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Dynamic interactions between intracellular networks regulate cellular homeostasis and responses
to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer,
however, development of acquired resistance to these drugs is a significant clinical problem. A
network-based computational analysis of global gene expression data from matched sensitive and
acquired drug-resistant cells to lapatinib, an EGFR/ErbB2 inhibitor, revealed an increased
expression of the glucose deprivation response network, including glucagon signaling, glucose
uptake, gluconeogenesis and unfolded protein response in the resistant cells. Importantly, the
glucose deprivation response markers correlated significantly with high clinical relapse rates in
ErbB2-positive breast cancer patients. Further, forcing drug-sensitive cells into glucose deprivation
rendered them more resistant to lapatinib. Using a chemical genomics bioinformatics mining of the
CMAP database, we identified drugs that specifically target the glucose deprivation response
networks to overcome the resistant phenotype and reduced survival of resistant cells. This study
implicates the chronic activation of cellular compensatory networks in response to targeted therapy
and suggests novel combinations targeting signaling and metabolic networks in tumors with

acquired resistance.
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Introduction

Cellular homeostasis is maintained by dynamic interactions
between networks that regulate cellular functions (Jordan
et al, 2000). Deregulation of network dynamics caused by
mutations is one of the hallmarks of cancer (Hanahan and
Weinberg, 2011). The premise of oncogene addiction in
cancers (Weinstein, 2002; Sharma and Settleman, 2007)
suggests targeted therapy as a promising strategy in the
treatment of cancer patients. Overexpression of the ERBB2/
HER2 oncogenic product and increased activation of its
signaling network is one of the most common events in
breast cancer and correlates with poor prognosis (Slamon
et al, 1987). Lapatinib (Tykerb, GlaxoSmithKline) is the
first dual inhibitor of EGFR and ERBB2/HER2 tyrosine
kinase receptors that was approved for the treatment of
ErbB2-positive advanced or metastatic breast cancer patients
(Medina and Goodin, 2008). Despite showing efficacy,
lapatinib as a first-line monotherapy in ErbB2-positive breast
cancer patients suffers from short-lived clinical responses due
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to acquired resistance. Recent studies examining mechanisms
of resistance to lapatinib in SKBR3 and BT474 human breast
cancer cells found increased expression of HER2 or HER3
(Garrett et al, 2011). Chronic acquired resistance to lapatinib in
UACCS812 cells showed a switched dependence on FGFR2
signaling (Azuma et al, 2011) and overexpressions of the AXL
receptor tyrosine kinase (Liu et al, 2009) in BT474 cells. While
these studies have focused on alterations at the molecular level
in signaling pathways, a detailed systems-level analysis of
global cellular networks altered during chronic lapatinib
exposure leading to acquired resistance has not been done.
Understanding the dynamic changes in cellular networks in
response to perturbations leading to acquired resistance will
be critical in development of novel targets or combinations of
targets to overcome resistance to targeted therapy.

Results

To develop a model of acquired resistance to lapatinib, we
cultured ErbB2-positive SKBR3 cells with increasing doses of
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Initial characterization of lapatinib-resistant cell line. (A) Percent change in cell numbers in response to increasing doses of lapatinib in parental and resistant

SKBR3 cells. (B) Cell-cycle and apoptosis analysis of the parental and resistant cells in response to 1 1M lapatinib after 4 days. (C) Immunoblotting of ErbB signaling
pathway before and after 1 uM lapatinib treatment. Immunoblotting of phosphorylation sites on ErbB1, 2 and 3 family members as well as the downstream signaling
proteins AKT, MAPK1, 2, mTOR, S6Kinase and S6 before and after lapatinib treatment.

