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Abstract
Background: The study was conducted to evaluate the performance of a state-
of-the-art commercial deep learning-based computer-aided diagnosis (DL-CAD)
system for detecting and characterizing pulmonary nodules.
Methods: Pulmonary nodules in 346 healthy subjects (male: female = 221:125,
mean age 51 years) from a lung cancer screening program conducted from
March to November 2017 were screened using a DL-CAD system and double
reading independently, and their performance in nodule detection and character-
ization were evaluated. An expert panel combined the results of the DL-CAD
system and double reading as the reference standard.
Results: The DL-CAD system showed a higher detection rate than double read-
ing, regardless of nodule size (86.2% vs. 79.2%; P < 0.001): nodules ≥ 5 mm
(96.5% vs. 88.0%; P = 0.008); nodules < 5 mm (84.3% vs. 77.5%; P < 0.001).
However, the false positive rate (per computed tomography scan) of the DL-
CAD system (1.53, 529/346) was considerably higher than that of double reading
(0.13, 44/346; P < 0.001). Regarding nodule characterization, the sensitivity and
specificity of the DL-CAD system for distinguishing solid nodules > 5 mm
(90.3% and 100.0%, respectively) and ground-glass nodules (100.0% and 96.1%,
respectively) were close to that of double reading, but dropped to 55.5% and
93%, respectively, when discriminating part solid nodules.
Conclusion: Our DL-CAD system detected significantly more nodules than dou-
ble reading. In the future, false positive findings should be further reduced and
characterization accuracy improved.

Introduction

According to a World Health Organization cancer report,
lung cancer remains the most lethal cancer and leading
cause of mortality globally, with an estimated 1.8 million
new cases and 1.6 million deaths worldwide in 2012,1 and
an overall five-year survival rate of only 10–15%.2 Early
detection matters. Patients diagnosed with clinical stage I
cancer are reported to have an overall 10-year survival rate
of 88%, or 92% in patients that undergo surgical

resection right after diagnosis.3 Moreover, the largest
National Lung Screening Trial (NLST), which included
53 454 subjects, showed that low-dose computed tomogra-
phy (LDCT) detected 13% more instances of lung cancer
and represented a 20% reduction in lung cancer-specific
five-year mortality than radiography.4 Thus, based on this
result, annual screening is currently recommended for the
elderly, especially for heavy smokers.
With high sensitivity for nodule detection, LDCT lung

cancer screening normally produces large numbers of very
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thin sections, which makes interpretation of a whole lung
CT so tedious and time consuming that radiologists are
prone to overlook small nodules and make diagnostic
errors.5 A study reported that 20–35% of small lung nod-
ules were missed in screening diagnosis by a single
radiologist,6 thus double reading would improve the detec-
tion rate but could still could miss quite a few potentially
malignant nodules.7,8 A computer-aided diagnosis (CAD)
system was initially developed as early as the late 1980s
aiming to assist radiologists to reduce missed nodules and
make their work easier. Until now, a large variety of studies
based on LDCT using different CAD systems and data
have reported a wide range of sensitivity performance from
38%9 to 100%10 and false positive rates from 1.0 per scan11

to 8.2 per scan.12 With the increasing improvement of
CAD systems, the majority of studies have demonstrated
that CAD systems could detect more nodules than
radiologists,11,13–15 even after double reading.16,17 Moreover,
in comparison with most CAD systems based on super-
vised machine learning algorithms,18,19 multiple studies
have shown that deep learning-based CAD systems (DL-
CAD) have superior detection rates and further reduce
false positive rates.20–22 However, CAD systems are far
from perfect and thus require further development to be
improved.
Another concern is whether a CAD system could accu-

