S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Applied Soft Computing Journal 98 (2021) 106912

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

CNN-based transfer learning-BiLSTM network: A novel approach for N
COVID-19 infection detection e

Muhammet Fatih Aslan **, Muhammed Fahri Unlersen ?, Kadir Sabanci?, Akif Durdu ¢

2 Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
b Electrical and Electronics Engineering, Necmettin Erbakan University, Konya, Turkey
€ Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey

ARTICLE INFO ABSTRACT

Article history:

Received 20 October 2020

Received in revised form 8 November 2020
Accepted 11 November 2020

Available online 18 November 2020

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread
rapidly all over the world since the beginning of 2020, has infected millions of people and caused
many deaths. For this pandemic, which is still in effect, mobilization has started all over the world,
and various restrictions and precautions have been taken to prevent the spread of this disease.
In addition, infected people must be identified in order to control the infection. However, due to

Keywords: the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest
AlexNet computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study,
BiLSTM two deep learning architectures have been proposed that automatically detect positive COVID-19 cases
COVID-19

using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as
input to these proposed architectures, is performed automatically with Artificial Neural Networks
(ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer
learning application. However, the second proposed architecture is a hybrid structure as it contains a
Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal
properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value
is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows
outstanding success in infection detection and, therefore this study contributes to previous studies in
terms of both deep architectural design and high classification success.

Hybrid architecture
Transfer learning

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A new virus in the coronavirus family, named COVID-19, was
spread from Asia to the world as a new wave of respiratory
infections at the end of 2019. After the rapid worldwide spread
of COVID-19 and severe clinical manifestations, the World Health
Organization (WHO) officially declared COVID-19 an unprece-
dented health crisis and a pandemic. The COVID-19 pandemic
has caused devastating economic consequences and threatened
human lives since it first emerged. The outbreak has spread
around the world, with the total number of cases and deaths
reported worldwide to more than 36,000,000 and 1,000,000 re-
spectively [1]. In this period, the severity and presence of pneu-
monia caused by COVID-19 have been evaluated in many research
proposals. The studies aim to effectively detect the patients who
are infected by COVID-19 as early as possible so that they must
be isolated to prevent spread and they may receive appropriate
treatment.

* Corresponding author.
E-mail address: mfatihaslan@kmu.edu.tr (M.F. Aslan).
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While the main technique for COVID-19 diagnosis is the re-
verse transcription polymerase chain reaction (RT-PCR) test-Kkits,
medical imaging such as Computed tomography (CT), magnetic
resonance imaging (MRI), Positron Emission Tomography (PET),
Ultrasound (US), and chest X-ray (CXR) is an important alterna-
tive way for detection. Both CT and CXR can indicate abnormal-
ities of lung disease, including COVID-19 [2,3]. Even though CXR
is more accessible around the world hospitals, chest CT scan is
more sensitive than CXR for early detection of COVID-19 disease
changes, as well as for staging of the disease and monitoring
progression [4,5]. CT images, on the other hand, are considered
a powerful analysis tool [6,7] widely applied to biomedical imag-
ing [8] and clinical diagnosis [9] and provide non-destructive 3D
visualization of internal structures. However, the features of the
community-acquired bacterial pneumonia is difficult to classify
as the COVID-19 [10]. Average error, average (mean) fitness,
average select size, standard deviation fitness, worst fitness, and
best fitness are used for feature selection in too many stud-
ies such as Genetic Algorithm (GA) [11], Grey Wolf Optimizer
(GWO) [12], Particle Swarm Optimization (PSO) [13], hybrid PSO-
GWO [14], Bowerbird Optimizer (SBO) [15], Biogeography-Based
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Optimizer (BBO) [16], Bat Algorithm (BA) [17], Multiverse Opti-
mization (MVO) [18], and Firefly Algorithm (FA) [19].

