
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11123  | https://doi.org/10.1038/s41598-022-15348-7

www.nature.com/scientificreports

Bexarotene‑induced cell 
death in ovarian cancer cells 
through Caspase‑4‑gasdermin E 
mediated pyroptosis
Tatsuya Kobayashi1, Akira Mitsuhashi1,2*, Piao Hongying1, Masashi Shioya1,3, 
Katsushi Kojima3, Kyoko Nishikimi1, Kinnosuke Yahiro4 & Makio Shozu1

Bexarotene selectively activates retinoid X receptor, which is a commonly used anticancer agent for 
cutaneous T-cell lymphoma. In this study, we aimed to investigate the anticancer effect of bexarotene 
and its underlying mechanism in ovarian cancer in vitro. The ES2 and NIH:OVACAR3 ovarian cancer 
cell lines were treated with 0, 5, 10, or 20 µM of bexarotene. After 24 h, cell number measurement and 
lactate dehydrogenase (LDH) cytotoxicity assay were performed. The effect of bexarotene on CDKN1A 
expression, cell cycle-related protein, cell cycle, pyroptosis, and apoptosis was evaluated. Bexarotene 
reduced cell proliferation in all concentrations in both the cells. At concentrations of > 10 µM, 
extracellular LDH activity increased with cell rupture. Treatment using 10 µM of bexarotene increased 
CDKN1A mRNA levels, decreased cell cycle-related protein expression, and increased the sub-G1 
cell population in both cells. In ES2 cells, caspase-4 and GSDME were activated, whereas caspase-3 
was not, indicating that bexarotene-induced cell death might be pyroptosis. A clinical setting 
concentration of bexarotene induced cell death through caspase-4–mediated pyroptosis in ovarian 
cancer cell lines. Thus, bexarotene may serve as a novel therapeutic agent for ovarian cancer.

Ovarian cancer is the fifth most common cause of cancer-related death and the most deadly gynecological cancer 
in western countries1. Although the initial clinical response is generally satisfactory, more than 70% of affected 
patients experience recurrences and ultimately die. Multimodality treatment with cytoreductive surgery and 
platinum–taxane-based chemotherapy combined with molecularly targeted drugs has shown prolonged survival. 
However, the overall cure rate of the disease has not considerably changed. Therefore, additional treatment 
strategies that can improve survival are urgently required.

Retinoid X receptor (RXR) is a member of nuclear receptor family. RXR acts as a transcriptional factor by 
homodimerizing with itself or other nuclear receptor families when stimulated by their specific ligands. Bexaro-
tene (LGD1069, Targretin®) is an RXR-selective agonist that binds and activates all three RXR isoforms (RXRα, 
RXRβ, and RXRγ) with equivalent affinity and potency2. Bexarotene is approved by the FDA and is a widely 
used drug for treating cutaneous manifestations in cutaneous T-cell lymphoma (CTCL)3. Moreover, this drug 
has gained increasing attention in cancer treatment; hence, it has been used as an off-label drug for non-small 
cell lung cancer4 and breast cancer5. In vitro studies have shown that bexarotene can also prevent and overcome 
acquired drug resistance in advanced breast cancer6,7, non-small cell lung cancer8,9, and even advanced prostate 
cancer10. An in vitro analysis revealed that bexarotene could kill cancer cells via apoptosis, decrease TGF-α and 
EGFR expressions, induce cellular senescence associated with increased p21 and p16 expressions, and promote 
G1 phase cell cycle arrest11. However, the precise mechanism of cell proliferation inhibition by bexarotene 
remains unclear.

Pyroptosis is one of the regulated cell deaths triggered by certain caspases that are mainly activated by 
inflammation, anticancer drugs, and endoplasmic reticulum (ER) stress. Inflammatory caspases (caspase-1/4/5 
in humans) cleave gasdermin D (GSDMD), which is required and sufficient for pyroptosis12,13. The polymerized 
GSDMD N-terminal forms pores in the cell membrane to increase permeability and osmosis, thereby causing 
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cell rupture, which is a characteristic of pyroptosis. Caspase-3, a well-known apoptotic caspase, causes pyrop-
tosis with gasdermin E (GSDME/DFNA5). Chemotherapy drugs such as cisplatin, etoposide, and doxorubicin 
induce pyroptosis in tumor cells with high GSDME levels caused by caspase-314. Several anticancer drugs, such 
as chemotherapy drugs and miRNA, can reduce tumor viability and invasiveness by inducing tumor pyroptosis15. 
Hence, pyroptosis induction might be a potent anticancer drug target16.