rately characterize different types of nodules. It is well
known that a large portion of persistent subsolid nodules,
which include part-solid nodules and ground-glass nodules
(GGNs), correspond to lung adenocarcinomas of various
stages of development, such as atypical adenomatous
hyperplasia, in situ adenocarcinoma, or minimally invasive
adenocarcinoma and invasive adenocarcinoma,23,24 which
highlights the importance of distinguishing different types
of lung nodules automatically, especially in a large lung
cancer screening program. If a CAD system could auto-
matically and accurately characterize the different types of
nodules, it would greatly reduce the workload of radiolo-
gists in lung cancer screening programs. However, occa-
sionally even experienced thoracic radiologists have
difficulty distinguishing solid, part solid, and GGNs among
nodules measuring < 5 mm. Moreover, several large studies
have shown that 95% of nodules measuring ≤ 10 mm are
benign.25–27 For very small nodules (< 5 mm with a corre-
sponding volume of 65.4 mm3), the chance of malignancy
is negligible (<1%).26,28,29 Because of these reasons, we eval-
uated the performance of a commercial DL-CAD system
for characterizing nodules no smaller than 5 mm and for
detecting nodules regardless of size.
The aim of our study was to test the performance of a

state-of-the-art commercial DL-CAD system for lung nod-
ule detection and characterization using LDCT images
from our lung cancer screening program.

Methods

Study population

Based on NLST inclusion criteria,4 LDCT scans were per-
formed at our institution from March to November 2017
on healthy subjects aged > 50 years or younger subjects
with a heavy smoking history, who were willing to partici-
pate in an annual check-up. After excluding subjects with
significant morphological changes in lung CT images other
than nodules, and those with quality-impaired CT images
interfering interpretation because of insufficient inhalation,
we enrolled 367 subjects with LDCT scans. The reason for
our exclusion criteria was because our DL-CAD system
was trained on high-quality CT images with nodules. The
Institutional Review Board of our hospital approved this
study and written informed consent was obtained from
each subject.

Computed tomography protocol for image
acquisition

All patients were scanned using a 64-row multi-detector
CT (Optima CT660, GE Healthcare, Atlanta, GA, USA).
None of the subjects were administered any intravenous
contrast media. Low-dose radiation settings were used,
with a tube voltage of 120 kVp and a tube current of
20 mAs. Other parameters were matrix size 512 × 512
pixels and collimation 64 × 0.6 mm. Images were recon-
structed using a bone recon type at a slice thickness setting
of 1.25 mm at a 0.625 mm reconstruction increment. CT
was performed at the end of maximal inspiration in a sin-
gle breath-hold and covered the apex of the lung to the
diaphragm.

Image analysis

Double reading by radiologists
Two thoracic radiologists with > 5 and 10 years experience
blinded to the results of the DL-CAD system indepen-
dently interpreted each CT image. The final result of dou-
ble reading was determined by combining the results of
both radiologists; any disagreement was resolved through
discussion. The following information from each CT scan
was recorded: (i) the presence and total number of nod-
ules; (ii) the location of each nodule (indicated by the cor-
responding numbering of sections and the shortest
distance from the nodule to the chest wall in the same axial
section); (iii) the size of each nodule (the largest diameter
of the nodule in the axial section with its largest area, and
the size of part-solid nodules corresponds to the size of
solid component and ground-glass components as a
whole); and (iv) first impression when characterizing
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nodules ≥ 5 mm (solid, subsolid including part-solid, and
GGNs). Both solid nodules and GGNs are defined as focal
nodular areas of increased attenuation, but the difference
between them is whether pulmonary vessels and bronchial
structures inside are visible. Part solid nodules are defined
as having both ground glass and solid components coexist-
ing in a nodule area. As there is no direct way to evaluate
the accuracy of DL-CAD system nodule measurement, all
of the detected nodules were also measured manually.