Nowadays, huge data sets can be evaluated much more easily
with the emergence of deep learning models. As in many areas,
the most preferred deep learning model in medicine is Convolu-
tional Neural Networks (CNN)-based deep learning models [20].
When the patients learn early diagnosis, they can have the time
for better medical care and better-personalized therapies [21].
CNNs, is a synthetic neural network, is one of machine learning
algorithms. Several CNN models such as GoogleNet [22], VGG-
Net [23], ResNet [24], and AlexNet [25] are popular at image
classification in the last decade. Ardakani, Kanafi, Acharya, Kha-
dem and Mohammadi [26] presented the state-of-the-art CNN
architectures mentioned above to differentiate COVID-19 cases
from other (non-COVID) cases. According to the experiments,
deep learning techniques using radiograph images could be a
usable method to identify COVID-19.

Many of the deep learning-based studies for the diagnosis of
COVID-19 are only CNN-based, as can be seen in the Related
Works section. CNNs can learn local response from temporal or
spatial data, but lack the ability to learn sequential correlations.
Unlike CNNs, Recurrent Neural Networks (RNNs) specialize in
sequential modeling but cannot extract features in parallel. How-
ever, RNNs suffer from the vanishing gradients problem which
prevents learning of long data sequences. Long short-term mem-
ory (LSTM) [27] is a kind of RNN architecture that are effectively
solves the vanishing gradient problem. Moreover, it can learn
long data sequences. Bidirectional long short term memory (BiL-
STM) [28] stands for bi-directional LSTM; this means that the
signal propagates backward as well as forward in time. Compared
to BiLSTM, LSTM only uses historical context. Therefore BiLSTM
can solve sequential modeling task better than LSTM [29].

In this research, deep learning architectures for COVID-19 in-
fection detection are proposed. COVID-19 Radiography Database
[30] is used as the dataset. First, ANN-based segmentation is
applied to raw chest CT X-ray images before training to im-
prove classification accuracy. As a result of the segmentation,
the lung part of the raw image is cropped. In order to provide
data diversity, the number of segmented images is increased
with the data augmentation technique. Later, 85% of these images
are given as input to architectures designed for training. Both
architectures include the previously trained AlexNet architecture
(transfer learning). The first architecture is AlexNet’s modified
version in accordance with chest CT images. The second ar-
chitecture includes the BiLSTM layer, which takes into account
the temporal features in the image in addition to the first ar-
chitecture. This study contributes to previous studies in terms
of providing ANN-based lung segmentation, proposing a hybrid
structure containing BiLSTM layer with transfer learning, and
achieving high classification success.

The contributions of this research are summarized below.

e Performing ANN-based automatic lung segmentation to ob-
tain robust features,

e To develop a CNN-based transfer learning-BiLSTM network
for early detection of COVID-19 infection.

e The proposed hybrid method is benchmarked against other
state-of-the-art models.

e The proposed model is uncomplicated, it can easily detect
COVID-19 completely automatically.

The rest of the paper is organized as follows. Section 2 surveys the
related work regarding COVID-19. The methodology and dataset
are mentioned in Section 3. Performance evaluation and results
are in Section 4. Discussion of the results, comparison with previ-
ous studies is described in Section 5. Finally, chapter 6 concludes
the article and provides information on future works.
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2. Related works

In literature, there are many studies about artificial intelli-
gence employed for various purposes like Alzheimer’s disease
diagnosis, cancer estimation, biopsy and dermoscopy analysis
etc. [31-35]. In recent times, the COVID-19 pandemic creates
heavy work on health workers. Therefore, any help by artificial in-
telligence to physicians makes their works and decisions healthy.
In this context, various methods are proposed in the literature to
interpret the X-ray or Computer Tomography images in terms of
COVID-19. Some of the previous studies can be summarized as
follows:

