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A B S T R A C T

Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease.
However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how
exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise
when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-
active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect
formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated
assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After
considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying
set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use
redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers,
consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.

1. Introduction

Exercise redox biochemistry faces the challenge of understanding
how acute and chronic exercise alters redox homeostasis in health and
disease. Although great progress has been made (reviewed in [1–12]),
several conceptual, methodological and technical issues remain. For
example, the thiobarbituric acid-reactive substance (TBARS) assay
complicates attempts to accurately quantify exercise-induced lipid
peroxidation. A situation abetted by measures of oxidative macromo-
lecule damage being limited to a few “reporter” molecules, usually
assessed in isolation. However, a myriad of oxidised macromolecules
products exists: many of which, remain unassessed in an exercise
setting. Solutions exist. For example, high-throughput “omics” ap-
proaches enable oxidised macromolecules to be assessed in parallel.
Additional issues can complicate experimental design, data interpreta-
tion and ultimately impede progress. We propose a set of recommenda-
tions to address key issues to inform experimental design, aid peer
review and progress the field.

2. Terminology

Interpretational errors often stem from terminological inconsistency
[13,14]. The terms free radical, reactive oxygen species, reactive
nitrogen species, oxidants, reactive sulphur species, and reactive
oxygen and nitrogen species are frequently used interchangeably
[15]. A situation abetted by switching between identifying specific
species (according to chemical taxonomy) and global acronyms. For-
man et al. [15] recommend using the global term reactive species when
the species responsible for a particular outcome is unknown. Reactive
species encompasses oxygen, carbon, sulphur and nitrogen centred free
radical (i.e. unpaired valence electron) and non-radical species. When
the reactive species is known, then it should be stated to avoid
ambiguity [15]. In addition, when a reactive species is strongly
associated with a particular outcome, but a limited subset of species
could contribute, then they should also be stated. For example,
nitrosoperoxocarbonate (ONOOCO2) derived carbonate radical (CO3.)
and nitrogen dioxide radical (NO2.) underlie 3-nitrotyrosine (3-NT)
formation, but hydroxyl radical (. OH) and peroxyl radical (RO2.) can
also contribute [16–18]. We suggest that the term “antioxidant
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enzyme” should be discontinued and replaced with “redox enzyme”
because their reactions can be coupled to redox signalling [19] and can
generate reactive species [20].

3. Chemical heterogeneity

Interpretational errors can arise when reactive species, redox
enzymes and redox-active therapeutics (i.e. nutritional antioxidants)
are treated as monolithic chemical entities [21]. Reactive species are
chemically heterogeneous differing in their half-lives (t1/2), diffusion,
production, reactivity and metabolism [21,22]. As an exemplar, we
compare. OH with hydrogen peroxide (H2O2). OH is extremely facile
(t1/2 s ~ 10−9 [23]) reacting in an indiscriminate and diffusion-
controlled fashion (i.e. 109 M−1 s−1) with vicinal biomolecules thereby
precluding active metabolism by redox enzymes [24–26]. In contrast,
superoxide dismutase (SOD) isoforms catalyse H2O2 formation [27,28].
Note H2O2 can also arise from non-catalysed superoxide anion (O2

.−)
dismutation provided the negative electrostatic repulsion can be over-
come. Beyond SOD isoforms, multiple enzymes generate H2O2 includ-
ing: dual specificity oxidases, xanthine oxidase (XO) and monamine
oxidase (for an extensive list see: [29]). Chemically, H2O2 is poorly
reactive with most biomolecules but will react rapidly with transition
metal ions (e.g. Fe2+) and redox enzymes that include catalase,
peroxiredoxin (PRDX) and glutathione peroxidase (GPX) isoforms
[30,31]. As a consequence of selective reactivity, H2O2 has a greater
diffusion capacity (2000 µm2 s−1 [22]) and t1/2 (s ~ 10−5 [23]). Note
interplay between the two species exists; for example, the Fenton
reaction produces. OH (Fe2++ H2O2 → Fe3++ −OH. OH [32]).

