
terations such as point mutations in tumor suppressor 
genes, DNA methylation and post-translational modifi-
cations, causing changes in essential cellular pathways 
leading to cancer development [44, 45]. In addition, 
the effect of oxidative stress and chronic inflammation 
may influence the tumor cell transformation, promo-
tion, survival, proliferation, invasion, and metastasis 
progression, and regulate angiogenesis [46-49]. ROS 
may cause DNA damage leading to genetic lesions that 
initiate carcinogenicity. Similarly, inflammatory cells 
such as neutrophils could also increase DNA damage 
via activating substances including aromatic amines, 
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molecules (12S, 16S) (2 genes), and transfer tRNA mol-
ecules (22 genes) for protein synthesis [66, 67]. In ad-
dition, mtDNA includes the displacement loop (D-loop), 
which is the major control region for replication and 
transcription of mtDNA. In this region it mutates several 
hundred times more frequently than other mtDNA re-
gions [68, 69]. High susceptibility of mtDNA to mutation 
is caused by being in close proximity to ROS generated 
by OXPHOS, an inefficient repair system, and lack of pro-
tective histones and introns. Therefore, mtDNA is more 
susceptible to alterations than nuclear DNA [7].

So far, we know several germlines and somatic  
mtDNA mutations that might be associated with vari-
ous types of cancer. Recent studies suggested that most 
mtDNA alterations are located in the D-loop region.  
The D-loop contains the control region for replication 
and transcription of mtDNA. Therefore, mutations in 
this region might contribute to increase in the altera-
tions in mtDNA gene expression. Furthermore, mtDNA 
mutations may cause OXPHOS deregulation and other 
components of mitochondrial metabolism leading to 
induction of the oncocytic phenotype [71, 72]. Never-
theless, the direct influence of mtDNA mutations on 
progression and side-effects of tumorigenesis is still 
a matter of debate.

Recent mtDNA mutations studies suggest their po-
tential role in endometrial cancer progression and in-
dicate an increase of mitochondrial biogenesis in this 
cancer. Guerra et al. investigated 23 type I endometrial 
cancer (EC) samples and matched typical hyperplasia 
for changes in mtDNA and in canonical nuclear genes 
(PTEN, KRAS, CTNNB1, TP53). All mtDNA alterations 
found in hyperplasia and EC samples were concurrent 
with mutations found in oncosuppressors/oncogenes 
(PTEN, KRAS, CTNNB1, TP53). Nevertheless, mtDNA mu-
tational events occurred more frequently than nuclear 
mutations in the same cases. It could be indicated that 
mtDNA changes were first, followed by genetic insta-
bility of canonical genes involved in progression from 
hyperplasia to neoplasia. MtDNA base alterations were 
found in coding and non-coding regions. The investi-
gators suggested that MtCOI nonsense change and 
frameshift alteration in MtND6 have an influence on 
assembly of respiratory complexes in endometrial can-
cer. They also claimed a  correlation between mtDNA 
alterations and oncocytic histological features in type 
I endometrial cancer [39].

Liu et al. investigated mtDNA mutations in primary 
endometrial carcinomas, revealing high frequency of 
mitochondrial genome instability. Most of them were 
observed in the D-loop region as a hot-spot region for 
the majority of cancers. One particular alteration, mt-
MSI, that frequently occurred in endometrial cancer 
samples may provide an important tool for endometrial 
cancer detection [73]. Polymorphisms in endometrial 
cancer are also mainly located in the D-loop region.  

The data have suggested specific polymorphisms in 
the D-loop observed in endometrial cancer such as 
16189T>C, 16223C, 207A, and 16126C. Investigators 
claim that the correlation between polymorphism and 
endometrial cancer development is high in 16223C/207A 
genotype. Studies have also suggested the correlation 
between a specific polymorphism and higher or lower 
risk of cancer. It is reported that A10398G and T16519C 
polymorphisms contribute to increased breast cancer 
risk in European-American females. Conversely, T3197C 
and G13708A polymorphisms are associated with re-
duced breast cancer risk in the same group of women 
[74]. Therefore, mtDNA polymorphism pattern could be 
useful as a diagnostic marker to select a population at 
high risk of developing cancer [75, 76].

Furthermore, several factors including estrogens, 
cigarette smoking, alcohol consumption and caloric in-
take could induce mitochondrial dysfunction and lead 
to high risk of breast cancer [77]. The estrogens cor-
relate with breast cancer development through induc-
tion of mitochondrial transcription and generation of 
local ROS during normal metabolism of estradiol [78]. 
Investigators have also reported that smoking induces 
increase of mtDNA copy number in response to oxida-
tive damage and could be associated with breast can-
cer risk [79-81]. Alcohol consumption also correlates 
with breast cancer development only when it is simul-
taneously associated with A10398G polymorphism oc-
currence [82]. Also, life style in combination with type 
of mtDNA polymorphism might influence cancerous 
disease development [83]. 