In epithelial ovarian cancer, retinoic acid receptors are frequently and strongly expressed and may indicate 
an adverse prognosis17. Therefore, RXR-selective retinoids, such as bexarotene, might potentially treat ovarian 
cancer; however, the effect of bexarotene on ovarian cancer remains unclear. Hence, this study aimed to investi-
gate whether bexarotene could suppress the proliferation of ovarian cancer cells in vitro and better understand 
the antitumorigenic potential of bexarotene by exploring the precise mechanism of bexarotene on cell death, 
particularly pyroptosis.

Methods
Cell culture.  The ovarian clear cell carcinoma cell line (ES2) and serous ovarian carcinoma cell line 
(NIH:OVACAR3) were used. ES2 and NIH:OVACAR-3 cell lines were purchased from ATCC (Manassas, VA, 
USA) and RIKEN BioResource Center (Tsukuba, Japan). These ovarian cancer cell lines were routinely cultured 
in RPMI 1640 (Nacalai Tesque, Kyoto, Japan) containing inactivated 2% fetal bovine serum (Equitech-Bio, Ker-
rville, TX, USA) and 1% penicillin–streptomycin (Nacalai Tesque) at 37 °C with 5% CO2 in room air.

Cell proliferation assay and lactate dehydrogenase (LDH) cytotoxicity assay.  In the culture 
medium, we seeded the cells in 12-well plates (100,000 cells/well). At 80% confluence, the cells were treated with 
0–20 µM of bexarotene (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) dissolved in dimethyl sulfoxide (Fuji-
film Wako, Osaka, Japan) for 24 h. Bexarotene is insoluble in water; hence, it was dissolved in dimethyl sulfoxide 
(DMSO). Therefore, all the experiments, including the untreated control, were performed with a concentration 
of 0.1% DMSO. The cells were then treated with trypsin–EDTA solution (Nacalai Tesque) and mixed with the 
total amount of trypan blue solution (Nacalai Tesque). Subsequently, the live cells were counted using a cell-
counting chamber (WakenBtech Co., Ltd., Kyoto, Japan) under a stereomicroscope (Olympus, Tokyo, Japan).

Moreover, we collected the cell culture supernatant and measured the LDH activity using the LDH Cyto-
toxicity Assay Kit (Nacalai Tesque) according to the manufacturer’s protocol. The LDH levels of the cell culture 
supernatant derived from the bexarotene-treated cell group were normalized relative to the cultured medium 
derived from the control group (vehicle of the bexarotene-treated group). Each experiment was repeated at least 
three times, and the LDH activity was compared to that of the control group.

Protein extraction and western blot.  We washed the cultured cells with PBS and extracted the total 
protein using a complete Lysis-M reagent (Roche, Basel, Switzerland) containing 1% Halt™ Phosphatase Inhibi-
tor Cocktail (Thermo Fisher Science, Waltham, MA, USA) for 15 min at room temperature. We subsequently 
centrifuged the cell lysate at 15,000×g for 15 min at 4 °C, separated 7.5 µg of total protein in 10% or 4–15% gra-
dient SDS-PAGE (Bio-Rad, Hercules, CA, USA), and transferred it to a polyvinylidene fluoride (PVDF) mem-
brane (Merck Millipore, Burlington, MA, USA). Nonspecific binding to the PVDF membrane was blocked in 
Blocking one-P solution (Nacalai Tesque) at room temperature for 30 min. The first antibody was reacted at 
4 °C for overnight. Subsequently, we washed the PVDF membrane in PBS-T and enhanced the protein signal by 
anti-mouse or rabbit IgG antibody (1/10,000 or 5000) at room temperature for 1 h. We used ECL select (Roche) 
or ECL Prime reagent (Roche) to detect protein signals. A densitometric analysis of western blot was performed 
using a densitometer (CS analyzer version 3.0 software, ATTO, Tokyo, Japan), and the intensity was normalized 
to the b-actin protein levels.

