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Abstract: Magnetic nanowires, conceived as individual building blocks for spintronic devices,
constitute a well-suited model to design and study magnetization reversal processes, or to tackle
fundamental questions, such as the presence of topologically protected magnetization textures under
particular conditions. Recently, a skyrmion-tube mediated magnetization reversal process was
theoretically reported in diameter modulated cylindrical nanowires. In these nanowires, a vortex
nucleates at the end of the segments with larger diameter and propagates, resulting in a first switching
of the nanowire core magnetization at small fields. In this work, we show experimental evidence of
the so-called Bloch skyrmion-tubes, using advanced Magnetic Force Microscopy modes to image
the magnetization reversal process of FeCoCu diameter modulated nanowires. By monitoring the
magnetic state of the nanowire during applied field sweeping, a detected drop of magnetic signal
at a given critical field unveils the presence of a skyrmion-tube, due to mutually compensating
stray field components. That evidences the presence of a skyrmion-tube as an intermediate stage
during the magnetization reversal, whose presence is related to the geometrical dimensions of the
cylindrical segments.

Keywords: magnetic nanowires; skyrmion tube; magnetization reversal process; magnetic force
microscopy

1. Introduction

Cylindrical magnetic nanowires (NWs) constitute a subject of thorough studies [1–4].
They have been envisioned as suitable elements to build spintronic devices [5,6] with
limitless operation speed, as it has been put forward that it leads to the suppression of
the Walker breakdown [7]. A variety of strategies have been implemented in order to
achieve a controlled magnetization reversal with special focus on the domain wall pinning
at designed locations, such as adding notches [8], non-magnetic spacers [9] or alternating
changes in the diameter or length of the segments [10].

Lately, the cylindrical NWs are attracting increasing interest from the fundamental
viewpoint [11] as their curved geometry can favor the emergence of topologically protected
magnetization configurations, such as disruption of the continuity of the magnetization vec-
tor (Bloch point) [12,13]. This makes NWs appealing model systems to study the underlying
physics of topologically protected magnetization textures. Recently, Fernandez-Roldán
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et al. theoretically described a topologically non-trivial configuration mediated magneti-
zation reversal processes in magnetically soft nanowires with modulated diameter [14].
In this work, it is shown that magnetization reversal is initiated in segments with thicker
diameters where vortices are predicted to nucleate and expand forming tubes, which
subsequently transform into Bloch skyrmion-tubes (SkT). Other authors also predicted a
SkT mediated magnetization reversal process in a nanowire of a Dzyaloshinskii-Moriya
interaction (DMI) free material, where the nucleation of a hedgehog-antihedgehog pair
governs the process [15].

Although magnetic skyrmions are considered to be two dimensional objects originated
in systems with DMI [16,17], examples can be found in the literature where skyrmions are
stabilized in the presence of perpendicular magnetocrystalline anisotropy (PMA) [18,19] or
even, three dimensional skyrmionic configurations can be stabilized in confined systems in
absence of both DMI and PMA [20]. On the other hand, experimental images combining
two complementary techniques, X-ray holography and cryogenic Scanning Transmission
X-ray Microscopy, have experimentally demonstrated the stabilization of SkT in FeGe
lamellae [21].

However, the emergence of SkTs mediating the magnetization reversal process in DMI
free nanostructures has not yet been experimentally observed. In this work, we present
evidence of a SkT mediated reversal in nanowires with modulated diameter. Variable-Field
Magnetic Force Microscopy (VF-MFM) images present an unusual loss of magnetic contrast
which is attributed to the presence of a SkT for a narrow field range, when the nanowire is
subjected to a sweeping external magnetic field.

2. Methods

Nanowire fabrication: FeCoCu NWs were fabricated by electrodeposition in alu-
minum oxide (AAO) membranes [1,22]. The membranes were obtained through pulsed
hard anodization, keeping a constant voltage value (80 V) in a water based oxalic solution
at 0 degrees for 10 min to create a protective oxide layer. Subsequently, the nanopores
were aligned after the voltage has been slowly increased at 100 V and kept constant for
450 s. The modulations along the alumina pores were produced by alternating voltage
pulses of 130 and 100 V for 5 and 150 s, respectively. Before growing the nanowires, the
alumina layer at the bottom was removed by wet-chemical etching and a gold layer is
sputtered as an electrode. Subsequently, the NWs are grown by DC electrodeposition using
the following electrolyte: 0.12 M CoSO4, 0.05 M FeSO4, 0.01 M CuSO4, 0.16 M H3BO3,
and 0.06 M C6H8O6. For the MFM measurements, the alumina was dissolved and the
nanowires are washed and spread onto a silicon substrate by spin coating [8].