Redox enzymes and redox-active therapeutics are equally hetero-
geneous acting in different ways to alter the redox environment [21].
Exemplified by SOD isoforms dismutating O2

.−,a free radical, to H2O2,
a non-radical product [27,28]. The two-step SOD reaction involves
chemical heterogeneity, with SOD oxidising one O2

.− to O2 and
reducing another to H2O2 [33,34]. Before redox enzymes that employ
reactive cysteine (i.e. PRDX isoforms), cysteine and selenium (i.e. GPX
isoforms) or transition metal ions (i.e. Fe2+ in catalase) at their active
sites metabolise H2O2 [31,35,36]. As Murphy et al. [21] highlight,
knowledge of chemical heterogeneity together with the reactions that
are kinetically feasible in biological systems can avoid ambiguity. For
example, hypothesising that: exercise-induced reactive species forma-
tion will increase 3-NT levels is imprecise. A chemically precise
hypothesis is that: exercise-induced CO3. and NO2. formation secondary
to ONOOCO2 will increase 3-NT levels, provided 3-NT repair remains
constant. Consequently, we strongly encourage authors to consider
chemical heterogeneity to inform experimental design and data inter-
pretation.

4. Pro-oxidant/antioxidant duality

Dividing the redox environment into pro-oxidants (i.e. reactive
species) and antioxidants (i.e. redox enzymes) belies their complexity
and disregards context. When it is considered that electrons exhibit
wave-particle duality [37], it is unsurprising that reactive species and
redox enzymes defy simple classification. For example, reactive species
can act as “antioxidants”. For example, the diffusion-controlled (k ~
109 m−1 s−1) radical recombination reaction between nitric oxide
(NO.) and O2

.− can be anti-oxidative or pro-oxidative depending on
the context. In situations that favour O2

.− mediated Fe-S cluster
oxidation, then NO. can be considered an “antioxidant”, provided
peroxynitrite (i.e. the product of radical recombination) yields non-
radical products, such as nitrate (NO3

−), that can re-generate NO. (see:
Fig. 1). Equally, NO. could merely re-direct the reactivity of O2

.− [38]
because peroxynitrite (sum of anionic ONOO- and protonated ONOOH
forms) can decompose to CO3. and NO2. [39], two species that are
generally pro-oxidative [40,41]. In addition, redox enzymes can gen-
erate reactive species: SOD isoforms generate H2O2 [27,34] and

promote O2
.− generation by coenzyme Q10 semiquinone [42]. In

particular, under reducing conditions (e.g. elevated NADH levels),
glutathione reductase (GR) and thioredoxin reductase (TR) can gen-
erate H2O2 [20]. Ordinarily, GR and TR oxidise NADPH to reduce
oxidised glutathione (GSSG) and oxidised thioredoxins (TRDX) and
thereby contribute to H2O2 metabolism by the GPX and PRDX systems,
respectively. Redox independent actions are also possible. For example,
secreted CuZnSOD initiates muscarinic signalling in cholinergic neu-
rons independently of its dismutase activity [43,44]. Because the
actions of redox enzymes, redox-active therapeutics and reactive
species are context-dependent, simple partitioning of the redox envir-
onment is misleading and is strongly discouraged.

5. Oxidative stress

Helmut Sies introduced the term “oxidative stress” in 1985 to define
disrupted redox homeostasis: a deviation from the steady-state arising
as a result of an imbalance between the production and metabolism of
reactive species [45]. Present definitions of oxidative stress are
inclusive of oxidative stress underpinning oxidative macromolecule
damage (i.e. lipid, protein and DNA oxidation) and/or redox signalling
[46,47]. Note oxidative macromolecule damage can occur in the
absence of redox signalling and vice versa [46,48]. Incorrect use of
the term oxidative stress causes confusion [47], which arises when
oxidative stress is used as a nebulous, ill-defined and all-encompassing
term without recourse to the underpinning chemistry [14,49]. Correct
use of the term requires specificity because chemical heterogeneity
means the redox environment cannot be distilled to a global binary
reduced/oxidised logic gate. Accordingly, one should be cautious about
extrapolating a change to the totality of the system. For example,
increased cytosolic GSSG may not necessarily be reflected by a
concomitant increase in nuclear and mitochondrial GSSG (see: Fig. 2).
Associated recommendations are three-fold: (1) define oxidative stress;
(2) describe oxidative stress precisely; that is, relative to the assays used
and what they report on; and (3) interpret oxidative stress neutrally
unless one has strict evidence of functionality. The aforementioned
recommendations also apply to related pseudo-global terms, notably