RNA extraction and real‑time quantitative PCR.  Total RNA from cultured cells was extracted using 
the RNeasy Mini Kits (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Using the Super-
Script VILO cDNA Synthesis Kit (Thermo Fisher Science, Waltham, MA, USA), we reverse-transcribed the 
extracted RNA into complementary DNA (cDNA). Real-time quantitative PCR (RT-qPCR) was conducted 
using Light Cycler DNA Master SYBR Green I Kit (F. Hofmann–Roche Ltd., Basel, Switzerland) with Light 
Cycler Nano System (F. Hofmann–Roche Ltd). Furthermore, we evaluated the CDKN1A and GAPDH (internal 
control) mRNA expression levels. The expression levels of measured genes were normalized relative to that of 
GAPDH mRNA. The 2−∆∆Cq method was used to obtain the relative quantitative value18. Supplementary Table S1 
lists the gene-specific primers.

Cell cycle analysis.  Vehicle or 10 µM–bexarotene-treated cells were cultured for 48 h and then harvested 
by trypsin–EDTA solution. The cells were washed twice with PBS and fixed with 70% ethanol (Fujifilm Wako) at 
–30 °C until cell cycle analysis. Following this, cells were incubated in 20 µg/ml RNase for 30 min after staining 
with 50 µg/ml propidium iodide (PI) solution (Nacharai tesque) at 4 °C for 30 min in darkness. Fluorescence 
intensity was analyzed using CytoFLEX flow cytometer (BECKMAN COULTER, Brea, CA, USA) with CytEX-
pert Soft wear (BECKMAN COULTER). We analyzed 15,000 events to determine the cell cycle phase and classi-
fied cells into sub-G1, G0/G1, S, or G2/M phases according to the fluorescence intensity of the cells.

Small interfering RNA (siRNA) transfection.  Using Lipofectamine RNAiMAX (Thermo Fisher Sci-
ence, Waltham, MA, USA), we transfected ES2 cell lines with a siRNA. The si-protein kinase R-like ER kinase 
(PERK; SI02223718; Qiagen, Hilden, Germany) RNA, si-inositol-requiring enzyme 1-A (IRE1A; SI00605255; 
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Qiagen), or a non-target siRNA (control) were used. To prepare the siRNA transfection solution for each tube, 
we mixed 5 pmol of siRNA with 50 μL of Opti-MEM reduced-serum medium (Thermo Fisher Science, Waltham, 
MA, USA). Concurrently, we mixed 1 μL of Lipofectamine RNAiMAX with 50 μL of Opti-MEM. Following this, 
the two solutions were mixed by gentle pipetting and incubated for 5 min at room temperature to allow siRNA/
lipid complexes to form. The treated cells forming siRNA/lipid complexes were then incubated for 48 h at 37 °C, 
followed by bexarotene treatment.

Antibodies and other reagents.  For detecting the target protein, we used an anti-caspase-4 antibody 
(1/1000; MBL, Tokyo, Japan), anti-caspase-3 (D175) antibody (1/1000; Cell Signaling Technology, Danvers, 
MA, USA), anti-GSDME antibody (1/1000; Proteintech Group, Rosemont, IL, USA), anti-cyclin D1 antibody 
(1/1000; Cell Signaling Technology), anti-Rb antibody (1/1000; Cell Signaling Technology), anti-phospho-Rb 
antibody, anti-CDK4 antibody (1/1000; Cell Signaling Technology), anti-CDK6 antibody (1/1000; Cell Signaling 
Technology), anti-PERK antibody (1/1000; Cell Signaling Technology), and anti-β actin antibody (1/5000; Cell 
Signaling Technology) as the first antibodies.

We used ZYVAD-FMK (R&D SYSTEMS, Minneapolis, MN, USA) dissolved in dimethyl sulfoxide (Sigma-
Aldrich, St. Louis, MO, USA) for caspase-4 inhibition experiments.

