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ABSTRACT: The plant microbiome significantly influences plant−
microbe interactions, but the mechanisms are often complex and
nonlinear. Here we show the nonlinear regulatory effects of
Streptomyces ginsengnesis G7 on Arabidopsis thaliana growth. We
focused on lydicamycin, a molecule from this bacterium that
interferes with auxin polar transport. Using a deep learning approach
with a feedforward neural network, we integrated multiomics data to
elucidate the mechanism of lydicamycin on plant growth and
development. We also examined the impact of flavonol metabolites,
particularly isorhamnetin from A. thaliana, on the PIN protein
family’s role in auxin transport. Our findings indicate that lydicamycin
regulates auxin transport by inducing flavonol overaccumulation in A.
thaliana, affecting plant development. This study identifies potential
molecular targets for crop enhancement and improved agricultural productivity.

■ INTRODUCTION
An omics data set stands as a valuable asset in advancing
biological research and comprehending complex biological
systems. Ideally, a high-quality omics data set demonstrates key
characteristics such as comprehensiveness, rigorous documen-
tation, and accessibility. Crucially, it should seamlessly
integrate with other omics data sets, promoting a holistic
system biology approach. Customized methods are imperative
for connecting omics data generated from a single biological
sample simultaneously, i.e., at the same spatiotemporal scale.
This approach, known as multiomics joint analysis, involves
integrating and analyzing data from diverse omics disciplines
such as genomics, transcriptomics, proteomics, metabolomics,
and epigenomics.
The rhizosphere microbial community plays a crucial role in

maintaining plant hormone balance, controlling root develop-
ment, promoting nutrient absorption, and enhancing plant
resistance to both biotic and abiotic stresses.1 For biocontrol
agent development, rhizosphere Streptomyces-based biocontrol
agents, such as Actinovate and MYCOSTOP, have been widely
used to combat agricultural fungal diseases. It is worth noting
that different plants exhibit significant variations in their
macro- and microscopic responses to the same microorganisms
and their metabolites.2 These differences may be attributed to
factors such as plant species, the interaction dynamics between
the plants and microbes, and the modes of action of growth-
promoting molecules.

Our recent focus is on Streptomyces ginsengnesis G7, a species
discovered in the Ginseng rhizosphere.3 Through an integrated
approach�encompassing plant−microbe interaction tests,
bioinformatics analysis, and antimicrobial assays�we unveiled
this strain’s dual role as a producer of herbicides and
antibiotics. Remarkably, G7 produces type I polyketide
alkaloid lydicamycins, which exposes an unprecedented
herbicidal mechanism in Arabidopsis thaliana (AT) by
effectively inhibiting auxin transport. Briefly, lydicamycin can
inhibit the growth of both primary and lateral roots in rice
weeds, while it has a minor effect on the primary root growth
and promotes the emergence of lateral roots of rice. This
reveals interspecies differences in plant responses to natural
products produced by specific microbes, as well as the
potential complexity of the natural products in regulating
plant growth.
To further extend our previous work, here we introduce a

deep learning-based nonlinear regression model to adeptly
analyze the complex, high-dimensional, and interrelated omics
data generated during plant−microbe interactions, including
the predominant factors induced in AT through G7 treatment.
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Our work not only advances data mining methods in complex
biological systems but also holds significant practical value for
precisely controlling and optimizing interactions between
specific plant hosts and growth-promoting microorganisms,
as well as replicating these benefits across different agricultural
ecosystems.

■ RESULTS
Model Structure and Performance Evaluation. In this

part, we aim to enhance the model’s predictive ability and
demonstrate its generalization ability in handling missing or
previously unaccounted data, thereby providing clear insights
into various bioprocesses. To this end, we have implemented
data preprocessing procedures, which involved the creation of
a comprehensive list comprising all three types of up- and
down-regulated omics data set (transcriptome, proteome, and
metabolome). Furthermore, we identified a subset of genes
common to both transcriptomics and proteomic data (Figure
1A), facilitating the analysis of their collective alterations

within the entire system. To accomplish this, we developed a
four-layered multilayer perceptron (MLP) deep learning model
tailored for fitting of multiomics features, as shown in Figure
1B.4

The raw data for our model was sourced from six AT
samples, comprising three from wild-type seedlings and three
from G7-treated seedlings. The dimensions of the ultimately
chosen omics data are detailed in Table S1. To differentiate
between the two groups, target values were intentionally set for
regression fitting, deliberately assigning “1” to wild-type
samples and “0.5” to G7-treated samples. Note that positive
feature values contribute more to wild-type samples, while
negative values pinpoint G7-treated samples. Furthermore, the
absolute value magnitude reflects their significance in
distinguishing between sample types. For optimal utilization
of limited-sample data, we designated one sample from each of
the two groups for the evaluation set. The remaining four
samples were employed as both training and testing sets in the
leave-one-out cross validation (LOOCV) deep learning