Fig. 1. Exemplar NO. “antioxidant scenario”. NO-O2.- radical recombination yields
peroxynitrite (ONOO-/ONOOH) reducing the bioavailability of both “parent” species. We
depict reduced O2

.− bioavailability, as blocking O2
.− mediated Fe-S cluster oxidation

which causes enzyme inactivation and release of Fe2+. ONOO- reacts rapidly with CO2

before decomposing to radical (35% yield) or non-radical species (65% yield). Nitrate
(NO3

−) can support NO. re-synthesis (reactions omitted for clarity) to complete an
“antioxidant” cycle, provided NO3

− is metabolised to generate NO2
−. Equally, NO2. and

CO3. can initiate macromolecule damage which illustrates how radical recombination can
simply redirect the reactivity of the two parent radicals.
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nitrosative and reductive stress.

6. Redox signalling

Redox signalling refers to the reversible and compartmentalised
oxidation of protein cysteine (i.e. thiols) and methionine residues
[29,50–57]. Redox signalling regulates essential cellular processes from
apoptosis to metabolism [58]. Whilst redox signalling may regulate
exercise responses and adaptations (reviewed in [59–64]), the under-
pinning chemistry is ill-defined [59]. For example, whether O2

.−

mediated thiol oxidation contributes is unclear [65]. Nevertheless,
redox signalling operates in two modes: direct and indirect [52,59,66].
Direct oxidation by a reactive species occurs in the absence of
intermediaries, whereas indirect oxidation involves intermediaries
[67,68]. Kinetic considerations [69–71] suggest redox signalling pro-
ceeds indirectly via redox relays wherein kinetically rapid redox
enzymes (e.g. PRDX isoforms) transfer electrons in a linear fashion
until a downstream target is oxidised, exemplified by the H2O2-PRXD2-
STAT3 redox relay [72]. Trans-nitrosylation reactions are another form
of redox relay [73,74].

The interplay between oxidative stress and redox signalling is set by
reactive species identity, source, duration and amplitude, as well as, the
abundance, activity and location of the vicinal interactome [19,75,76].
For example, a recent proteomic study identified that mitochondrial
complex I and complex III derived O2

.−/ H2O2 oxidise a distinct set of
protein thiols [75]. The authors propose that generator specific
functionality could inform different outcomes (i.e. redox signalling
and oxidative macromolecule damage). Because exercise disrupts redox
homeostasis in multiple cell types [3], the influence of cell type should
be considered. For example, erythrocytes lack mitochondria so their
steady-state redox homeostasis is inherently different [77]. Further,
redox enzymes are present at low levels in pancreatic beta cells [78]. In
addition, lipid type and content differs by cell type which could
influence peroxidation. For example, neurons are enriched in PUFA

[79] which are highly susceptible to peroxidation [24].

7. Nutritional antioxidants

Nutritional antioxidants are commonly used to interrogate the
biological role of reactive species in an exercise setting, typically
achieved with ascorbate and α-tocopherol [60,61,80–82]. To faithfully
tie reactive species to a particular outcome, the nutritional antioxidant
used must competitively react with the relevant species with spatio-
temporal fidelity: at the relevant place and time [83,84]. The nutri-
tional antioxidant used should be free from extraneous redox indepen-
dent actions. Relevant interpretational points are fivefold. First, nutri-
tional antioxidants often fail to react appreciably with the relevant
species in the relevant signalling microdomain (reviewed in
[59,83,84]). For example, α-tocopherol fails to react appreciably with
H2O2 [50]. Nutritional antioxidants, principally polyphenols, may exert
their effects by activating the cyto-protective xenobiotic response via
Nrf2-Keap1 signalling (reviewed in [25]). Second, many nutritional
antioxidants exert redox independent actions. For example, α-tocopher-
ol can bind to lipoxygenase isoforms to inhibit ferroptosis, iron
dependent cell death [85,86], independently of its RO2

.− reducing
capacity [87]. Third, nutritional antioxidants can be pro-oxidants and
are better categorised as redox-active therapeutics [88]. For example,
manganese porphyrins act as pro-oxidants to override the reducing
capacity of TRDX and GSH systems in certain tumour cells [33,89].
Fourth, use of a redox-active compounds should not be exclusively
predicated on their reaction with. OH because no effective antioxidant
against. OH exists [13,26,90]. Fifth, the reaction between redox-active
compounds and reactive species is second-order, with the implication
that bioavailability influences reaction rates. Last, chemical hetero-
geneity means a lack of an effect with one redox-active compound is
insufficient evidence to exclude a biological role for reactive species
[21].