Evaluation by a deep learning-based computer-
aided diagnosis (DL-CAD) system
A commercial CAD system (σ-Discover/Lung, 12 Sigma
Technologies Co. Ltd., Beijing, China) based on deep con-
volutional neural networks (DL-CAD) was used to process
the LDCT images to identify and characterize lung nodules
(nodule by nodule). The training data used to build this
DL-CAD system included public databases, such as the
Lung Image Database Consortium Image Collection from
Cancer Imaging Archive (LIDC/IDRI)30 and the National
Cancer Institute NLST.4 The DL-CAD system is designed
to detect nodules ≥ 3 mm and can calculate three dimen-
sional (3D) quantitative measurements, such as the largest
3D diameter (the largest diameter in any plane of nodules),
average 3D diameter (the diameter of a sphere equivalent
to the volume of a nodule), 3D mass, and 3D volume. The
DL-CAD system also characterizes nodule types, such as
solid, part-solid, and GGNs, and predicts the likelihood of
malignancy for each detected nodule.

Evaluation by the DL-CAD system + an expert
panel
As reported by van Riel et al., there is only moderate inter-
observer and intra-observer agreement in terms of nodule
measurement and characterization.31 Therefore, when
choosing the gold standard, a chest radiologist expert panel
(with > 30 years experience interpreting chest images)
interpreted the double reading results nodule by nodule
and combined the results with the DL-CAD system. The
final results including the number of nodules, manual mea-
surement, and characterization of each nodule ≥ 5 mm
were taken as the gold standard and any disagreement was
resolved through discussion. The positive findings were
divided into three groups: true nodules (< 5 mm and
≥ 5 mm); benign lesions (fissure thickening, pleural plaque
and thickening, fibrosis, pulmonary plaque, bronchiectasis,
etc.); and non-lesions, including artifacts and normal anat-
omy (lung vasculature, lung hilum, cartilage of rib, azygous
vein, mediastinal lymph node, superior vena cava, pericar-
dial fat pad, thoracic bone hyperplasia, wall of bronchus,
diaphragm, subclavian artery, etc.).

Data analysis

SPSS version 23 (IBM Corp., Armonk, NY, USA) was used
to perform all data analysis. Based on the gold standard
(expert panel + the DL-CAD system), the detection rates
of true nodules were calculated for double reading and the
DL-CAD system independently and compared using a chi-
square test, with a P value < 0.05 indicating statistically sig-
nificant difference. The false positive rate (the mean of the
number of false positive findings of each CT scan) of dou-
ble reading and the DL-CAD system were compared using
a Student’s t-test. The positive predictive value of the DL-
CAD system and double reading was defined as the ratios
between true positive findings and all findings detected by
the DL-CAD system and double reading, respectively.
To evaluate the accuracy of the DL-CAD system and

double reading for characterizing detected nodules, the
sensitivity and specificity were calculated. For instance, for
nodules ≤ 5 mm, sensitivity in characterizing solid nodules
was defined as the proportion of true solid nodules that
were correctly diagnosed, while specificity was defined as
the percentage of false solid nodules that were correctly
discriminated. The Pearson’s correlation coefficient was
calculated between the largest 3D diameter by the DL-
CAD system and size measured manually with > 0.7,
0.5–0.7, and < 0.5 indicating strong, moderate, and weak
correlation, respectively.32

Results

Population

Based on the inclusion and exclusion criteria, a total of
346 LDCT scans were included from 346 healthy subjects
aged > 50 years old or aged < 50 with a heavy smoking
habit (mean age 51.01 � 10.24 years), comprising
221 men (mean age 51.53 � 9.92 years) and 125 women
(mean age 50.10 � 10.84 years). Twenty-one CT scans
were excluded because of either severe morphological
changes in the lung or impaired image quality (Fig 1).