Statistical analysis.  The cell proliferation assay was statistically analyzed using an independent t-test. All 
comparisons were performed using a two-sided test. In addition, P < 0.05 was considered statistically significant. 
All statistical data were analyzed using the JMP statistical software (SAS Institute Inc., Cary, NC, USA).

Results
Bexarotene reduced cell viability and affected cell shape.  First, we examined the effect of bexaro-
tene treatment on cell viability, cell membrane damage, and cell morphological shape to determine whether 
bexarotene had anticancer potential against ovarian cancer cell lines. After 24 h of bexarotene treatment, cell 
viability was significantly reduced dose-dependently in both the ES2 and NIH:OVACAR3 cells (Fig. 1a), and the 
morphology in cancer cells drastically changed, as observed microscopically (Fig. 1b). Furthermore, bexarotene-
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Figure 1.   Bexarotene treatment reduced cell viability and induced cell death by LDH release and plasma 
membrane bursting. (a) In ES2 and NIH:OVACAR3 cells, counted manually were cell numbers after 24 h of 
bexarotene treatment. Measured was the cell viability against the bexarotene nontreated group. The results 
presented were the mean, ± standard deviation for at least three independent experiments. (b) Morphological 
analysis of ES2 cells (upper two panels) and NIH:OVACAR3 (lower two panels). The plasma membrane 
expanded, and the broken cells had a swollen structure (arrow). (c) bexarotene treatment was extracellular LDH 
activity. The results presented were the mean ± standard deviation for at least three independent experiments. 
*p < 0.05, **p < 0.01, compared with bexarotene-free control. LDH, lactate dehydrogenase.
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treated cells were detached from the surface of the culture dish, and the plasma membrane clearly expanded. 
Moreover, some cells exhibited a post-cell burst appearance (≥ 10 µM of bexarotene).

The effect of bexarotene on plasma membrane damage was evaluated by measuring the released LDH activity 
in the culture supernatant. In living cells, LDH is present in the cytoplasm, but it is released extracellularly due to 
cell membrane changes that occur during the cell death processes, such as in necroptosis and pyroptosis19. The 
levels of released LDH significantly increased in the 10 and 20 µM–bexarotene-treated group compared with the 
control group in ES2 cells (Fig. 1c, P < 0.05). Likewise, the LDH levels in NIH:OVACAR3 cells also significantly 
increased in the 10 and 20 µM–bexarotene-treated group (P < 0.05). These results indicated that bexarotene 
induced cell death by causing plasma membrane damage in ovarian cancer cell lines.

Bexarotene increased p21 mRNA expression and induced cell growth inhibition with sub‑G1 
arrest.  Tanaka et al. reported that a ligand-activated RXR homodimer upregulates cyclin-dependent kinase 
inhibitor p21 (CDKN1A) expression by directly binding to its promoter region and regulating cell proliferation20. 
Therefore, we evaluated whether bexarotene reduced the cell viability by acting as an RXR agonist in ovarian 
cancer cell lines.

First, we measured the mRNA expression levels of RXR-α, RXR-β, and RXR-γ in ES2 and NIH:OVACAR-3 
cells using RT-PCR to confirm the RXR expression. The RXR-α and RXR-β mRNA were expressed, but RXR-γ 
mRNA was not in both cells (data not shown). Then, to determine whether bexarotene acted as an RXR agonist 
in ovarian cancer cell lines, we measured the CDKN1A mRNA expression levels after 24 h of bexarotene treat-
ment. In both the cell lines, the administration of 10 µM bexarotene increased CDKN1A mRNA expression by 
approximately twofold (Fig. 2a, b).

Subequently, the levels of cell cycle-related proteins, specifically the downstream of p21 protein, CDK4, 
CDK6, Cyclin D1, and phospho-RB, were examined using western blot in 10 µM–bexarotene-treated cells21. 
After 48 h of bexarotene treatment, the levels of CDK4, CDK6, Cyclin D1, and phospho-RB decreased in both 
ovarian cancer cell lines (Fig. 2c, d, S2).

Finally, we performed cell cycle analysis with both the PI-stained cell lines after 48 h from bexarotene treat-
ment using flow cytometry analysis. Bexarotene treatment significantly increased the population of the sub-G1 
phase and reduced the population of G0/G1 and G2/M phase cells in both the cell lines (Fig. 2e, f).