Khan and Aslam [36] proposed a tool based on deep-learning
techniques for diagnosis process of COVID-19 by using X-ray
images. In that study, some of the deep-learning models were
investigated. It was reported that VGG-16 and VGG-19 models
have the better performance than the others. Aman Jaiswal [37]
used X-ray images to diagnose COVID-19 by various deep learning
algorithms. In that study, CNN architectures performances were
compared. Additionally a majority rule was suggested as a novel
approach. The best performance in the paper was presented as
98.96%. Nour, Comert and Polat [38] proposed CNN architecture
based automatic diagnosing system for detecting positive COVID-
19 via using X-ray images. The suggested CNN model, consisting
of a five convolution layered serial network was trained from
scratch. The CNN model extracted discriminative features used
to feed machine learning algorithms like k-NN, SVM and DT. It
was stated that the most efficient results were ensured by the
SVM classifier with an accuracy of 98.97%. Chowdhury, Rahman,
Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Igbal and Al-
Emadi [30] presented deep CNN (DCNN) based transfer learning
approach for automatic detection of COVID-19 pneumonia using
X-ray images. Eight different popular CNN based deep learning al-
gorithms (SqueezeNet, ResNet18, InceptionV3, etc.) were trained.
In three-class study including data augmentation technique, the
highest classification success was achieved with DenseNet as
97.94%. Asif and Wenhui [39] proposed a DCNN based auto-
matic COVID-19 diagnosis system by using X-ray images. The
X-ray images were applied to DCNN based model Inception-V3
with transfer learning without any pre-process. The classification
accuracy of the diagnosis system was 96%. Togacar, Ergen and
Comert [40] used a deep learning model to detect COVID-19
by X-ray images. In that study, the classes were restructured
using the Fuzzy Color technique as a preprocessing step and
the images that were structured with the original images were
stacked. Later, the stacked dataset was trained using MobileNetV2
and SqueezeNet deep learning models. The Support Vector Ma-
chines (SVM) method was employed for image classification.
The classification rate obtained with the proposed approach was
99.27%. Ucar and Korkmaz [41] demonstrated an artificial intel-
ligence based structure that uses chest X-ray images to estimate
COVID-19 disease. The SqueezeNet was tuned for the COVID-19
diagnosis with the Bayesian optimization additive. Additionally
the dataset was augmented. As a result of the study, the accu-
racy of COVID-19 classification was stated as 98.3%. Ozturk, Talo,
Yildirim, Baloglu, Yildirim and Acharya [42] suggested an auto-
matic COVID-19 detection system based on deep learning. The
DarkCovidNet model was designed for the automatic detection of
COVID-19 using chest X-ray images. In that study, any preprocess
on X-ray images such as augmentation or segmentation etc. was
not applied. As a result of the classification made with 3 classes
of data, the classification accuracy was stated as 87.02%. Khan,
Shah and Bhat [43] introduced a CNN architecture (CoroNet)
to detect COVID-19 using CT and X-ray scans. This model was
based on Xception architecture and pre-trained on ImageNet
dataset. As a result of the application, it has been shown that
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Fig. 1. Block diagram of the proposed algorithm.

a) COVID-19

b) Normal

¢) Viral Pneumonia

Fig. 2. Sample images of COVID-19 Radiography Database.

the proposed architecture provides 89.6% and 95% accuracy for
4 classes and 3 classes, respectively. Sharma, Rani and Gupta [44]
created deep learning models to determine COVID-19 patients
from X-ray images. In order to increase number of X-ray im-
ages, they performed 25 different types of augmentations on the
original images. It was reported that a better performance than
previous studies was achieved. Narin, Kaya and Pamuk [45] ap-
plied COVID-19 diagnosis using chest X-ray images by developing
the ResNet50, Inception-ResNetv2 and InceptionV3 deep learning
models. In that study, the binary classification was performed,
and the data were validated with 5 fold cross-validation. An
average accuracy of 98% was achieved with the ResNet50 model.
Ahuja, Panigrahi, Dey, Rajinikanth and Gandhi [46] has developed
a three-step implementation to perform COVID-19 detection us-
ing CT images. In the first step, they increased the number of data
by using 3 level stationary wavelet decomposition. In the second
step, they made a classification based on transfer learning using
pre-trained models In the last step, abnormalities in the CT image
were localized. Finally, in a different study, Singh, Bansal, Ahuja,
Dubey, Panigrahi and Dey [47], after the image augmentation
and preprocessing step, fine-tuned the VGG16 architecture and
used the model to extract features from lung CT scan images.
The classification was performed using four different classifiers
(CNN, Extreme Learning Machine (ELM), Online sequential ELM,
and Bagging Ensemble with SVM). The highest success rate of
95.7% was achieved by using Bagging Ensemble with SVM.