Magnetic Force Microscopy imaging: All the measurements were performed using a
scanning force microscope from Nanotec Electronica S.L. (Madrid, Spain) controlled by the
WSxM software [23] from WSxM solutions (Madrid, Spain) and Nanosensors PPP-MFMR
magnetic probes from Nanoworld AG (Neuchâtel, Switzerland) as well as home-made
cobalt sputtered probes in some cases. Amplitude modulation method was carried out
enabling the phase-locked loop (PLL) to track the resonance frequency of the oscillating
cantilever and the magnetic signal was therefore recorded in the frequency shift channel,
in Hz.

Stray field simulation: The magnetic stray field distribution created by a single NW
segment of 2 µm in length and 140 nm of diameter was simulated using COMSOL Mul-
tiphysics (Stocholm, Sweden). The nanowire was located in the middle of a simulated
non-magnetic environment of 6 µm × 2.1 µm × 2.1 µm using discretized tetrahedra. The
saturation magnetization of the NW was set to Ms = 1.4 × 1015 A/m and the additional
parameters were extracted from the COMSOL library (setting the materials as iron for
the NW and air for the environment). The stray field (magnetic flux density in normal
direction to the plane that contains the nanowire, Bz) was quantified for different magnetic
configurations, single domain (magnetization pointing to NW axis) and SkT with skyrmion
radii 10, 20 and 30 nm.
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3. Results and Discussion
3.1. Modulated Nanowires with Increasing Segment Length

For the present study, nanowires of alternating diameter segments (d = 100 nm and
D = 140 nm) have been fabricated as detailed in the methods section. Different trends can
be found in these nanowires, as they are generally broken into smaller pieces during their
release from the alumina membrane [1,24] and washing process, as shown in previous
publications [9,10]. While the thicker segments possess an increasing length ranging
between 200 nm to 2000 nm, the thinner ones are typically around 350 nm, see Figure 1a,b.
The NW stoichiometry, namely Fe28Co67Cu5, gives rise to a very weak magnetocrystalline
anisotropy, deriving from the bcc cubic symmetry, compared to the shape anisotropy
resulting from their large aspect ratio.
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Figure 1. (a) Atomic Force Microscopy (AFM) topography image of a typical studied nanowire and (b) illustrative sketch of
the diameter modulated structure showing the increasing segment length of the thick segments. Magnetic Force Microscopy
images at remanence state of (c) nanowires with longer thick segments and (d) NW with thick segments shorter than 1 µm.

Their overall magnetization is expected to be pointing in the axial direction, and hence,
the main bright/dark contrast at the edges of the NW is due to a high concentration of
magnetic charges (positive/negative) of this axial component. Moreover, the contrast along
the nanowires reveals the existence of different relatively complex configurations. As MFM
is mainly sensitive to the stray field, in most nanowires, additional bright/dark contrast is
observed along the nanowire at the modulation sites. In addition, the modulation of the
diameter induces the formation of flux-closure magnetization at the diameter transition
sites, that gives rise to a bending effect of the axial magnetization. Remarkably, thick
segments do present single or multivortex structure in some cases [10].

However, systematic MFM imaging revealed that two different trends can be found in
such nanowires, seemingly related to the length of the thicker segments. We have noticed
that while the reported flux-bending effect is in good agreement with the observed overall
intermediate MFM contrast in many of the NWs (Figure 1c), in the shorter thick segments
(L < 1 µm) this intermediate dim contrast is rather unexpected. Despite the complexity of
the magnetization configuration, it is expected that longer thick segments possess a higher
local shape anisotropy and generate a higher stray field at the diameter transition sites.
This stray field is attenuated in the short thick segment nanowires, where the formation
of vortices gives rise to a more complex MFM signal where the different components are
added up (Figure 1d). In Supporting Information S1, we have added an illustrative MFM
image, displaying a contrast compatible with the predicted formation of vortices in the
middle of the segments.
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3.2. Skyrmion-Tube Mediated Imaging of Magnetization Reversal Process Though Advanced MFM