lapatinib for a year, in parallel control parental cell was also
cultured in normal conditions with no lapatinib. The resultant
cell line variant, SKBR3-R, is almost 100-fold more resistant to
lapatinib treatment when compared with the parental SKBR3
(Figure 1A). In line with previous studies, we find that
lapatinib induces a significant amount of apoptosis as
characterized by sub-G1 DNA content in SKBR3 but not in
SKBR3-R cells (Figure 1B). Previous studies have implicated
acquired mutations in EGFR/ErbB2 or overexpression of
ErbB3 as a possible mechanism of lapatinib resistance. We
sequenced EGFR and ErbB2 kinases and found no acquired
mutations in the mutation hot spots reported for these genes
(Supplementary Figure 1). We measured ErbB3 protein levels
and found no increase in ErbB3 levels between parental and
resistant cells (Figure 1C). However, there is a small increase in
total ErbB3 levels in response to lapatinib in both parental and
resistant cells as previously described (Figure 1C; Garrett et al,
2011). We next determined the effect of lapatinib treatment on
inhibition of EGFR/ ErbB2 phosphorylation in both parental
and resistant cells (Figure 1C), and found that EGFR/ErbB2/
ErbB3 phosphorylation was equally inhibited in both sensitive
and resistant cells (Figure 1C).

To determine the effect of lapatinib on downstream
signaling pathways from EGFR/ErbB2, we measured changes
in phosphorylation of MAPK1,2, AKT, mTOR, TSC2, P70S6K
and S6 and found that lapatinib equally inhibited their
phosphorylation in both the parental and resistant cells
(Figure 1C). We additionally genotyped the parental and
resistant cells in the MDACC Characterized Cell Line Core
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using Sequenome analysis and compared it with the ATCC-
derived SKBR3 cells to ensure the acquired resistance cells
were in fact SKBR3 cells (Supplementary Figure 2). Having
found no additional mutations in EGFR/ErbB2, no increase in
ErbB3 and equal inhibition of EGFR/ErbB2/ErbB3 signaling
between the parental and resistant cells we wanted to
determine what alterations of cellular processes outside the
classical EGFR/ ErbB2 pathway may contribute to acquired
lapatinib resistance in breast cancer cells.

To gain insight into the global cellular processes altered
during the acquired lapatinib resistance in SKBR3 cells, we
measured gene expression changes in SKBR3 and SKBR3-R
cells before and after treatment with 0.1 or 1 uM lapatinib for
24 h. Functional analyses of global gene expression data are
enhanced by employing network-based approaches within the
context of a priori information (Ideker et al, 2011). Here, in
order to understand the specific network alterations contribut-
ing to acquired resistance of SKBR3-R cells to lapatinib, we
employed NetWalk, a random walk-based network scoring
method for genomic data analyses (Komurov et al, 2010). In
contrast to other similar network analysis methods, NetWalk
output is not a collection of networks, but rather a distribution
of network-wide scores for each interaction in the network
based on the local connectivity as well as the supplied
gene expression values. This enables direct comparative
analyses of gene expression data between different conditions
at a network, rather than at a gene level. To facilitate
network analyses of signaling pathways, transcriptional
networks, metabolic networks and functional interactions
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Figure 2 Network analyses of gene expression data. (A) A heatmap of Edge Flux (EF) values with highest variance across the six conditions (see text and Materials
and methods). (B) A network plot of the interactions in K1. Nodes are colored by the relative gene expression values of respective genes in resistant cells (see the red-
green color key), and edges are colored according to the type of interaction. (C) Functional enrichment scores of highest scoring GO functional classes in the network of
500 highest EF values in resistant cells relative to parental cells. Enrichment score was calculated as the — log of hypergeometric distribution function. (D) Heatmap of
gene expressions of some genes in our data set previously implicated in glucose deprivation response.

in the gene expression data, we compiled a comprehensive
network of binary relationships between genes based on
physical, regulatory and neighboring interactions as well as
functional similarity as cataloged in various online databases
(see Materials and methods). Overall, our network accounts
for ~240000 physical and functional interactions among
15106 unique genes.