The number of studies mentioned above can be increased even
more. In the diagnosis of COVID-19 infection, both the images
given to the network and the architecture of the network are very
effective on the results. As seen above, methods such as CNN,
transfer learning, machine learning have been used frequently
for the diagnosis of COVID-19. In addition, most of the works
perform image augmentation, cropping, image size reduction, etc.
operations on the raw images and give the final image to the deep
network. According to Liu and Guo [29], BiLSTM is more effective
on classification accuracy than the convolutional layer. However,
until now, BiLSTM, which is quite modern and has a higher classi-
fication success than CNN, has not been used in previous studies
in the diagnosis of COVID-19. What makes this study different
from others is to give ANN-based segmented lung images to the
CNN-based transfer learning-BiLSTM network. When the results
are examined, it is seen that the proposed method provides a
successful and easy to apply COVID-19 diagnosis.

Table 1
Number of samples belonging to each class in the COVID-19 Radiography
Database.

Class Number of samples
COVID-19 219

Viral Pneumonia 1345

Normal 1341

Total 2905

3. Methodology

In this section, detailed information will be given about the
COVID-19 Radiography Database, lung segmentation, data aug-
mentation and finally the architectures used for classification.
A general block diagram of the study is given in Fig. 1. The
information about each block in Fig. 1, the architectures used and
the results obtained are discussed under five headings.

3.1. COVID-19 radiography database

In this study an open-access database that covers the posterior-
to-anterior chest X-ray images is used [30]. A team of researchers
from Qatar University, Doha, Qatar and the University of Dhaka,
Bangladesh along with their collaborators from Pakistan and
Malaysia in collaboration with medical doctors have created a
chest X-ray images database for COVID-19 positive cases along
with Normal and Viral Pneumonia images. In current database,
there are 219 COVID-19 positive images, 1345 viral pneumonia
images and 1341 normal images. As shown in Table 1, a total of
2905 images with three classes are presented in this dataset.

The COVID19 Radiology database was created by collecting
the samples from different resources such as the Italian Soci-
ety of Medical and Interventional Radiology (SIRM) COVID-19
Database [48], Novel Corona Virus 2019 Dataset developed by
Joseph Paul Cohen and Paul Morrison and Lan Dao in GitHub [49]
and images extracted from 43 different publications. A sample
image belonging to all three classes is shown in Fig. 2.

3.2. Lung segmentation

Image segmentation is an important issue for artificial intel-
ligence, because noises or irrelevant patterns in the image can
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Fig. 3. Noises or irrelevant patterns in a sample X-ray Image.

lead to false predictions. The raw X-ray images in the dataset
contain different noises as seen in Fig. 3. In order not to take
these noises into account in the artificial intelligence algorithm,
the segmentation process is applied.

In a chest X-ray image, the lung part of the image is examined
for COVID-19 detection. For this reason, an image containing
only the lung part provides a more successful detection. The
positions of the lungs in the raw images are not fixed. Therefore,
each image should be considered separately to segment the lung
part. But in the COVID-19 radiography database there are 2905
images. For this reason, the segmentation process should be done
automatically, not manually. To use only the lung part in the
classification process, ANN-based automatic segmentation has
been adopted in this study.

In ANN-based automatic segmentation application, 50 images
from COVID-19, Normal and Viral Pneumonia are selected as
input for ANN. For each selected image, three selection points
(bottom left, bottom right and middle top) are manually de-
termined as in Fig. 4(a). Then the mask is created using these
three selection points (see Fig. 4(b)). Finally, this mask image
is multiplied with the original image and the result image is
obtained as seen in Fig. 4(c). Then, the result images are converted
to grayscale.

After converting 50 images from each class into the result im-
age as in Fig. 4, ANN-based segmentation is applied for automatic
creation of these result images. The size of the result image is
converted from 1024 x 1024 toa 1 x 1048576 row matrix. While
this matrix is used as input in ANN, the coordinates of the deter-
mined selection points are used as output. By this way, the ANN is
trained with the Levenberg-Marquardt backpropagation method.
There is one hidden layer with 100 neurons in this network. The
output layer is consisting of 6 neurons which represent the two
coordinates of three selection points. The error value as a result
of training with ANN is 0.94. After the training, all of the other
images are given as input to this trained ANN. Cropping is applied
according to the estimated coordinate values. In Fig. 5 an original
and result X-ray image is presented.