Figure 1. Integrated analysis framework and model visualization. (A) Flowchart illustrates the data structure that integrates both upregulated and
downregulated genes from transcriptomic, proteomic, and metabolomic data sets. This includes a subset of genes shared between transcriptomic
and proteomic data. Each sample is labeled accordingly, with control samples marked as label = 0.5 and treated samples as label = 1. (B) The neural
network architecture used in the study comprises four layers of regression coefficients, including one input layer, two hidden layers and one output
layer. Tanh, chosen as the activation function, is applied after the first three layers. To prevent overfitting, the model incorporates two dropout
layers, Xavier weight initialization, and L2 regularization. Additionally, to augment the data set, three Gaussian random noise samples (mean = 0.0,
std = 0.01) are added to each sample in the training set for every LOOCV iteration. (C) The interpretation results showcase the evaluation graph
of the 100 bootstrap replications on the evaluation data set; permutation feature importance plotted along the y-axis against all omics features on
the x-axis; and subsequent functional analysis with GO and KEGG pathway annotations.
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process.5 To prevent information leakage, data scaling was
performed after each LOOCV iteration’s separation of training
and testing sets. Each omics data set, along with the
corresponding training and testing sets, underwent independ-
ent min−max scaling using MinMaxScaler from the Scikit-learn
package.6 The model exhibiting the least validation mean
absolute error (MAE) across all four iterations in LOOCV was
preserved as the best-performing model. Finally, to evaluate
the model’s consistency with our limited sample size, we
conducted 100 replications on the evaluation set. The resulting
mean R2 score of 99% across all applications underscores the
model’s robust predictive power (Figure S1), forming a solid
foundation for subsequent interpretive analyses (Figure 1C).7

Next, we employed the local interpretable model-agnostic
explanations (LIME) technique to elucidate the model
predictions.8 This method enhances understanding of
individual feature contributions by creating perturbed samples
around the selected one. Utilizing our fine-tuned model with
the normalized data set containing all six samples, we precisely
identified the impact of each omics feature, categorizing them
based on their positive or negative influences on predictions
(Tables S2 and S3).

G7 Treatment Effects and Biological Implications.
Our previous studies showed that lydicamycin exhibits the
inhibition effect on AT seed growth (Figure 2A), but did not
fully leverage multiomics to explore the insights into its
mechanisms.3 In this work, using the newly established model,
we identified 1151 negative features as potential markers for
G7 treatment (Figure 1A), comprising 449 transcripts, 415
proteins, and 287 metabolites. In contrast to prior analyses
focusing on differentially expressed genes, proteins, and
metabolites, our model’s examination of negative features
reveals associations with biological processes in GO enrich-

ment analysis, such as stress response, metabolic processes,
detoxification and others (Figures 2B, S2, Table S4). First, our
comprehensive integration of transcriptome and proteome data
highlights a significant involvement of lipid metabolic pathways
(Figure S2). In the KEGG pathway analysis of these features,
we noted disruptions in glycerolipid and glycerophospholipid
metabolism within the transcriptome and proteome, accom-
panied by decreased levels of hexadecanoic acid and
octadecanoic acid in the metabolome (Figure S3). The
observed impairment in lipid biosynthesis could adversely
affect membrane functionality.9 Second, previous reports have
linked the accumulation of key secondary metabolites to
altered root development, with flavonoids identified as negative
regulators of auxin transport playing a pivotal role.10,11

Note. The spore suspension (OD600 = 0.6) of G7 was
smeared at the lower 1/2 MS gel area of a 10 × 10 cm square
Petri dish, and AT seedlings spread into 3 lines at the upper
two-thirds area, displaying a gradient effect on AT growth
inhibition where seedlings closer to the G7 area showed more
severe growth suppression. According to our previous study,
lydicamycin concentrations remained stable after 28 h.