Using the respective microarray gene expression data, we
obtained Edge Flux (EF) value distribution for each condition
(see Materials and methods). The heatmap of 1000 EF values
with highest variance across the six conditions (0, 0.1 and
1uM lapatinib treatment for 24h for SKBR3 and SKBR3-R
cells) is displayed in Figure 2A. The same analysis using the
highest 480 values is shown in Supplementary Figure 3. Four
clusters, K1 through K4, with distinct temporal expression
patterns are clearly identifiable. Networks in K1 are specifi-
cally upregulated at the basal level in the resistant cells, while
those in K2 are specifically downregulated in these cells. K3
contains networks that are upregulated, and K4 contains
networks that are downregulated, in response to lapatinib in
both cell lines. Heatmap visualization of the data without
NetWalk analysis is shown in Supplementary Figure 4. Plotting
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of the network in K1 shows extensive upregulation in the
resistant cells of the cellular processes involved in glucose
uptake, glucagon signaling, unfolded protein response (UPR)
and oxidation/reduction (Figure 2B). The network in K2 is
primarily composed of signaling pathways involved in TGFf
signaling and inflammatory response (Supplementary
Figure 5), and the network in K3 contains processes involved
in oxidation/reduction, cell-cycle arrest and EGF signaling
(Supplementary Figure 6). K4 almost exclusively consists of
cell-cycle processes (Supplementary Figure 7). We performed
GSEA analysis of the same data set and the GSEA analysis
failed to identify these functionally relevant gene networks
(Supplementary Figure 8). Lapatinib-mediated downregula-
tion of cell-cycle machinery in K4 and upregulation of
cell-cycle inhibitory complexes and EGF signaling in K3 in
both cell lines are in line with our expectations regarding
cellular responses to lapatinib, which involves cell-cycle arrest
and attempts at restoring EGF signaling. However, the
networks in K1 and K2, which are specifically activated and
inhibited, respectively, in resistant cells, and therefore
constitute the clusters of highest interest within the context
of this study, have not been previously associated with
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Figure 3 Glucose deprivation response phenotype in lapatinib resistance. (A) Immunoblotting of key members of glucose deprivation response in parental and
resistant cells HSPA5, HK2, IRE1, pJNK, pAMPK, PERK and p38. (B) Immunoblotting of the AKT and AMPK phosphorylation sites on TSC2 in parental and resistant
cells. (C) Glucose uptake flux analysis (*P< 0.05), (D) lactate production flux analysis (*P< 0.05), (E) ratio of lactate to glucose (*P<0.05) and (F) total ATP content of
parental and resistant cells after 24 h of lapatinib treatment (*P< 0.01). (G) Change in cell numbers of parental SKBR3 cells treated with increasing doses of lapatinib in a
media with normal and no glucose (*P<0.01). (H) Change in cell numbers of BT474 cells treated with increasing doses of lapatinib after prolonged incubation in a media

with normal (2 g/l) and low (0.25 g/l) glucose (*P<0.01).

acquired resistance to targeted therapy. Therefore, we chose to
analyze these clusters in more detail.

Interestingly, processes in the K1 cluster are reminiscent of a
classical glucose deprivation response, where endoplasmic
reticulum (ER) stress in the form of the UPR, amino-acid
catabolism, glucagon signaling, increase in the expression of
glucose transporters and glycogen breakdown are common
responses (Hotamisligil, 2010). Indeed, a functional enrich-
ment analysis of the 500 highest EF values in the resistant cells
relative to parental cells using hypergeometric probability
distribution function shows a specific enrichment of processes
associated with the ER (Figure 2C), further suggesting that
networks associated with the ER and nutrient stress are
upregulated in the resistant cells. Furthermore, several of the
previously published markers of glucose deprivation and ER
stress response markers are also upregulated in the resistant
cells at the basal level relative to parental cells (Figure 2D),
indicating that the resistant cells indeed display a nutrient-
starved phenotype.

Western blot analysis revealed that key members of the
ER stress response pathways, the ER chaperone GRP78
(glucose deprivation response protein of 78kDa, HSPAS
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gene), inositol requiring protein-1 (IRE1) and phospho-JNK,
which is activated by IRE1 during ER stress (Hotamisligil,
2010), are all markedly elevated in the resistant cells
(Figure 3A). Additionally, we also found an increase in p38
and PERK and in the phosphorylation of AMPK in the resistant
cells (Figure 3A).

TSC2 serves as key player in the juxtaposition between
signaling and metabolism and is phosphorylated by both AKT
and AMPK. Phosphorylation of the TSC2 protein by AMPK is a
hallmark of nutrient starvation (Inoki et al, 2003), and we
found increased phosphorylation of TSC2 at the AMPK site
(S1387) in the resistant cells at the basal level. Interestingly,
lapatinib treatment increased its phosphorylation in both
parental and resistant cells; however, the maximal levels were
observed in the resistant cells (Figure 3B). In contrast, the AKT
phosphorylation site on TSC2 (T1462) exhibited a different
behavior with lapatinib blocking the phosphorylation in both
parental and resistant cells similarly to the effect on the other
signaling proteins (Figure 1D).