8. Redox analysis: A hitch hiker’s guide to assessing oxidative
damage and redox signalling

Redox analysis is extremely difficult because the t1/2 of most
reactive species is milliseconds and even NO., a relatively stable
species, is consumed within seconds i.e. ~2 s [91–93]. A situation
abetted by chemical heterogeneity (i.e. no all-encompassing generic
reporter exists) together with the challenges of the in vivo human
exercise situation. Related challenges include incompatibility with
fluorescent redox probes (probes are not free of caveats in any event
[94–96]) and difficulties associated with accessing tissues. Conse-
quently, investigators are largely limited to assessing macromolecule
damage from tissue extracts [97]. Considerations are five-fold. First,
markers of macromolecule damage lack exclusivity. For example, F2-
isoprostanes, a lipid peroxidant, can be generated enzymatically in a
redox independent fashion [98]. Second, oxidised macromolecule
adducts are subject to repair [99]. Third, global levels of macromole-
cular adducts are unable to report on redox signalling because the two
outcomes are often mechanistically independent [46,59,77]. Further,
damage to one macromolecule does not necessarily mean damage to
others has occurred. Fourth, optimal sampling time is heterogeneous
[100,101]. Fifth, redox biomarkers exhibit circadian oscillation. For
example, erythrocyte oxidised [PRDX2] exhibits rhythmicity [102]. If
seeking to assess oxidative damage, we advocate HPLC-MS-MS based
approaches to allow for unambiguous and quantitative detection of
macromolecule adducts in an unbiased and multiplex fashion [103].
For hypothesis driven approaches, mass spectrometers can be pro-
grammed to detect specific precursor and daughter ions (i.e. selective
reaction monitoring [104]) which can reduce analysis time and is
compatible with quantification using stable isotopes [105,106].

Redox signalling is challenging to assess owing to fragmentary
functional annotation [107]. For example, thiols can be oxidised with

Fig. 2. Compartmental GSSG oxidation. In this exemplar, NOX2 generates extracellular
O2. which then dismutates spontaneously or enzymatically (via EcSOD) to H2O2 before
entering the cell via an aquaporin channel. GPX1 converts H2O2 to H2O to increase
cytosolic GSSG levels. GPX1 restricts H2O2 diffusion hence no change in myonuclear
GSH/GSSG ratio. The GR reaction is included to show that [GSSG] is a function of
generation and metabolism. Note this is just an exemplar, other H2O2 metabolising
systems contribute (i.e. PRXD isoforms) and GPX1 is not the sole source of GSSG.
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no overt signalling functionality (i.e. decoy thiols [76]). If seeking to
assess redox signalling, we recommend redox proteomics approaches
(reviewed in [108–112]). Jackson’s group recently provided excellent
examples of the application of redox proteomics [113,114]. Comple-
mentary indirect methods assess protein content and/or gene expres-
sion but increase the number of assumptions made. For example,
increased redox enzyme gene expression may be independent of redox
signalling. In addition, mRNA abundance of redox enzymes poorly
reflects protein content owing to strict post-transcriptional regulation
[115]. The final point relates to the inability to assess tissue-specific
redox signalling at the systemic level [77].

9. Redox enzymes in plasma

A common biochemical approach is to assay the activity of redox
enzymes in plasma and/or serum owing to its relative accessibility and
cost-effectiveness. However, such an approach is generally wholly
inappropriate. Redox enzymes, with the exception of GPX3, are
typically absent from plasma, and even GPX3 is catalytically con-
strained by low plasma GSH content (1–3 µM, [24]). For example,
positive plasma catalase activity is indicative of contamination from
other tissues likely erythrocytes or active release from tissues (e.g.
skeletal muscle [116]). As an exception, redox enzyme content in
plasma may be useful biomarkers in health and disease [117–119]. For
example, elevated serum PRDX4 content is regarded as a novel stroke
risk factor [118]. Redox enzyme content can be easily assessed using
quantitative immunoblotting [120]. Recommendations are two-fold:
(1) assessing the activity of redox enzymes in plasma is strongly
discouraged; but (2) redox enzyme content may provide useful infor-
mation, provided changes in plasma volume are corrected for to
exclude artificial elevations in solute concentration owing to reduced
plasma volume post-exercise [121]. (Fig. 3).