Performance of the DL-CAD system for
nodule detection

Based on the results of the expert panel and the DL-CAD
system, a total of 812 true nodules were detected. Double
reading by radiologists detected 643 nodules with a sensi-
tivity of 79.2% (95% confidence interval [CI] 76.4–82.0%),
while the DL-CAD system detected 700 nodules with a
sensitivity of 86.2% (95% CI 84.1–88.8%; P < 0.001). The
DL-CAD system was more sensitive than double reading
not only for detecting nodules no smaller than 5 mm
(96.5%, 95% CI 93.4–99.5% vs. 88.0%, 95% CI 82.6–93.4%;
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P = 0.008), but also for detecting nodules < 5 mm (84.3%,
95% CI 81.5–87.0% vs. 77.5%, 95% CI 74.3–80.7%;
P < 0.001). The false positive rate (per CT scan) of the DL-
CAD system (1.53, 529/346, range: 0–11, median 1) was
considerably higher than that of double reading (0.13,
44/346, range: 0–3, median 0) (P < 0.001). The top five
causes of false positive nodules detected by the DL-CAD
system were: normal pulmonary vasculature (247/529),
pleural plaque and thickening (125/529), hilum (39/529),
fibrosis (32/529), and artifacts (25/529) (Table 1). In con-
trast, double reading was much less likely to misdiagnose
non-nodules as nodules, except for occasionally mistreating
pulmonary vasculature (36/44) and artifacts (5/44) as nod-
ules. The positive predictive values for double reading and
the DL-CAD system were 93.6% (95% CI 91.8–95.4%) and
57.0% (95% CI 54.2–60.0%), respectively (P < 0.001)
(Table 2). As for missed small nodules (< 5 mm), the aver-
age size of nodules missed by the DL-CAD system based
on manual measurement was significantly smaller than
nodules missed by double reading (0.18 � 0.09 cm
vs. 0.28 � 0.08 cm; P < 0.001).

Performance of the DL-CAD system for
nodule measurement

We singled out the 700 nodules detected by the DL-CAD
system with the largest 3D diameters and then manually
measured the size of each nodule, which was defined as the
largest diameter of the nodule in the axial section with its
largest area. There was a strong correlation between the
size measured manually (mean 0.4 � 0.2 cm) and the larg-
est 3D diameter measured by the DL-CAD system (mean
0.6 � 0.2 cm) (r = 0.88), as shown in Figure 2.

Performance of the DL-CAD system in
characterizing nodules

In order to evaluate the accuracy of the DL-CAD system in
characterizing each nodule, we only focused on those true
nodules no smaller than 5 mm (based on the size measured
manually) determined by the gold standard. As a result, we
analyzed 142 nodules ≥ 5 mm, among which 5 (5/142) and
17 (17/142) were missed by the DL-CAD system and

Figure 1 Flowchart showing
inclusion and exclusion process.
CAD, computer-aided diagnosis;
CT, computed tomography.
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double reading, respectively (P = 0.008). The DL-CAD sys-
tem misinterpreted nine solid nodules as part-solid nodules
(Fig 3), but no subsolid nodules as solid nodules, giving a

sensitivity of 90.3% and specificity of 100.0%. The DL-
CAD system misinterpreted four part solid nodules as
GGNs (Fig 4), but no GGNs as non-GGNs, giving a

Table 1 Distribution of detected lesions by the DL-CAD system and double reading based on lesion types

Lesion characteristics Double reading DL-CAD system
Gold standard

(expert panel + DL-CAD system)

Total number of lesions 687 1229 812
Benign lesions
Pleural plaque & thickening 1 125 —

Parenchymal plaque 0 9 —

Fissure thickening 1 21 —

Fibrosis 1 32 —

Bronchiectasis 0 2 —

Non-lesions (normal anatomy)
Pulmonary vasculature 36 247 —

Hilum 0 39 —

Rib cartilage 0 9 —

Azygous vein 0 8 —

Superior vena cava 0 1 —

Fat pad of pericardium 0 2 —

Thoracic bone hyperplasia 0 3 —

Wall of bronchus 0 2 —

Diaphragm 0 2 —

Left subclavian artery 0 1 —

Mediastinal lymph nodes 0 1 —

Artifacts 5 25 —

True nodules
≥ 5 mm 125 137 142
< 5 mm 518 563 668

DL-CAD, deep learning-based computer-aided diagnosis.

Figure 2 Correlation between the largest three-dimensional diameters by the deep learning-based computer-aided diagnosis (DL-CAD) system and
manual measurement. ( ) CAD and ( ) manually.