As mentioned above, mitochondrial DNA alterations 
have been observed in human cancers. The studies dem-
onstrated that mitochondrial alterations may enable  
the early detection of cancer, and might contribute to de-
velopment of a screening system and matching chemo-  

Fig. 1.  Mitochondrial genome [70]
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or radiotherapy [81, 84-86]. The breast cancer studies 
have suggested a lower mtDNA content in breast tumor 
tissues compared to normal cells, which might consti-
tute a biomarker for cancer detection. Interestingly, the 
same studies have demonstrated an increase of mtDNA 
copy number in patients with a  higher risk of breast 
cancer. This observation inversely correlates with anti-
oxidant levels, which may suggest increased oxidative 
stress levels in patients’ cells with higher risk of breast 
cancer. In response to high oxidative stress level mtDNA 
production is increased [87]. Other data have shown 
similar dependence in EC between mtDNA mutations 
and an increase in mtDNA copy number as a compensa-
tory effect [39, 88]. A second marker which is observed 
in type I EC is a higher mitochondrial mass [39].

Abnormal apoptotic machinery

Apoptosis ensures normal tissue homeostasis by 
regulation of the balance between cell growth and 
death. In many human cancers, there is a deregulation 
of this balance. The tumor cells can avoid apoptosis 
through a  loss of balance between anti- and pro-apo-
ptotic proteins, reduced caspase function and impaired 
death receptor signaling. 

There are three biochemical changes in apoptosis: 
activation of caspases, DNA and protein breakdown, 
and changes occurring in membrane recognition by 
phagocytic cells. In human cells apoptosis is induced 
via the extrinsic (death receptor) and intrinsic signaling 
pathway, and the intrinsic endoplasmic reticulum path-
way, which is less known. It could be initiated, among 
others, also via genotoxic, hypoxic, oxidative stress and 
oncogenic signaling [89, 90]. 

The best known death receptors are: type 1 TNF re-
ceptor (TNFR1 or DR1), Fas (also known as DR2, CD95, 
APO-1), DR3 (Apo-3), DR4 (also known as TNF-related 
apoptosis inducing ligand receptor 1 TRAIL-1 or APO2), 
DR5 (TRAIL-2), DR6, ectodysplasin A  receptor (EDAR) 
and nerve growth factor receptor (NGFR). These recep-
tors possess intracellular death domains (DD) which 
bind with them, resulting in activation of the signaling 
cascade [91]. The consequence of some abnormalities 
in the death receptor or death domains, irrespective of 
the type of mechanism, is apoptosis dysregulation. For 
instance, studies suggest a role of reduced expression 
of APO-1 in the treatment of resistant leukemia and 
neuroblastoma cells [92, 93]. In addition, loss of Fas and 
lesion of FasL, DR4, DR5, TRAIL in CIN can contribute to 
cervical cancer development [94]. 

Essential components of the intrinsic (mitochondri-
al) pathway are proteins of the Bcl-2 family. The Bcl-2 
family is a heterogeneous group of proteins which may 
promote or inhibit apoptosis by releasing pro-apoptotic 
factors such as BAX, BAK, BAD, BID, BCL-Xs, Bik, Bim,  
Hrk and anti-apoptotic factors (i.e., Bcl-2, Bcl-Xl, Bcl-W,  

Bfl-1, Mcl-1) [95-97]. Bcl-2 may perform an essential 
and different role in neogenesis. Overexpression of 
the anti-apoptotic BCL-2 gene has been identified in 
numerous cancers including colon, thyroid, breast and 
endometrial cancer [98-102]. Most studies have found 
that low BCL-2 family gene expression could be the sign 
of blocking apoptosis in breast and endometrial cancer 
[103, 104]. Moreover, BCL-2 gene expression is corre-
lated with the degree of aggressiveness and differentia-
tion in endometrial cancer. Overexpression of Bcl-2 has 
also been reported to protect prostate cancer cells from 
apoptosis. Investigators show that overexpression of 
Bcl-xL could activate multi-drug resistance in cancerous 
cells. The role of overexpression of Bcl-w was analyzed 
in colorectal adenocarcinomas as predisposing to pro-
gress from adenoma to adenocarcinoma in the colorec-
tal epithelium. In consequence, it could be a valuable 
predictor of disease progression [104-107].

The third pathway of apoptosis is the intrinsic en-
doplasmic reticulum pathway. It is initiated by hypoxia, 
free radicals and glucose starvation. It is dependent on 
caspase 12 and mitochondrial-independent [90, 108]. 