Bexarotene‑induced pyroptosis via caspase‑4 and GSDME‑related pathway.  As above, bexar-
otene-treated ovarian cancer cell lines exhibited drastic morphological changes with the release of intracellular 
LDH. The swelling structure formation and membrane rupture during cell death are related to pyroptosis12,22. 
Thus, the bexarotene-induced cell death might be pyroptosis. We used ES2 cells, which were highly sensitive to 
bexarotene, to determine whether bexarotene induces pyroptosis in ovarian cancer cells. To determine whether 
the expression and activation of caspase-1 and -4 are caused by bexarotene stimulation at molecular levels, we 
performed western blot using an antibody specific to caspase-1 and -4. In ES2 cells, caspase-4 was expressed and 
activated after 24 h of 10-µM-bexarotene treatment (Fig. 3a, b). Meanwhile, caspase-1 mRNA and protein were 
not detected in the ES2 cell line (data not shown). Furthermore, Bexarotene stimulation could not activate cas-
pase-3, the apoptosis-related caspase (Fig. S3A). During pyroptosis, the activated caspase cleaves GSDM and the 
N-terminal domain dimer of GSDM induces cell membrane perforation23. Therefore, we also evaluated GSDME 
and GSDMD cleavage using western blot. From 24 h after the start of bexarotene treatment, we detected the 
cleaved GSDME (Fig. 3a, c). Meanwhile, bexarotene treatment did not cleave GSDMD (Fig. 3a).

We then evaluated whether 10 µM–ZYVAD-FMK (caspase-4 inhibitor) pretreatment can affect pyroptosis. 
ZYVAD-FMK reduces the cleaved GSDME levels at 4 h after the bexarotene treatment (Fig. 3d, S2B). These 
results indicated that cleaved GSDME was related to caspase-4 activation. Subsequently, we evaluated whether 
10 µM–ZYVAD-FMK pretreatment can mitigate bexarotene-induced cell viability reduction and LDH release 
into the culture media after 24 h of bexarotene treatment. The pretreatment of ZYVAD-FMK partially attenuated 
the bexarotene-induced morphological changes in ES2 cells (Fig. 3e). However, as shown in Fig. 3f, pretreatment 
with ZYVAD-FMK could not restore bexarotene-induced cell viability reduction (P = 0.7742, bexarotene-treated 
group vs. bexarotene with ZYVAD-FMK–treated group). Meanwhile, pretreatment with ZYVAD-FMK sup-
pressed the increase in extracellular LDH levels induced by bexarotene (Fig. 3g; bexarotene-treated group vs. 
bexarotene with ZYVAD-FMK–treated group; P < 0.05). These results indicate that bexarotene has two functions 
on ovarian cancer cells: cell proliferation suppression and caspase-4 GSDME–related pyroptosis, and these are 
independent actions.

Bexarotene‑induced ER stress, which is not associated with pyroptosis.  The ER stress might 
cause pyroptotic cell death in several cells in vitro24,25. Thus, we examined whether bexarotene-induced ER stress 
in ES2 cells. We also evaluated whether bexarotene activated the unfolded protein response (UPR) signaling 
pathways, which are common ER stress markers, in ES2 cells. In this study, we used PERK phosphorylation, and 
X-binding protein 1 (XBP1) mRNA splicing as ER stress response markers.