Table 2 Performance of the DL-CAD system in nodule detection

Variables Double reading DL-CAD system P

Sensitivity
All nodules 79.2%(95% CI 76.4–82.0) 86.2% (95% CI 84.1–88.8) < 0.001*
Nodules ≥ 5 mm 88.0% (95% CI 82.6–93.4) 96.5% (95% CI 93.4–99.5) 0.008*
Nodules < 5 mm 77.5% (95% CI 74.3–80.7) 84.3% (95% CI 81.5–87.0) < 0.001*
False positive/examination 0.13 (44/346) 1.53 (529/346) < 0.001*
Positive predictive value 93.6% (95% CI 91.8–95.4) 57.0% (95% CI 54.2–60.0) < 0.001*

*Indicates statistical significance. CI, confidence interval; DL-CAD, deep learning-based computer-aided diagnosis.
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sensitivity of 100.0% and specificity of 96.1%. However, for
part solid nodules, the sensitivity dropped to 55.5% and
specificity to 93.0%, as the DL-CAD system misinterpreted
nine solid nodules as part-solid nodules (Fig 3) and four
part-solid nodules as GGNs (Fig 4). In contrast, double
reading only misinterpreted one solid nodule as a

part-solid nodule (Fig 5) and one part-solid nodule as a
solid nodule (Fig 6), which yielded sensitivity and specific-
ity as high as 98.7% and 97.7% for solid nodules, 90.9%
and 99.1% for part solid nodules, and 100.0% each for
GGNs, respectively (Tables 3–4).

Discussion

In this study, we evaluated the performance of a commer-
cial DL-CAD system for detecting and characterizing dif-
ferent types of lung nodules. Consistent with the results of
most previous studies, our study showed that the DL-CAD
system could detect more nodules than double reading,
regardless of nodule size.11,13–15,17,33 Recently, a report based
on the International Early Lung Cancer Action Program
(I-ELCAP) study showed that in 75% of confirmed cancer
patients, the corresponding small nodules could be
detected in previous CT scans.34 Thus, the first priority of
lung cancer screening is to ensure detection of all small
nodules and record them as the baseline for future surveil-
lance. In this regard, we found that the DL-CAD system
showed a great advantage in detecting nodules, especially
small nodules (< 5 mm), compared to double reading. Fur-
thermore, a large number of studies have suggested that by
complementing each other, the combination of the DL-
CAD system and analysis by radiologists could detect more
nodules than radiologists alone.33,35–38 Therefore, the DL-
CAD system could act as a second pair of eyes to double
check for any possible missed nodules, which could signifi-
cantly reduce the number of missed nodules and poten-
tially make an impact on lung cancer screening.
Also consistent with previous findings by conventional

CAD, our study showed that the sensitivity in nodule
detection increases with increases in nodule size when eval-
uated by both radiologists and the DL-CAD system.10,39–41

Figure 3 The deep learning-based computer-aided diagnosis (DL-CAD)
system misinterpreted a fissure-attached solid nodule as a part-solid
nodule.

Figure 4 The deep learning-
based computer-aided diagnosis
DL-CAD system mistakenly inter-
preted a part solid nodule as a
ground-glass nodule (GGN).
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Interestingly, our study showed that the nodules (< 5 mm)
missed by DL-CAD system tended to be smaller than those
missed by double reading (0.18 � 0.09 cm vs. 0.28 �
0.08 cm; P < 0.001). The DL-CAD system we used was ini-
tially trained to detect nodules ≥ 3 mm, and was therefore
less sensitive in detecting nodules < 3mm, which may
explain why 86 (81.9%) of the 105 small nodules (< 5 mm)
missed by the DL-CAD system were as small as 1–2 mm.
Surprisingly, 56.7% (85/150) of small nodules (< 5 mm)

missed by double reading were within 3–4 mm. Double
reading in our study might have over detected very small
nodules (1–2 mm), which may have led to a slight overesti-
mation of the real detection rate of double reading in clini-
cal practice. Therefore, because most missed nodules by
the DL-CAD system were under the sensitivity of the lower
size limit, our results suggest that the DL-CAD system may
provide a more consistent detection rate.
Currently, the major concern regarding the DL-CAD