Unraveling the Interplay between Lydicamycin and
Auxin Distribution. In our earlier investigation, we
established that lydicamycin influences the auxin gradient
distribution by suppressing the expression of PIN (PIN-
formed) family proteins, yet the underlying mechanism
remained unclear.3 While in this work, the observed
upregulation of proteins associated with flavonoid biosynthesis,
coupled with substantial compound accumulation supported
by metabolomic (Figure S3), suggests that lydicamycin may
activate flavonoid biosynthesis. This activation is likely to result
in a substantial increase in flavonoid levels, which might
consequently exert a negative regulatory effect on auxin

Figure 2. Multiomics analysis of the interaction process of plant−microbe interactions. (A) A coculturing model demonstrates that S. ginsengnesis
G7 can effectively inhibit the growth of A. thaliana through the production polyketide natural product lydicamycin (an illustrative chemical
structure has been shown below). Recent studies suggest a potential mechanism wherein lydicamycins effectively inhibit auxin transport. (B) The
diagram indicates the feature importance from different data classifiers (transcriptomic, proteomic, and metabolomic, abbreviated as “trans”, “pros”,
and “meta”) to various biological processes categorized by GO terms. The width of each flow represents the magnitude of feature importance, with
the color gradient indicating the strength of the contribution, ranging from high (red) to low (green). This integrated approach allows for the
visualization of the significant pathways and processes influenced by the omics data, linking molecular interactions to observable phenotypic
outcomes.
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transport through the stabilization of PIN efflux complexes, as
indicated in previous studies.11 GO annotation of the top 20%
of negative values revealed transcripts and proteins annotated
for participation in lipid metabolism, root development, and
secondary metabolism (Table S3). The upregulation of
biosynthesis and accumulation of flavonoids has been
evidenced in plants experiencing various environmental
stresses as part of adaptive response, performing as
detoxification, antioxidant and signaling molecules, etc.12

This reinforces the notion that the magnitude of feature
values corresponds to their impact on the model’s predictions,
with larger values indicating involvement in core pathways

(Table S3). This dual function mediated by flavonoid
accumulation highlights the complex interplay between stress
tolerance and growth regulation in plants.13 Future work will
delve into these mechanisms in greater detail.
As shown in Figure 3, our model proposes a plausible

mechanism for lydicamycin entering root cells and inducing
the accumulation of isorhamnetin, which subsequently inhibits
PIN protein function. Lydicamycin initially enters cells via
diffusion, triggering abnormal isorhamnetin synthesis within
them. This compound then diffuses and undergoes vesicular
trafficking between cells, potentially interacting with PIN
proteins and destabilizing their polymers. This disruption

Figure 3. A proposed model in this study showing an overview of the abnormal flavonol accumulation and root development observed upon
lydicamycin treatment. Lydicamycin enters root cells through diffusion, initiating an aberrant synthesis of isorhamnetin. The cell diagram illustrates
the biosynthetic pathway of flavonoids, although the precise molecular mechanism remains to be elucidated. Following its synthesis, isorhamnetin
diffuses and undergoes vesicular trafficking between cells, potentially interacting with PIN proteins. This interaction perturbs the polar transport of
auxin, resulting in its accumulation in pericycle cells. Subsequent auxin build up stimulates lateral root growth.
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hinders the polar transport of auxin, leading to its
accumulation in pericycle cells and thereby stimulating lateral
root growth.

■ DISCUSSION
Plants form complex symbiotic relationships with surrounding
microbial communities in natural environments, which can be
classified as mutualistic, neutral, or parasitic.14 Although many
growth-promoting microbes have been identified, their varying
effects on different plants limit their widespread application. In
recent years, the role of microbial-derived natural products as
signaling molecules in interspecies communication between
plants and microbes has garnered significant attention from the
scientific community.15 When triggering plant immune
responses, different plants exhibit substantial variations in
both macro- and microscopic responses to the same molecules,
though the specific reasons for which remain unclear. Recent
studies have shown that plants can selectively attract
Streptomycete which produce diverse and complex natural
products, and colonize their rhizosphere and internal environ-
ments. In turn, Streptomycete forms specific hyphal growth
patterns and metabolic networks to promote and regulate their
interactions with plant roots.16,17 Notably, Streptomycete can
secrete plant growth regulators such as IAA and siderophores
to promote plant growth, secrete specific signaling molecules
to induce plant systemic resistance, or produce antimicrobial
substances to adjust the rhizosphere microbial community,
thereby effectively enhancing plant growth and stress
tolerance.17,18 Moreover, recent studies indicate that Strepto-
mycete can directly activate plant auxin signaling pathways by
secreting indole analogs or enhance photosynthesis and
regulate stress responses by secreting fervenulin, thereby
increasing plant tolerance to drought and salt stress.19

However, how other small molecules produced by Streptomy-
cete specifically affect plant growth and development remains
an open research area. Extensive research in this field will
deepen our understanding of plant−microbe interaction
mechanisms and provide a scientific basis for discovering
new plant growth regulators or developing novel biopesticides.
In this work, an interaction model was previously

constructed to study how microbial-derived natural products
regulate plant development during plant−microbe interactions.
It was found that lydicamycin produced by G7 can silence and
disrupt the expression and distribution of the PIN protein
family in Arabidopsis, thereby inhibiting primary root growth.20