Cellular response to nutrient deprivation aims to restore
glucose uptake and energy production through upregulation of
the glucose transporters as well as alternative pathways of
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energy production through amino acid and fatty acid break-
down; while trying to minimize the damage of ROS and
hypoglycosylated proteins in the ER through UPR
(Hotamisligil, 2010). Since inhibition of EGF signaling in
ErbB2-positive breast cancers has been associated with
glucose deprivation and energetic stress (Weihua et al, 2008;
Schafer et al, 2009), we hypothesized that lapatinib-mediated
cell toxicity may be associated with inhibition of glucose
uptake and subsequent energetic stress. Treatment of SKBR3
cells with lapatinib impaired their ability to uptake glucose
from the media and perform glycolysis, while the resistant
cells were not significantly affected (Figure 3C and D). Lactate-
to-glucose ratio of the fluxes showed that the resistant cells had
a higher glycolysis rate as compared with the parental cells
(Figure 3E). Lapatinib treatment induced no change in the
parental cell but there was decrease in lactate/glucose ratio in
the resistant cell, suggesting a switch from glycolysis to the
pentose phosphate pathway shunt. Lapatinib treatment leads
to ATP depletion in the parental, but not in the resistant cells
(Figure 3F). These observations suggest that lapatinib-
mediated toxicity is associated with glucose starvation and
energy deprivation, and that SKBR3-R cells resist this effect.
Since the resistant cells were not phenotypically under glucose
starvation and were not energy deprived, the elevated
networks of the UPR and other hypoglycemic response
pathways in these cells may be an adaptation to prolonged
lapatinib treatment, giving these cells the ability to uptake and
metabolize glucose independent of the EGFR/ErbB2 pathway.
Indeed, forcing parental cells into hypoglycemia by incubating
them in a media with no glucose rendered them more resistant
to lapatinib-mediated growth inhibition (Figure 3G), indicat-
ing that cellular hypoglycemic response can confer resistance
to inhibition of ErbB2 signaling. Importantly, lapatinib-
induced inhibition of glucose uptake and the protective effect
of hypoglycemic response was observed with another ErbB2-
positive breast cancer cell line, BT474 (Figure 3H).
Large-scale clinical analyses of mRNA expression profiles
of cancer patients provide an invaluable resource for testing
the clinical relevance of findings from the in-vitro cell culture
models. We asked whether our findings in the cell culture
model of acquired lapatinib resistance are also manifest in the
breast cancer patients in vivo. Unfortunately, ideal sets of data
to make such an analysis possible, that is, mRNA expression
profiles and clinical data of ErbB2-positive breast cancer
patients treated with lapatinib, are not available. Therefore,
we asked if the networks associated with lapatinib resistance
in our cell culture model correlate with overall survival or
relapse rates of patients with breast cancers whose tumors
express high ErbB2 levels. To answer this question, we elected
to employ a network approach, where we sought to construct
a network of gene-gene interactions that most correlate with
high relapse rates in ErbB2-positive patients. Using the breast
cancer cohort data from Miller et al (2005), we calculated COX
regression coefficients between the expression of every gene
and the relapse status of patients with high ErbB2 levels
(see Materials and methods). Here, a high COX coefficient
indicates high correlation of the gene’s expression level with
poor outcome. Using the distribution of COX regression
values as input to NetWalk, we obtained the network of
highest scoring interactions that best correlate with high
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relapse rates in ErbB2-positive patients (Figure 4A). In
addition to some of the previously well-characterized path-
ways of cell-cycle progression involved in poor outcome, this
network also contains networks involved in glucose/nutrient
deprivation response (see Figure 4A), which are also
upregulated in our resistant cells (HK2, SLC2A10, NDRG1;
Figure 4B). In contrast, while ErbB3 by itself shows a
significant correlation with poor disease-free survival, most
other genes in the ErbB3 network do not show the same
association between their expression levels and patient
outcome (Supplementary Figure 9). To identify cell processes
that are most significantly associated with high relapse rates
in ErbB2-positive patients, we carried out a functional
enrichment analysis of the network corresponding to highest
EF values calculated using the COX coefficient values above
(see Materials and methods). We observed that a GO
functional category ‘unfolded protein binding’ was one of
the most highly enriched processes in this network, along
with those involved in cell-cycle progression (Figure 4C),
indicating that the pathways involved in UPR similar to those
activated in our resistant cells are associated with poor
outcome in ErbB2-positive breast cancers. Importantly,
several of the markers of glucose deprivation/UPR in the
network in Figure 4B were also indicative of poor prognosis
in other independent breast cancer patient cohorts
(Supplementary Figure 10). These correlations in the clinical
data sets strongly corroborate with our findings in our cell
culture models, and implicate the cellular response to glucose
deprivation in the form of UPR and/or gluconeogenesis as
important biological processes in the relapse of ErbB2
overexpressing breast tumors.