Spliced XBP1 worked as a transcriptional factor for upregulating or downregulating the UPR-related gene 
under ER stress conditions. From 2 h after bexarotene treatment, XBP1 mRNA was spliced in an increased time-
dependent manner (Fig. 4a, S4A). After 2 h of bexarotene treatment, the molecular weight of PERK was rapidly 
shifted to a higher molecular form (Fig. 4b, c, S4B), indicating that PERK protein was activated via phosphoryla-
tion. These results indicated that bexarotene rapidly induced ER stress in ES2 cells. Subsequently, we examined 
whether the knockdown of ER stress sensor proteins attenuated the cell death caused by bexarotene in ES2 cells. 
We found that PERK and IRE1 knockdown could not attenuate the release of LDH (Fig. 4d) and restore cell 
morphological changes (Fig. 4e) caused by bexarotene treatment.
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Figure 2.   Bexarotene treatment increased CDKN1A mRNA expression, decreased cell cycle-related proteins, and increased the 
sub-G1 phase cell population. Levels of CDKN1A mRNA were measured and compared between 10 µM bexarotene-treated cells and 
nontreated cells 24 h after bexarotene treatment in (a) ES2 and (b) NIH:OVACAR3 cells. CDKN1A expression was assessed using the 
2-ΔΔCT quantitation method and normalized to housekeeping gene GAPDH using a no-treatment control as a calibrator. The results 
presented were mean, ± standard deviation for at least three independent experiments. (c, d) Western blot analysis was performed 
to evaluate the effect of 10 µM bexarotene on cell cycle-related proteins (CDK4, CDK6, cyclin D1, and phospho-Rb) in ES2 and 
NIH:OVACAR3 cells. Used as an internal control was β-actin. Columns and bar graphs represent the mean ± standard deviation for at 
least three independent experiments. Quantification of protein levels was performed by densitometry and normalized to β-actin. (e, f) 
Cell cycle analysis with PI-stained cells. Bexarotene (10 µM ) treatment significantly increased the sub-G1 phase cell population and 
reduced G0/G1 and G2/M phase population in both the cell lines. White bars and the black bars represent the data in the vehicle- and 
10 μM–bexarotene treated cell, respectivery. *P < 0.05, **P < 0.01, compared with bexarotene-free control. ACTB, β-actin.
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Discussion
This study revealed that bexarotene induced cell death in several ovarian cancer cell lines under a clinical setting 
concentration. Furthermore, this study clarified the following points: (1) bexarotene-induced cell death might 
be caused via pyroptosis mediated by caspase-4 activation and GSDME cleavage; (2) bexarotene suppresses cell 
proliferation through sub-G1 cell cycle arrest; and (3) bexarotene rapidly induced ER stress but might not be 
related to pyroptosis.

Our study confirmed that bexarotene (5–20 μM) induced cell death and inhibited cell proliferation in ovarian 
cancer cell lines. This experimental concentration of bexarotene almost has the same or lower concentrations 
than those of the clinical concentration (Cmax: 10.4 μM, Targretin capsules 75 mg, interview form, Minophagen 
Pharmaceutical Co., Ltd., Zama, Japan). Conversely, the all-trans retinoic acid (ATRA) concentration, which is 
a well-investigated retinoic acid against ovarian cancer in vitro, has supraphysiologic concentrations. The ATRA 
concentration (sometimes as high as 10 μM) in in vitro studies was 5–50 times higher than that in the clinical 
setting (Cmax: 0.18 μM, VESANOID Capsule 10 mg, interview form, Fuji Pharma Co., Tokyo, Japan). ATRA 
increases apoptosis and decreases cell proliferation, thereby proving effective against several ovarian cancer 
cell lines26–29. In the study by Lokman et al.29, the cell survival of two of five serous ovarian cancer cell lines 
(OVCAR-3 and OV-90) was inhibited by more than 20%; however, proliferation inhibition was weak or almost 
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nonexistent for the other three cells (OAW28, COV318, and COV362). In addition, several ovarian cell lines, 
such as COV362, COV318, SKOV-3, and CP70, are resistant to ATRA. Contrary to ATRA, bexarotene had the 
potential for clinical application in ovarian cancer.