However, since the structure of lydicamycin is not similar to
NPA, it is inferred that lydicamycin does not directly target
PIN proteins to affect auxin polar transport. To explain the
biological phenomena caused by potential nonlinear regulatory
mechanisms, we aim to integrate Arabidopsis transcriptomic
and metabolomic data by constructing a deep learning
framework based on a feedforward neural network. The
study revealed an abnormal accumulation of secondary
metabolites, including isorhamnetin, which was upregulated
8-fold in the experimental group, while other flavonol
metabolites did not show significant changes. Previous studies
have shown that flavonols can affect the activity or localization
of PIN proteins, thereby inhibiting auxin polar transport.11,21

Therefore, our future work will focus on determining whether
the significant accumulation of isorhamnetin in Arabidopsis
affects the expression and localization of PIN proteins.
To conclude, we have successfully developed a robust tool

for the integrated analysis of multiomics data sets derived from

plant−microbe interactions. As discussed earlier, our findings
suggest that there is a wealth of additional insights waiting to
be uncovered, particularly because plants and their associated
microbes reside in complex, ever-changing, and unpredictable
environments.

■ MATERIALS AND METHODS
Sample Preparation. The AT seeds were surface sterilized

by immersing them in a 50% ethanol solution for 5 min,
followed by a 0.5% NaOCl treatment for another 5 min. The
sterilized seeds were then rinsed three times with water. After
rinsing, the seeds were sown on 1/2 MS gel and placed in
darkness at 4 °C for 2 days. The seeded Petri dishes were
subsequently positioned vertically in a growth chamber set to a
long-day photoperiod of 16 h of light, with a light intensity of
300 μM m−2 s−1, and maintained at a constant temperature of
22 °C.
The G7 spore suspension (OD600 = 0.6) was spread on a

standard 1/2 MS gel plate (10 × 10 cm), covering
approximately one-third of the total surface area. After 96 h
of fermentation, 2 day-old AT seedlings were vertically
transferred to the aforementioned 1/2 MS gel plate with the
grown G7. Multiomics analysis was performed on samples
from both the G7-treated group and the mock-treated group.
All samples were collected from three independent experi-
ments, with multiple plates used within each experiment to
ensure robustness and reproducibility.

Data Preparation. In our research to estimate the most
evoked factors in AT by G7 treatment from multiomics data
including transcriptomics, proteomics, and metabolomics, we
employed data preprocessing procedures constructing a
combined list of all three up/down regulated omics data,
plus a group of overlapped genes present both in tran-
scriptomics and proteomics data to analyze their changes as a
whole system, a four-layered MLP deep learning model was
constructed for multiomics features logistic regression fitting.
Our raw data comes from 6 AT samples, 3 of them are

generated from wild-type tissues, and 3 are from G7 treated
tissues. The dimensions of the ultimately selected omics data
are listed in Table 1. The values of 1 and 0.5 were assigned to

wild-type and G7-treated samples, respectively, to serve as the
target values for regression fitting task. These values are
intentionally set as labels to differentiate the groups for the
analysis.

Deep Learning Model Construction. The MLP model
we have built for regression fitting of all three omics profiles
has been depicted in Figure 1. It contains 4 layers with one
input layer, two hidden layers, and one output layer of
regression coefficients, with Tanh as a better-performed
activation function placed after the first 3 layers. Two dropout
layers, Xavier weight initialization, and L2 regularization were
conducted to prevent overfitting. For data augmentation, we
added three Gaussian noise samples (mean = 0, standard
deviation = 0.01) to each sample in the training set of every
LOOCV iteration. Model performance before and after noise is

Table 1. Dimension for Each Omics Type

omics type number of samples number of features

transcriptomics 6 596
proteomics 6 472
metabolomics 6 494
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evaluated by 100 replications of predictions on the evaluation
set.
To utilize small-sample data more effectively, we took each

sample from the 2 groups for evaluation set, the rest 4 samples
were used as training and testing sets in the LOOCV deep
learning process. To avoid information leakage, data scaling is
conducted after separating the training and testing sets in each
LOOCV iteration. We applied min−max scaling to each omics
data set and to the training and testing sets separately, using
the MinMaxScaler from the Scikit-learn package. Among the
four LOOCV iterations, the model with the lowest validation
MAE was saved as the best-performing model.

Data Interpretation. We used the LIME technique for
explaining predictions made by machine learning models. It
provides an understanding of the contribution of each feature
by generating a set of perturbed samples around the chosen
sample and using the original model to predict the outcomes of
these samples. These newly generated data points and their
predicted outcomes are used to train a simple model. The
coefficients of the simple model can then be interpreted as the
contribution of each feature. With LIME assigned importance
values to each omics feature, they were separated into two
groups with negative/positive influences on the model’s
predictions.
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