Finding vulnerable intervention points of tumor cells that
have progressed on targeted therapies is of critical importance
for designing novel therapeutic strategies for such tumors
(Haber et al, 2011). Therefore, we asked if the activated
pathways of UPR and glucose deprivation response in the
resistant cells can be targeted for therapeutic purposes. To find
potential drug candidates for the reversal of the glucose
deprivation response phenotype in resistant cells, we
employed a chemical genomics bioinformatics approach
leveraging the connectivity map data set, which is a useful
resource for finding drugs with novel functions based on gene
expression (Lamb et al, 2006). We identified a set of 12 genes
that are involved in the glucose deprivation response and UPR
that are also upregulated in the resistant cells (see Figure 5
legend), and used this gene set to query the drugs in the CMAP
data set that caused their downregulation. We scored each
condition in the CMAP data set by summing the ranks (lower
means downregulated) of the 12 genes, and identified 5 drugs
with the lowest scores (Figure 5A). Interestingly, the drug with
the second lowest score was pyrvinium, an anthelmintic drug,
that has been previously shown to inhibit UPR associated with
hypoglycemia and therefore specifically kill cells that are
deprived of glucose (Yu et al, 2008; Saito et al, 2009). To test if
downregulation of the glucose deprivation response genes by
pyrvinium in the CMAP data set is statistically significant, we
calculated the average ranks of 10000 randomly selected 12
genes in the pyrvinium data set and compared with the ranks
of the glucose deprivation response genes. Based on this
analysis, the downregulation of the glucose deprivation
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response genes was highly significant relative to what would
be expected by chance (Figure SB). Therefore, we asked if
treatment with pyrvinium can be preferentially toxic to
resistant cells, as they have a specific upregulation of the
hypoglycemic response networks. Indeed, a dose-response
survival assay with pyrvinium showed that lapatinib-resistant
cells are significantly more sensitive to pyrvinium when
compared with parental cells (Figure 5C). Importantly, the
parental cells can be sensitized to pyrvinium under low-
glucose conditions (Supplementary Figure 11), indicating that
the toxicity of pyrvinium in resistant cells is due to elevated
pathways of UPR and hypoglycemic response. We targeted
UPR using Metformin which has been previously shown to
target the UPR gene program (Saito et al, 2009) and found that
Metformin significantly inhibits lapatinib-resistant cells
compared with the parental cells (Supplementary Figure 12)
very similar to the response to pyrvinium.

6 Molecular Systems Biology 2012

Similarly to UPR, autophagy is also a survival response to
nutrient deprivation (Hotamisligil, 2010; Kroemer et al, 2010)
and its inhibition can also be selectively toxic in nutrient-
limiting conditions (Sato et al, 2007; Yin et al, 2009), especially
in transformed cells (Sheen et al, 2011). Autophagy is activated
in the resistant cells at the basal level and in parental cells in
response to lapatinib (Figure 5D). Therefore, we tested if
resistant cells are more sensitive to bafilomycin A, a selective
inhibitor of autophagy by the virtue of its ability to inhibit
vacuole maturation. Indeed, lapatinib-resistant cells were
significantly more sensitive to bafilomycin A doses when
compared with parental cells (Figure SE), and parental cells
could be sensitized to bafilomycin A when placed in a low-
glucose media (Supplementary Figure 13). The data above
show that acquired resistance of SKBR3 cells to lapatinib is
associated with increased expressions of glucose deprivation
and ER stress response networks, and that selective targeting