We confirmed that bexarotene-induced cell death is pyroptosis mediated by caspase-4 activation and GSDME 
cleavage. RNA-seq analysis was performed using ES2 cells 24 h after the 10 µM–bexarotene treatment (data not 
shown). No changes were observed in the caspases, except for caspase-4. Therefore, the other caspases were not 
involved in the mechanism of pyroptosis induced by bexarotene. As far as we know, this is the first report of 
bexarotene-induced death of pyroptotic cells in an ovarian cancer cell line. According to a research by Zhang 
et al., bexarotene induces apoptosis in CTCL cells30. Apoptosis is characterized by many distinct morphological 
features, including cell shrinkage and fragmentation into membrane-bound apoptotic bodies31, and mediated 
by caspase-3 and -8 activation32. However, the characteristic morphology of apoptosis was not observed in 
bexarotene-treated ovarian cancer cell lines in ES2 cells and NIH:OVACAR3 cells. In addition, the extracellular 
activity of LDH, which is initially present intracellularly, is not elevated on apoptosis. This type of cell death 
featured cell proliferation, such as the morphological changes during pyroptosis33. Pyroptosis is a proinflamma-
tory programmed cell death typically induced by a viral infection, toxin, and chemotherapy drugs13. Three main 
pathways of inducing pyroptosis have been reported. The first is the canonical pathway of pyroptosis, which is 
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regulated by inflammation-activated caspase-1. The second is the non-canonical pyroptotic pathway regulated 
by caspase-4/5 in humans and caspase-11 in the mouse. GSDMD is a common substrate for caspase-1/4/5/11 for 
both canonical and non-canonical pyroptosis23. The last pathway is mediated by caspase-3 and GSDME, which 
can be activated by chemotherapy drugs14. The study showed that bexarotene induced pyroptotic cell death 
through the caspase-4–GSDME-dependent signaling pathway in an ovarian cancer cell line. It is the first report 
demonstrating the induction of pyroptosis by caspase-4 activation and GSDME cleavage.

The anticancer effect of bexarotene was thought to be due to its genomic function as an RXR agonist. The 
ligand-activated RXR homodimer binds two RXR consensus domains within the promoter region of CDKN1A 
genes and upregulates the CDKN1A mRNA expression20. In this study, bexarotene upregulated CDKN1A, which 
codes a cyclin-dependent kinase inhibitor p21, and downregulated cell cycle-related proteins downstream of 
p21.Therefore, bexarotene also acts as an RXR agonist in ovarian cancer cells. However, several studies indi-
cated that the accumulation of p21 could induce growth inhibition and cell cycle arrest but could not induce 
cell death34. Thus, the induction of CDKN1A alone could not explain bexarotene-induced cell death. How-
ever, in this study, bexarotene could induce cell death with characteristic morphological changes of pyroptosis 
through caspase-4 and GSDME. In addition, the knockdown of RXRα or RXRβ by siRNA could not attenuate 
the LDH release induced by bexarotene (Supplementary Figure S1). These results suggested that the induction 
of pyroptosis through caspase-4 and GSDME was not mediated by RXR. Therefore, we speculated that bexaro-
tene has genomic functions via RXR and non-genomic functions via caspase-4 and GSDME. These two actions 
were also considered independent. Furthermore, the cell-killing effect of bexarotene was observed at a clinical 
concentration (10 µM); however, CDKN1A activation only showed a twofold change at this concentration. 
Therefore, bexarotene could have induced cell death by pyroptosis mediated by caspase-4 activation rather than 
by p21-mediated cell cycle arrest.

In this study, we also showed that the bexarotene-activated ER stress in ovarian cancer cells was consistent 
with the findings of a previous report wherein ER stress was induced in the human neuroblastoma cell line by 
a high concentration of bexarotene35. Several studies have reported that ER stress can lead to pyroptosis24,25,36. 
Palmitic acid and the ER stressor tunicamycin induce ER stress, leading to pyroptosis. An ER stress inhibitor 
can inhibit pyroptosis caused by palmitic acid or tunicamycin-induced ER stress. In this study, we have also 
demonstrated that the attenuation of ER stress by si-PERK and si-ERE1a could not restore bexarotene-induced 
pyroptosis, suggesting that bexarotene-induced pyroptosis is not mediated by ER stress in ovarian cancer cells. 
Hence, future research should investigate how bexarotene induces pyroptosis in ovarian cancer cells.

Conclusions
Our study showed that the clinical concentration of bexarotene reduces cell proliferation by inducing p21, 
which is still widely known and can also cause cell death, which is possibly pyroptosis, in ovarian cancer cell 
lines. Therefore, bexarotene is a potential anticancer drug for ovarian cancer. This study, however, was unable 
to elucidate the mechanisms of bexarotene-induced pyroptosis. Therefore, to better understand the pharmaco-
logical action of bexarotene, future research should further investigate the mechanisms of bexarotene-induced 
pyroptosis in ovarian cancer cells.

Data availability
All data analyzed in this study are included in this published article.
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