3.3. Data augmentation

One way to classify successful in deep learning is to have
a large dataset. However, it is not always possible to reach a
large number of data. For this reason, the data can be aug-
mented in computer environment to increase the classification
success. Data augmentation methods do not present any new,
visual features of the images that could significantly improve the
learning abilities of the algorithm used and the greater general-
ization abilities of networks. Color, texture, and geometric based
data augmentation techniques are not equally popular because
of their different disadvantages. Currently, only geometric trans-
formations are commonly used, although a wide variety of other

Applied Soft Computing Journal 98 (2021) 106912

interesting methods have been developed in the past. In this
study, the image rotation technique, one of the geometric trans-
formation methods, is used to increase the chest X-ray images.
While this technique provides data diversity and more accurate
classification, it also includes disadvantages such as additional
memory, conversion calculation costs, and additional training
time [50,51].

The rotation process has been applied to images belonging to
the COVID-19 class, which has a much smaller number of samples
(see Table 1). After the data augmentation step, the COVID-19
class images are increased four times and the number of new
COVID-19 class samples has reached 1095. The cropped chest X-
ray images are rotated in degrees counterclockwise from 0° to
359° according to a randomly generated number (see Fig. 6).

3.4. Proposed mAlexNet architecture

Nowadays, deep learning-based artificial intelligence studies
provide state-of-the-art solutions in computer vision. CNN, which
is a deep learning method, is now preferred in different disci-
plines in image recognition applications. Small details that people
cannot notice, can be easily distinguished using CNN. CNNs rec-
ognize visual patterns directly from pixel images with minimal
preprocessing. The CNN structure was introduced by the LeNet
architecture [52], and AlexNet [53] made CNN popular. With
the various designs and applications made since then, CNN’s
popularity has grown exponentially.

AlexNet is the first CNN to achieve the highest classifica-
tion accuracy in the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) in 2012. Based on deep CNN, AlexNet oc-
cur two fully connected layers, five convolutional layers, and
a single Softmax output layer. The image input layer requires
227 x 227 x 3 images. Each convolutional layer is followed by
the Rectified Linear Unit (ReLU) activation function [53]. After
each convolution layer, AlexNet has maximum pooling to reduce
network size. After the last convolutional layer there are two
fully-connected layers with 4096 outputs. Finally, a layer is added
after fully-connected layers to classify the given data. This last
layer classifies 1000 objects using the Softmax function [54-56].

Different types of classification studies using AlexNet have
been performed many times until now. However lately, more
efficient transfer learning applications have started to be pre-
ferred in many deep learning studies rather than designing a
network from scratch or using an existing network directly. Be-
cause using and modifying a pre-trained CNN model is much
easier and faster than training a new CNN model with randomly
initiated weights. In CNN-based architectures, visual features are
usually extracted and learned in the first layers. Therefore, the
first layers are not changed and changes can be made on the
last layers to take advantage of an existing architecture. Using
transfer learning, architectures trained on large data sets are used
directly. Thus, previously learned parameters, especially weights,
are transferred to the modified new model [57]. Although the
new dataset differs from the network’s previous training data
content, the low-level features are similar. By transferring the
parameters of the pre-trained model, the new model can gain a
powerful feature extraction capability, and the training calcula-
tions and memory cost of the new model can be reduced [55]. An
example architecture for a transfer learning is shown in Fig. 7. The
last three layers of the pre-trained CNN model are removed and
new layers are added for the new task. As a result, the modified
network is used for the new classification task.

In the first step of this study, chest X-ray images are classi-
fied using a transfer learning-based modified AlexNet (mAlexNet)
architecture. AlexNet consists of 25 layers including convolu-
tion, fully connected (fc), ReLU, normalization, pooling, etc. The
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¢) Result image

Fig. 4. Manually segmented X-ray images.

a) Original X-ray Images b) Result X-ray Images

Fig. 5. Proposed ANN-based segmentation.

a) Segmented image

. — . W

c) 180 degres rotated

d) 270 degrees rotated

Fig. 6. Rotation operation.