Overall, MFM has proved to be a solid technique to study magnetization reversal
process at the nanoscale [25–27]. In previous articles, the advanced VF-MFM modes
(also called 3D modes) developed in our group [28] have proven to be a straightforward
method to image the magnetization reversal processes in elongated nanostructures, study
pinning events and reconstruct the hysteresis loop of individual elements [9,29,30]. For
this operation mode, the nanowire is located and the same line is repeatedly scanned along
the NW axis, while a magnetic field is applied in the same direction during each scan. This
field is swept, ideally leading the nanowire from one saturated state to the opposite, while
the changes in the signal associated to the magnetization of the nanowire are tracked in
the resulting image. This is illustrated in Figure 2a for the simplest case, where a single
domain nanowire (with constant diameter) reverses magnetization through a single giant
Barkhausen jump (marked with a green arrow).
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Figure 2. (a) Advanced MFM or 3D MFM operation modes on a single-domain magnetic nanowire. (b) 3D MFM image
of a nanowire with modulated diameter. The area inside the yellow dashed square showing a dim signal is attributed
to the presence of a skyrmion-tube. (c) MFM imaging sequence at changing field values, starting from positive applied
field values.

Coming back to the nanowires with short thick segment lengths (below 1 micron, such
as the one shown in Figure 1d), 3D mode images shown in Figure 2b unveil an unusual
behavior. While the initial and ending states display magnetic contrast near to the saturated
state (not fully saturated as a much larger field is needed to align the magnetic moments in
the diameter transitions along the axial direction), at intermediate stages an unexpected
loss of magnetic signal is detected. The region has been marked in a yellow dashed square.
The effect arises in a relatively large field range, starting at H = −20 mT, until the contrast
is recovered at H = 4 mT and displaying reversed magnetization direction. Notice that
the two branches are not entirely symmetrical. Additionally, VF-MFM images recorded
at decreasing applied field (absolute) values, give some insight into the different stages
that the nanowire is going through while the field is reversed from −45 to +45 mT (see
Figure 2c). Notice that while the field is swept, the loss of contrast corresponding to the
appearance of a SkT is less abrupt than the emergence of MFM signal. If one looks closely
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at the area enclosed in the yellow square, it becomes obvious that at the emergence of
SkTs is taking place at slightly different field values for every segment. In fact, as it has
been theoretically predicted, the magnetization configuration can evolve differently under
applied field in different nanowire regions. This is well-illustrated by the region marked
with a light blue arrow in Figure 2c, where the presence of a darker contrast indicates
that SkT tube is not present in this segment. Conversely, the skyrmion-tube vanishes at a
specific critical value, as we can see in both of the VF-MFM images displayed in Figure 2b.

Firstly, to interpret this loss of contrast the reader should bear in mind that MFM
signal relates to the force gradient resulting from the tip and sample stray field interaction.
To discard here possible imaging artifacts, such as variations between tip sample distance
during the image acquisition (which would potentially result in a loss of contrast), the
oscillation amplitude was recorded and no changes were detected. Notice that in the
Amplitude-Modulation mode (AM-AFM), the amplitude is used as a feedback parameter to
obtain a topographic image, and therefore, a uniform oscillation amplitude value ensures no
changes in tip-sample distance (see Supporting Information S2 for more details). Moreover,
the change in the contrast is not simultaneous along a particular scan line, on the contrary,
there are some features along the same line what also discard the sudden change of the tip
properties and reinforce the idea of independent processes occurring in different segments.

Another important fact, is that while the contrast of planar samples usually has a
straightforward interpretation, in three dimensional nanostructures (such as the studied
cylindrical nanowires) different contributions are added together in the same image. All
this evidence supports the idea of a SkT nucleation that mediates the magnetization reversal
process, as theoretically predicted [14], where the stray field components coming from the
NW core and shell parts, compensate and eventually cancel one another.

To qualitatively illustrate this idea, the corresponding stray field generated by a single
domain and a SkT magnetization configurations were simulated and compared (Figure 3a,b)
using COMSOL Multiphysics, Stocholm [31]. For simplicity, a 2 µm long NW of 140 nm of
diameter was simulated, without considering any diameter modulations. The calculated
stray field maps give an idea of the stray field generated by the two configurations at
a distance range comparable to the retrace distance for the MFM data acquisition. The
profiles in Figure 3c allow direct comparison between the stray field values obtained at a
typical distance of 70 nm from the nanowire surface. The data showcases how the stray
field contrast decreases due to the contribution of the opposite stray field generated by the
opposite core magnetization.