© 2012 EMBO and Macmillan Publishers Limited
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gene expression values in response to indicated drugs. Note specific positioning of most of these genes in the lower part of the distribution with pyrvinium. (B) Distribution
of average ranks of 10 000 random draws of 12 genes in the pyrvinium data. The arrow indicates the average rank of the GD (glucose deprivation response) set.
(C) Change in cell numbers of the parental and resistant cells in response to increasing doses of pyrvinium after 3 days of treatment (*P<0.01). (D) Western blots of
parental and resistant cells before and after treatment with lapatinib probed for LC3-II, a lipidated LC3 molecule, a marker of active autophagy. (E) Change in cell
numbers of the parental and resistant cells in response to increasing doses of bafilomycin A (*P<0.01).

of these processes can be an effective therapeutic strategy
against these tumors.

Discussion

Targeted therapy exploiting vulnerabilities of tumor cells to the
inhibition of driver oncogenes has a premise of higher efficacy
and lower toxicity in the clinic (Weinstein, 2002; Sharma and
Settleman, 2007; Haber et al, 2011). However, the initial
dramatic response in the clinic to these targeted drugs is
almost inevitably followed by tumor relapse due to acquired
resistance. Although some of the cases of acquired resistance
are associated with the acquisition of novel mutations
rendering the target oncogene insensitive to the inhibitory
effects of the drug (Kobayashi et al, 2005; Talpaz et al, 2000),
others involve activation of compensatory pathways
(Engelman et al, 2007; Chen et al, 2008; Liu et al, 2009;
Azuma et al, 2011), possibly through epigenetic reprogram-
ming (Sharma et al, 2010). Finding new vulnerabilities, or
targetable new addictions, of these tumors is an area of active
investigation and constitutes a priority in cancer research.
We found that lapatinib-induced toxicity of ErbB2-positive
cells is associated with glucose deprivation, and that pro-
longed lapatinib treatment can lead to acquired resistance that
is characterized by increased expression of networks involved
in glucose deprivation or hypoglycemic response. The
compensatory upregulation of the glucose deprivation
response networks presumably provides EGFR/ErbB2-inde-
pendent mechanism of glucose uptake and survival, which
confers resistance to small molecule inhibition of these
receptors. Importantly, our observations suggest that addic-
tion of ErbB2-positive cells on EGFR/ErbB2 signaling may be
due to increased demand for glucose uptake in these tumor
cells that is largely dependent on EGFR/ErbB2 signaling.
Although this hypothesis may seem in contrast to the popular
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view that increased ErbB2 signaling is required to counter pro-
apoptotic signals, it is in line with a recent study implicating
the cellular capacity for glucose uptake as a major driving
factor for oncogenic mutations (Yun et al, 2009), and newly
emerging paradigm of cancer cell metabolism (Vander Heiden
et al, 2009). Our data show that lapatinib-resistant cells are
dependent on UPR and autophagy for survival, much like cells
in hypoglycemic environments, which are also selectively
sensitive to inhibitors of UPR and autophagy (Yu et al, 2008;
Saito et al, 2009). Lapatinib-resistant cells have higher
glycolysis rates based on the lactate-to-glucose flux ratio as
compared with the parental cells, suggesting increased glucose
utilization in line with the gene network changes present in
these cells. The addition of lapatinib does not alter the lactate-
to-glucose flux ratio in the parental cells but significantly
decreases the ratio in resistant cells, suggesting a switch from
glycolysis to the pentose phosphate pathway shunt that results
in increased NADPH and increased ability of the cell to
overcome reactive oxidative stress. Since lapatinib-resistant
cells have chronically activated glucose deprivation response
pathways, it is possible that increased levels of UPR and
autophagy in these cells are required to counter death-
promoting stress signals associated with cellular program of
nutrient starvation response. Nevertheless, our observations
reveal a specific dependence of lapatinib-resistant cells on the
nutrient starvation response program that can be exploited
therapeutically.

Analysis of ErbB2-positive patient data showed strong
correlations of disease-free survival with the upregulation of
glucose deprivation response networks, linking our cell line
model with clinical data. Similar high correlations were also
observed with ErbB3 and AXL expression, two previously
identified mediators of lapatinib resistance (Engelman et al,
2007; Liu et al, 2009; Garrett et al, 2011), with poor disease-free
survival, thereby suggesting that both signaling and metabolic
changes may be associated with lapatinib resistance in breast
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cancer. Our work here and recent data from others suggest that
reconstituting the metabolic demand of tumor cells is a major
factor driving specific regulatory network rearrangements
during acquired resistance to targeted therapy, and that
targeting these compensatory networks may be an effective
strategy against tumors with acquired resistance.