10. Abandon flawed assays

Lipid peroxidation is a valuable marker of exercise-induced macro-
molecule damage [122]. Use of the TBARS assay to assess lipid
peroxidation is no longer recommended. The flaws of the TBARS assay
are reviewed elsewhere [91]. TBARS lacks specificity reacting with a
variety of substrates in the assay medium (at 532 nm) to form
malondialdehyde (MDA, [15]) such that, most MDA is generated by
the assay itself (i.e. artificial lipid peroxidation, see: Fig. 4 [24]). In

addition, heat-induced lipid decomposition generates extraneous MDA
[24]. HPLC combined with fluorometric detection can improve MDA
quantification [91]. However, MDA is just one product of lipid
peroxidation, and normally two or more indices are necessary to
confirm lipid damage [91]. The latter is a useful general rule for
assessment of oxidative damage to DNA and protein [24]. We strongly
recommend that the TBARS assay be discontinued.

Total antioxidant capacity (TAC) is equally flawed and should be
discontinued (reviewed in [123,124]). TAC assays the capacity of a
sample to react with RO2. to offset lipid peroxidation and hence O2

uptake compared with a redox-active compound typically Trolox, a
synthetic α-tocopherol analogue [124]. Three points warrant consid-
eration. First, the assay is non-physiological being confounded by
exposure to atmospheric O2 (i.e. 21% O2) and artificially generating
RO2. at supra-physiological levels using synthetic compounds (e.g.
AAPH). Redox enzymes can react with non-canonical substrates (e.g.
reaction between ONOO/ONOOH and SOD isoforms) at supra-physio-
logical levels but this should not be taken as evidence of appreciable in
vivo reactions [24]. By extension, equating RO2. reducing capacity in a
TAC assay to in vivo protection is misleading because the likely fate of
RO2. in vivo is radical recombination or reaction with α-tocopherol
isoforms [125]. A labile and hydrophobic species such as RO2

.− is
unlikely to accumulate in plasma at appreciable levels. Second,
protection against RO2. is axiomatically non-transferable to other
reactive species, evident by the one electron reaction mechanism.
Third, an exercise-induced increases in urate concentration, as a
corollary of elevated purine metabolism [126], can confound the assay
because urate reacts with RO2. and can chelate transition metals [127].
Note variants of the TAC assay (e.g. FRAP) share analogous limitations
[24]. We strongly recommend that TAC and variants thereof are
discontinued.

11. Sample preparation and assay conditions matter

Careful sample preparation is key [101]. GSH/GSSG levels have
been used extensively as a marker of exercise-induced “oxidative
stress”. GSSG is present at very low levels (e.g. [erythrocyte GSSG]
2–6 µmol/L) even in disease [128,129]. Yet, frequently, artificially high
GSSG values (≥50 µmol/L) have been reported post-exercise owing to
methodological artefacts (reviewed in [130]). For example, a failure to
alkylate samples can lead to ex vivo GSSG formation resulting in
artificially high values. However, alkylating agents lack specificity

Fig. 3. DNA oxidation: a balancing act. The DNA oxidation product, 8-oxo-7,8-dihydroguanine, is assessed pre and post exercise, while exhaustive exercise typically increases 8-oxo-
7,8-dihydroguanine levels this could reflect altered formation and/or repair. If analysing 8-oxo-7,8-dihydroguanine at the systemic level, then tissue efflux needs to be considered.
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and remain redox active potentially interfering with assays in unex-
pected ways. For example, adding dithiothreitol to the assay buffer
accelerates pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase
O2

.−/H2O2 generation in purified mitochondria [131]. The reaction
buffer must also be considered when assaying redox enzyme activity. In
particular, indirect methods of SOD activity can be confounded by assay
constituents that reduce O2

.− or react with other constituents to
generate O2

.−. For example, cytochrome oxidase reduces cytochrome
C: an O2

.− reporter molecule in XO based assays [132,133]. Other
pertinent examples are provided elsewhere [24,134]. We encourage
authors, reviewers and editors to carefully consider sample preparation
and assay conditions. We recommend that the chemistry of the assay be
reported to aid peer review: naming the assay end-point and kit supplier
is wholly insufficient.