system is that high sensitivity in nodule detection is always
accompanied by high false positive findings. Among
17 CAD studies, the median of false positive rates of the
CAD system was 4.1 per scan.12 For the commercial DL-
CAD system we used, based on a convolution neural net-
work algorithm, the false positive rate was 1.53 per CT
scan, which is lower than that of most previous studies.
Specifically, pulmonary vasculature and artifacts were two
of the main causes for false positive findings in both the
DL-CAD system and after double reading. In the foresee-
able future, with the integration of more data and more
sophisticated algorithms into the DL-CAD system, false
positive rates could be further reduced to an acceptable
level in a clinical setting.
Volumetric measurement of nodules could be tracked

over time to assess growth, which is extremely useful to
discriminate malignant from benign nodules in the long
run. However, the accuracy of volumetric measurement of
different CAD systems depends on the segmentation accu-
racy of different algorithms. We did not use volumetric
parameters generated by the DL-CAD system to subgroup
nodules in our study, as no standard reference is currently
available to evaluate its accuracy. However, we found a
strong correlation between the size measured manually and
the largest 3D diameter measured by the DL-CAD system
(r = 0.88), which indicated the accuracy of measurement
by the DL-CAD system. In theory, the CAD system could
generate more accurate size parameters than those

Figure 5 Double reading misin-
terpreted a solid nodule as a
part-solid nodule.

Figure 6 Double reading misdiagnosed a part-solid nodule as a solid
nodule.
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measured manually, as the subjective variability of different
observers is avoided, but only if nodules are accurately
segmented.
Although the DL-CAD system detected more nodules in

our study, it misinterpreted slightly more nodules ≥ 5 mm
than double reading (13 vs. 2 nodules). Indeed, the DL-
CAD system showed relatively high accuracy in character-
izing solid nodules and GGNs, but not part-solid nodules.
One area that has much room to improve is nodule type
characterization. Current CAD products cannot accurately
distinguish part-solid nodules from either solid nodules or
GGNs. As most previous studies have focused on whether
the CAD system could detect different types of nodules,
and few studies have evaluated whether the CAD system
could accurately distinguish different types of nodules, our
results need to be confirmed through further investigation.
Our study had some limitations. Firstly, in combining

the results of the DL-CAD system + expert panel and
determining the characterization of each nodule, subjective
evaluation by the radiologists outweighed the influence of
the DL-CAD system, which might lead to the superiority
of double reading for distinguishing different types of nod-
ules. Because of a lack of objective diagnosis criteria, future
studies should determine the Hounsfield unit value range
and cutoff value between solid nodules, part solid nodules,

and GGNs, in order to reduce the subjective variability of
radiologists. Secondly, when the two radiologists were
assigned to the double reading, they tended to spend more
time and were more alert than in their routine clinical
practice, which might have led to a slight overestimation of
the real detection rate of double reading in clinical practice.
The DL-CAD system we used is a commercial, sophisti-
cated, well-trained model, but details on how this model
was built were not provided. Our focus in this study was
only to evaluate its current performance in our screening
data by external validation. If possible, the performance of
the conventional CAD system and the DL-CAD system we
used should be compared using the same data. Further-
more, the DL-CAD system automatically provided the
malignancy likelihood of each nodule detected. We did not
validate its accuracy in this paper, simply because we have
not yet accumulated a sufficient number of nodules with
confirmed pathology. In our next investigation we intend
to directly compare the performance of the conventional
CAD system and the DL-CAD system using the same data,
and then evaluate the performance of the DL-CAD system
for predicting the malignancy of nodules.
In conclusion, our DL-CAD system could sensitively

detect more nodules than double reading and showed rela-
tively comparative performance in distinguishing solid
nodules and GGNs. In the future, the false positive and
mischaracterization rates of the DL-CAD system need to
be further reduced.
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