AlexNet architecture is configured for 1000 classes. The last three
layers of the AlexNet model have been removed to be compatible
with our study. These last three layers are modified to classify
COVID-19, Viral Pneumonia and Normal images. The remaining
parameters of the original AlexNet model have been preserved.
The removed layers and modified/newly added layers are shown

in Fig. 8. Although there are 1000 neurons in the fc8 layer in
the original AlexNet model, there are 25 neurons in the newly
added fc8 layer. Because 25 features are required for the pro-
posed second hybrid model. Fig. 8 shows the proposed mAlexNet
architecture. In Table 2, mAlexNet layers and parameters of these
layers are given. Table 2 also includes the parameters of the
training algorithm.

When the training parameters are examined, it is seen that
the Mini Batch parameter, which allows the training data to be
divided into small groups, is 60 and the optimization algorithm
used to reduce the train error is Stochastic Gradient Descent with
Momentum (SGDM). Parameter values of this algorithm are also
found in Table 2.

Or1 =6 —aVE (O) + y(6 — 61-1) (1)

The parameter updating equation performed using the SGDM
algorithm is given in Eq. (1). In this equation, the goal is to update
the weights according to the error value called Loss function
(E (6))) and decrease the next error value. For this, in each itera-
tion, the error value is sought by moving in specific small steps
(limited by the learning rate ()) towards the negative gradient
of the Loss function. During this search, the weight values are
updated with the back propagation algorithm in each iteration.
The contribution of the current weight value to the weight value
in the previous iteration is determined by the Momentum (y)
coefficient. By using each parameter value in Table 2 in Eq. (1),
it is ensured that the classification errors in the chest X-ray
images are minimized during training. As a result, by using the
parameters shown in Table 2, the network seen in Fig. 8 is trained
with the SGDM algorithm. After the training, the accuracy values
obtained as a result of the classification made with test images
are given in the Results and Discussion section.

3.5. Proposed hybrid model

The second architecture, designed for the detection of COVID-
19, includes the first architecture completely. The convolutional
structure in this architecture is exactly the same as the previous
architecture. The most important feature that distinguishes the
hybrid structure from the previous architecture is the BiLSTM
layer. As seen in Fig. 9, Flatten and Bidirectional Long Short-
Term Memories (BiLSTM) layers have been added in addition
to the previous architecture. The Flatten layer simply ensures
that the data is transformed into a one-dimensional array. The
purpose is to prepare the data for the input of the BiLSTM layer.
BiLSTM and LSTM have the Recurrent Neural Network (RNN)
architecture used to process sequential data. Unlike traditional
neural network algorithms, RNN assumes a relationship between
input data, so it is suitable for sequential and temporal data. LSTM
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Fig. 7. An example transfer learning process.
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Fig. 8. Proposed mAlexnet architecture.

has become very popular because it solves the RNN’s vanishing
gradient problem. Unlike LSTM, BiLSTM does not only store his-
torical information, but also examines the relationship between
data in two directions. Therefore, for sequential data, it provides
more successful results than LSTM.

Since the BiLSTM layer is suitable for sequential data, firstly,
the features are extracted from the images, for this, convolutional
architecture is used. Therefore, the new architecture includes

both convolutional layers and BiLSTM, as shown in Fig. 9. Param-
eter values and training parameters of the designed mAlexNet-
BiLSTM hybrid architecture are given in Table 3.