12. Ignore repair/metabolism at your peril

As Murphy et al. [21] outline, the dynamic interplay between
formation, uptake, repair and metabolism informs intracellular con-
centration of oxidative macromolecule adducts. At the systemic level,
the rate of oxidative macromolecule adduct efflux also contributes.
Multiple layers of control impart considerable complexity which
renders data interpretation challenging. For example, elevated circulat-
ing 8-oxo-7,8-dihydroguanine levels post-exercise, a maker of guanine
oxidation, are often interpreted as reflecting an increased rate of
reactive species mediated DNA damage. However, elevated circulating
8-oxo-7,8-dihydroguanine levels could reflect altered repair or efflux
[26]. In particular, reduced base excision repair [135–138] could raise
circulating 8-oxo-7,8-dihydroguanine levels, in the absence of any
increase in the rate of reactive species mediated 8-oxo-7,8-dihydrogua-
nine formation. Associated recommendations are twofold: (1) authors
should consider alternative explanations to avoid interpretational
errors; and (2) markers of macromolecule adduct repair should be

assessed were possible, particularly at the tissue level. Note that this
may not always be possible at the systemic level. For example, oxidised
DNA bases are not actively repaired in plasma/serum.

13. Exercising caution

A wealth of chemical data exists regarding the reactions of reactive
species at resting cellular pH and temperature [24]. Exercise imposes
several biochemical changes that warrant consideration [59]. For
example, exercise-induced metabolic acidosis tends to alter the biolo-
gical chemistry of certain reactive species. For example, at pH 7.4
around 20% of peroxynitrite is found in the protonated form (i.e.
ONOOH) but acidosis will increase protonation [17]. Indeed, at pH
6.8–50% of peroxynitrite will be present in the protonated form. In
addition, declining pH will alter the protonation of O2

.−. Hydroperoxyl
radical (HO2.) lacks charge and possesses greater biological reactivity
[139]. Note SOD isoforms do not react appreciably with HO2. owing, in
part, to a lack of electrostatic facilitation [140]. Conversely, acidosis
tends to decrease thiol reactivity. For example, thiols are more reactive
in the relatively alkaline environment of the mitochondrial matrix (pH
~7.8) than in the cytosol [76]. Exercise, which can increase tempera-
ture by 2–3 °C, can thermally alter reaction rates via increasing collision
propensity and energy. Although increasing temperature will accelerate
biochemical reactions, heat-induced protein denaturation impedes
redox enzyme activity. The influence of heat-induced protein denatura-
tion on [reactive species] is difficult to predict. For example, because
redox enzymes bilaterally control exercise-induced O2

.− generation and
metabolism how exercise alters [O2

.−] may depend on whether heat-
induced denaturation uniformly or differentially impacts redox en-
zymes in space and time. Last, the nature of resting and exercise-
induced reactive species generation differs, with the implication that
exercise-induced stress and adaptive responses may not necessarily
alter resting redox homeostasis (i.e. response specificity exists). For

Fig. 4. Flawed assays. A) Artificial MDA generation. Sample MDA is artificially amplified by TBARS addition owing to heat-induced lipid decomposition and extraneous TBARS reactions
leading to spurious values. B) Overview of artificial and endogenous RO2

.− generation. Differences are highlighted in red and include aqueous phase, artificial source (i.e. AAPH), greater
RO2

.− levels, different reductants (various assay constituents contribute from ascorbic acid to urate) and non-physiological O2 levels.
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example, principal O2
.− generators switch from mitochondria at rest

[141,142] to NOX isoforms during exercise (at least during short-
duration exercise) in skeletal muscle [143,144]. We emphasise that the
exercise-induced changes described above are heterogeneous differing
by cell type and intracellular microdomain.

14. Concluding recommendations

We recommend that investigators:

1. Define all key terms and once defined use consistently and
appropriately.

2. Consider chemical heterogeneity.
3. Avoid assuming that redox-active compounds necessarily act as

antioxidants in vivo.
4. Use oxidative stress with specificity (i.e. not as a global all-

encompass term).
5. Abandon out-dated assays (i.e. TBARS and TAC).
6. Refrain from assessing redox enzyme activity in plasma.
7. Carefully prepare samples to avoid ex vivo artefacts.
8. Carefully consider and prepare sample buffers.
9. Consider oxidised macromolecule adduct repair/metabolism.

10. Use multiple biomarkers to assess oxidative damage or redox
signalling.
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