For the displayed images in Figure 3a,b, a skyrmion with radius of rs = 20 nm was
considered. For larger skyrmion radius, the effect of the stray field reduction is even
more pronounced. To illustrate this, we have plotted the “stray field variation” (Bz
(maximum)-Bz(minimum)) and plotted it versus skyrmion tubes with different skyrmion
radii (Figure 3d). Notice that the case rs = 0 corresponds with a single domain configuration.

3.3. Differences in the Magnetization Reversal Process

One of the main assets of VF-MFM is its capability to provide qualitative and partial
quantitative information of the magnetization reversal process of individual nanowires in
a relatively fast manner, as compared to other imaging techniques. Because each particular
nanowire could present small crystallographic or geometrical differences as a result of
small structural defect formation or breaking during preparation, this method constitutes
a suitable tool to perform broader studies and identify variations in the magnetization
reversal processes within nanowires fabricated in a single batch.
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Skyrmion-tube mediated magnetization reversals have been detected in several
nanowires (see Figure 4a). Here, we observe an MFM signal loss before the magneti-
zation is fully reversed (near the demagnetized state), as in Figure 2b, although in this case,
the skyrmion tube configuration persists in a smaller range of fields. Though in general
terms, a repeated hysteresis loop in same NW leads to the same type of magnetization
reversal process, small quantitative variations can be observed depending on the specific
measurement conditions, such as the scanning height, the scan speed or the previous
magnetic history. On the other hand, the micromagnetic simulations [14] predict a very fast
formation and propagation of a skyrmion-tube, unlike the pinning effect we can observe
in our measurement, were the configuration is stable despite the relatively slow scanning
speed (around 100 µm/s) in comparison to the fast propagation of DW (in the order of
100 m/s) and for several applied field values. A similar effect studied in reference [30] was
attributed to the presence of local defects in nanowires that slow down the magnetization
reversal. Additionally, a closer look at the SkT area reveals that the contrast in the images is
compatible with the formation of such configuration exclusively in thicker wire segments,
as predicted in reference [14].
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In addition to skyrmion-tubes, in the same NW, the shorter segments can also reverse
magnetization through a single Barkhausen jump (Supporting Information S3), where the
axial magnetization reverses direction in a single event, when a domain wall propagates
from one NW end to the opposite. Finally, similarly to other nanowires with variations
in the diameter [30], domain wall pinning can be also detected in this type of NWs (see
Figure 4b). Here, only the left end of a very long nanowire has been scanned due to the dif-
ficulties to scan bigger sizes through this operation mode. However, it enables us to observe
the nucleation and pinning of a domain wall at the first diameter variation site, prior to
its depinning and subsequent propagation. In the case of longer thick segment nanowires
(L > 1 µm), a single Barkhausen jump constitutes the most common magnetization reversal
mechanism (Figure 4b).

From the studied data, we hypothesize that the formation of a skyrmion-tube and
its stabilization is more favorable in nanowires with shorter segments, as the local shape
anisotropy is smaller and the creation closure configurations is energetically less costly.
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4. Conclusions

The magnetization reversal processes of FeCoCu nanowires with diameter modu-
lations has been investigated using VF-MFM advanced imaging modes. These modes
enable us to observe differences in the remanent magnetization configurations as well
as in the low-field magnetization reversal processes, depending on the thicker segment
length. In NWs with longer thick segments, the obtained imaging data are compatible
with a skyrmion-tube mediated magnetization reversal process, as predicted by micromag-
netic simulations in nanowires of comparable dimensions. To the best of our knowledge,
the MFM data presented constitute the first experimental evidence of a skyrmion-tube
mediated magnetization reversal process in cylindrical nanowires.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14195671/s1, Figure S1: (a) Simulated magnetization configuration of a diameter modulated
nanowire, showing vortex formation at intermediate positions. Reprinted with permission from
Rodríguez, L. A. et al. Quantitative Nanoscale Magnetic Study of Isolated Diameter-Modulated
FeCoCu Nanowires. ACS Nano 10, 9669–9678 (2016), Copyright 2016 American Chemical Society. (b)
MFM image of NW with longer thick segments, displaying intermediate contrast related to vortex
formation, marked with arrows, Figure S2: (a) 3D mode image of the magnetic signal showing
evidence of skyrmion tube. (b) Corresponding oscillation amplitude data. (c) Oscillation amplitude
profiles taken from the image in (b). Figure S3: 3D mode imaging of the magnetization reversal
happening through a single Barkhausen jump.
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