Materials and methods

Cell lines and reagents

SKBR3 breast cancer cell line was obtained from UT MD Anderson
Cancer Center Characterized Cell Line Core Services. Both SKBR3 and
SKBR3-R cell lines were characterized by the MDACC CCSG
Characterized Cell Line Core using Sequenome analysis and found to
berelated to ATCC-derived SKBR3 and known mutation sites on EGFR/
ErbB2 sequenced (Supplementary Figures 1 and 2). Cells were
routinely maintained in RPMI-1640 (Invitrogen, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich,
St Louis, MO, USA) and penicillin/streptomycin (Mediatech,
Manassas, VA, USA). Lapatinib (LC Laboratories, Woburn, MA, USA)
was dissolved in dimethyl sulfoxide (DMSO). Glucagon Receptor
antagonist was purchased from EMD Biochemicals. Pyrvinium
pamoate, Bafilomycin and metformin were purchased from Sigma.

Microarray experiments

Cells were treated with Lapatinib as indicated. After 24 h of treatment,
cells were lysed and total RNA was extracted using Ambion mirVana
miRNA Isolation Kit (Applied Biosystems) and amplified using
Illumina Totalprep RNA Amplification Kit (Applied Biosystems),
according to manufacturer’s protocol. Equal amounts of RNA from
each sample were loaded onto HumanHT-12 Expression BeadChip
(Ilumina, San Diego, CA, USA). The chips were hybridized for 16 h at
58°C and were scanned by UT Health Science Center Houston
Microarray Services. Gene array data were analyzed using BeadStudio
by Illumina. The microarray experiment was done using three
independent repeats of each condition and performed at two different
times.

Data availability

The gene microarray data discussed in the publication have been
deposited in NCBI’'s Gene Expression Omnibus and are accessible
through GEO Series accession number GSE38376 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE38376)

FACS analyses

Cells were treated as indicated, trypsinized, resuspended in medium,
and centrifuged at 200g for 6min twice. Cells were single-cell
resuspended in PBS (1 x10° to 107 cells in 0.5 ml). Cell mixture was
added to 4.5ml of 70% ethanol for fixation and incubated at 4°C (2h
minimum). Samples were resuspended in 5ml PBS, centrifuged after
which supernatant was decanted. The cells were incubated in 1 ml
propidium iodide staining solution (0.1% (v/v) Triton X-100 in PBS,
0.2 mg/ml RNase A, 0.02 mg/ml propidium iodide) at room tempera-
ture for 30 min. Cell fluorescence was measured by flow cytometry. For
each sample, 20000 cells were scanned. Analyses of data were
performed using DNA content histogram deconvolution software Cell
Quest Pro.

Crystal violet assay for determining cell density

Cells were stimulated in 96-well plates as indicated. At the time of the
assay, media in the wells was dumped, and a volume of 50 pl of crystal
violet solution (0.5% crystal violet (w/v), 20% methanol (v/v)) was
added to each well to allow staining for 10 min, followed by gentle
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rinse with water to remove excess stain. Once dried, the wells were
filled with 100 pl of sorensins buffer (0.1 M sodium citrate (pH 4.2),
50% (v/v) ethanol) to redissolve crystal. Cell density was determined
by measuring the absorbance at 570nm using a Vmax Kinetic
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Metabolic assays

Glucose uptake assay

Glucose uptake assay was performed using Wako Glucose kit
according to manufacturer’s protocol 2 days after treatment with
lapatinib or vehicle control. Briefly, 2 ul sample was injected into 250 pl
reconstituted Wako glucose reagent in a 96-well plate, mixed
thoroughly, and incubated at 37°C for 5min. The absorbance was
measured at 505 nm using a spectrophotometer (SpectraMax M5 from
Molecular Devices) and the difference of absorbance between the
spent media and control media indicated the glucose uptake of cells.
Cells were counted in each of the wells and the media was changed
every 24 h to calculate glucose flux per cell per day.