As mentioned, caspases 2, 3, 6, 7, 8, 9, 10 play an 
important role in biochemical changes in apoptosis. It is 
believed that a low level of caspases or disturbance of 
their function might lead to damage of apoptosis and 
result in neogenesis. For instance, a low level of caspase 
9 may correlate with poor prognosis in patients with 
stage II colorectal cancer. Positive and negative roles of 
caspase 3 have also been documented in carcinogen-
esis. It was found at a substantially decreased level in 
ovarian cancer [109-111], while a high level of caspase 
3 could be a marker of good prognosis for treatment 
in lung cancer [112]. Interestingly, increased expression 
of caspase 3 and caspase 7 could indicate a  general 
deregulation of apoptosis in primary breast cancer. It 
is unknown whether this damage of apoptosis is a pri-
mary or a secondary event in breast cancer [113]. Also, 
the loss of caspase-1 mRNA and protein was observed 
in tumor development. This loss was correlated with 
pTNM stage, lymph node metastasis and poor progno-
sis in gastric cancer [114]. 

Alterations of caspase-8 gene expression includ-
ing missense mutation, stop codon, deletion of leucine 
62 and silencing mutations in caspase-9 have been 
observed in many cancers. For instance, deletion of 
leucine 62 was found to be associated with the devel-
opment of vulval squamous carcinoma cells. Another 
missense mutation (Ala-Val) at caspase-8 codon 96 
and silencing mutations in the caspase-9 gene were 
observed in neuroblastomas, suggesting a lack of cas-
pase-8 expression and potential tumor suppressor role 
for apical caspase-9 [115-117]. The second group of 
caspases which is mainly related to cytokine process-
ing during inflammatory processes comprises caspases 
1, 4, 5, 13, 14 [109]. 
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Also the inhibitor of apoptosis (IAP) proteins have 
emerged as an important regulator of inflammation, in-
nate immune signaling downstream and downstream 
inhibitor of apoptosis. It was reported that IAP proteins 
and X-linked IAP, XIAP in particular, were demonstrated 
to inhibit caspase activity [118, 119]. It is believed that 
IAP members play important roles in the differentiation 
and proliferation of tumor cells. An increased level of 
IAP was detected in various human cancer and primary 
tumor biopsies. Moreover, IAPs are able to act as on-
cogenes. Accordingly, chromosome amplification of the 
11q21-q23 region of c-IAP1 and c-IAP2 was found in 
many malignant states of cancer and esophageal squa-
mous cell carcinomas [120]. 

Studies also suggest the occurrence of alterations 
in apoptotic genes in cancer patients. It was reported 
that TNF-α gene polymorphisms and a single nucleotide 
polymorphism (SNP) located in the FAS promoter region 
were correlated with several cancers. A protective role 
was detected in the association between DR4 polymor-
phism and bladder cancer risk and between caspase-8 
variant and breast cancer susceptibility [121-125]. 

One of the most common apoptotic pathways is 
transcription factor p53, also called tumor protein p53 
or TP53 dependent. This protein is encoded by tumor 
suppressor gene TP53 located at chromosome 17P53, 
plays a role in promoting transcription of pro-apoptotic 
factors such as Puma, Noxa, Bax and Apaf 1, and it is 
also an essential player in processes of development, 
differentiation, cell cycle regulation, gene amplification, 
DNA recombination, chromosomal segregation and cel-
lular ageing. It is also called the “guardian of the ge-
nome”. In response to a spectrum of apoptotic stimuli 
such as oxidative stress p53 translocates to mitochon-
dria where it displaces anti-apoptotic channel-forming 
proteins [126-129]. Proteins that hold bad form subu-
nits (PHB) are localized in the inner mitochondrial mem-
brane. The first studies showed a role of PHB as nega-
tive cell-cycle regulators, correlation with mitochondrial 
proliferation and differentiation, and luteolysis in the 
ovary [130-132]. Subsequent research has suggested 
a  role of PHB in the stabilization of synthesized sub-
units of mitochondrial respiratory enzymes and also 
classified it as an anti-apoptotic protein [133, 134]. Fur-
thermore, PHB complex forms (hPhb1p and hPhb2p) 
are chemically induced in cancerous cells, endometrial 
hyperplasia and adenocarcinoma, breast cancer cell line 
and other cancers [135-137]. In cancer patients the PHB 
may be useful as a clinical marker in therapeutic strate-
gies. In the patient’s serum after cisplatin, doxorubicin 
or methotrexate therapy the PHB level is decreased 
[138, 139]. The p53 tumor suppressor gene alterations 
have been correlated with most human cancers, for in-
stance, in melanoma cells where abnormal activity of 
p53 contributes to the proliferation of these cells [140, 
141]. Moreover, low regulation of mutant p53 expres-

sion is effective in reduced cellular colony growth in 
cancer cells as a result of induction of apoptosis [142]. 
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