Lactate secretion

Lactate secretion was determined using Trinity Lactate Kit according to
manufacturer’s protocol 2 days after treatment with lapatinib or
vehicle control. Briefly, lactate reagent was reconstituted with 10 ml
milliohm water and diluted 1:4 in 0.1 M Tris solution (pH 7.0). Media
samples were diluted 1:10 in PBS and lactate reagent was added to the
diluted samples in an assay plate. The plate was protected from light
and incubated for 1h before reading the change in absorbance on a
spectrophotometer at 540 nm. Cells were counted in each of the wells
and the media was changed every 24 h to calculate lactate flux per cell
per day.

ATP measurement

Cellular ATP was determined by ATPlite 1-step (Perkin-Elmer)
according to manufacturer’s protocol. To control for cell density
between different treatments, final readings were divided by Crystal
Violet readings of wells growing cells under identical conditions.

SDS-PAGE and immunoblotting

Cells were lysed by incubation on ice for 15 min in a sample lysis buffer
(50 mM Hepes, 150 mM NaCl, 1 mM EGTA, 10 mM Sodium Pyropho-
sphate, pH 7.4, 100 nM NaF, 1.5mM MgCl,, 10% glycerol, 1% Triton
X-100 plus protease inhibitors; aprotinin, bestatin, leupeptin, E-64 and
pepstatin A). Cell lysates were centrifuged at 15000 g for 20 min at 4°C.
The supernatant was frozen and stored at — 20°C. Protein concentra-
tions were determined using a protein-assay system (Bio-Rad,
Hercules, CA, USA), with BSA as a standard. For immunoblotting,
proteins (25ug) were separated by SDS-PAGE and transferred onto
Hybond-C membrane (GE Healthcare, Piscataway, NJ, USA). Blots
were blocked for 60min and incubated with primary antibodies
overnight, followed by goat anti-mouse IgG-HRP (1:30000; Cell
Signaling Technology, Boston, MA, USA) or goat anti-rabbit IgG-HRP
(1:10000; Cell Signaling Technology) for 1h. Secondary antibodies
were detected by enhanced chemiluminescence (ECL) reagent (GE
Healthcare).

Antibodies
All the antibodies were from Cell Signaling, except for GCGR (Abcam)
and Actin (Sigma).

Network analyses

NetWalk analyses

NetWalk is a biased random walk model for scoring each interaction in
the global network of biological relationships based on combined
assessment of the network connectivity and the input data (i.e.,
microarray gene expression data; Komurov et al, 2010). Essentially,
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NetWalk converts a gene-centric data distribution (i.e., gene expres-
sion data) to an interaction-centric distribution (EF values,
see Komurov et al, 2010).

For the clustering in Figure 2A, the gene expression matrix
containing measured gene expression values for each gene under
each condition (0, 0.1 and 1 uM lapatinib treatment for parental and
resistant cells at 24 h) was row-normalized by dividing the value for
each gene by the mean of expression for that gene in all conditions.
Then, using these values as input into NetWalk, EF values for each
condition were obtained. In all, 1000 EF values with highest variance
across the 6 conditions were selected for the clustering analysis in
Figure 2A.

For the network in Figure 4A, the breast cancer patient cohort data
set from Miller et al (2005) was used. COX regression z-scores and P-
values for each gene in the data set were calculated using respective
functions in the ‘survival’ package for R. The z-scores (after
transformation) were used as input to NetWalk to obtain highest
scoring 500 EF values. Genes in the resultant network were filtered
to only include those whose COX regression P-values were <0.05,
and genes with no interactions in the resultant network were
discarded. Analysis of additional data sets UNC (https://genome.
unc.edu/pubsup/breastGEQ/) and IJB (Loi et al, 2007) was performed
(Supplementary Figure 10).

Global network of biomolecular relationships

The network of protein-protein, signaling, gene regulation and
functional similarity relationships was described earlier (Komurov
et al, 2010). In order to account for molecular relationships between
genes in metabolic pathways, interactions were assigned to pairs of
genes if the metabolic reactions performed by their respective protein
products shared a metabolite. For the latter, common metabolites such
as water, ATP, ADP and phosphate were not considered. In addition,
neighboring interactions from Reactome (Joshi-Tope et al, 2005) were
also imported. This resulted in a network of 15106 genes connected by
~ 240000 interactions.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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