As seen in Table 3 and Fig. 9, two consecutive BiLSTM (BiLSTM-
1, BiLSTM-2) layers are used. The temporal features obtained
as a result of these layers are given as an input to the fully
connected layer (fc9) and the classification is completed using
Softmax. In proposed architecture, hidden layer neuron numbers,
activation functions, etc. parameter values are found by trial and
error method. During the training phase, the Adam optimization
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Table 2
Layers and parameters of the proposed mAlexNet.
Layer name Size Fiter size Stride Padding Output channel Activation function
convl 55 x 55 11 x 11 4 0 96 relu
maxpool1l 27 x 27 3x3 2 0 96 -
conv2 27 x 27 5x5 1 2 256 relu
maxpool2 13 x 13 3 x 3 2 0 256 -
conv3 13 x 13 3x3 1 1 384 relu
conv4 13 x 13 3x3 1 1 384 relu
convs 13 x 13 3 x 3 1 1 256 relu
maxpool5 6 x 6 3x3 2 0 256 -
fc6 - - - - 4096 relu
fc7 - - - - 4096 relu
fc8 - - - - 25 relu
fc9 - - - - 2 softmax
Training parameters
Optimizer ~ Max. Epoch Mini Batch Size Initial Learning Rate («¢) Momentum (y)
SGDM 100 60 0.001 0.95
Table 3
Hyperparameters of layers used for hybrid architecture and training options.
BIiLSTM-1 BiLSTM-2 fc9
Number of State activation  Gate activation =~ Number of State activation  Gate activation ~ Output size State activation
hidden units function function hidden units function function function
125 tanh sigmoid 100 tanh sigmoid 3 tanh
Training parameters
Optimizer Gradient decay  Squared Max. Epoch Mini batch size Initial learning  Epsilon (¢)
factor (B1) Gradient decay rate («)
factor (5;)
Adam 0.9 0.999 200 512 0.001 1078
AlexNet Architecture
Removed layers
com4 4 I
input conv3 relu;maxl"mls output
images comv conv2 maxpool2 + relu4 : fe8
#3781 /1 relu3 + +
+ maxpooll relu2 relu6 relu?
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+ norm2 drop6 drop7
norml
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softmax T flatten
dropout dropout relu8

Fig. 9. Proposed mAlexNet-BiLSTM (Hybrid) architecture.

algorithm is used to reduce the error in each iteration. Adam
optimization algorithm is adaptive learning rate algorithm that
is been designed specifically for training deep neural networks.
Adam outperforms other optimization algorithms thanks to its
relatively low memory requirement advantage [58]. Adam is an

adaptive learning rate method, that is, it calculates individual
learning rates for different parameters. Adaptive learning rates
are adjustments to learning rate during training step by reducing

the learning rate according to a predefined schedule. The Adam
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algorithm is a combination of SGDM and Root Mean Square Prop-
agation (RMSprop) optimization methods. The Adam algorithm,
which uses parameter updating similar to RMSProp, contains the
momentum term, unlike RMSProp. The name Adam is derived
from adaptive moment estimation, and this is because Adam
uses predictions of the first and second gradient moments to
adapt the learning rate for each weight of the neural network.
In short, the expected value of the first and second power of the
term to be updated is used. To estimates the moments, Adam
calculates exponential weighted moving average of the gradient,
and then squares the gradient. This algorithm includes two decay
parameters that control the distortion rates of these calculated
moving averages. The parameter update equation for Adam is
given between Eqs. (2)-(4) [58-60].

m; = Bymi_; + (1 — B1) VE(6)) (2)

v = Byui1 + (1 — By) [VE (6)1? (3)
_ _ oam

01 =6 Joite (4)

m : Gradient moving averages

VE(0) : Gradient of the loss function
€ : Epsilon

v : Squared gradient moving averages
B1 : Gradient Decay Factor

o : Learning Rate

0 : Network parameter to be updated
B> : Squared Gradient Decay Factor

[ : Iteration Number

The parameter values in Table 3 are used in the Adam opti-
mization algorithm shown in Egs. (2)-(4), and thus, the weights
are updated in each iteration in the training phase. As a result
of these updates, after reaching the determined iteration number
limit, the accuracy values calculated using test data can be seen
in Fig. 11 and Table 4.

4. Results

Using the architectural parameters and training parameters
of the two architectures described above, the performance of
both algorithms is determined by test data. In the experimental
studies, a laptop with Intel Core i7-7700HG CPU, 16 GB RAM,
NVIDIA GeForce GTX 1050 4 GB is used. Deep learning software
and calculation of results are carried out in Matlab environment.
Training graphics of mAlexNet and hybrid architecture are shown
in Fig. 10. In Fig. 10, it is seen that both training and test loss
approach the minimum at the end of the graph. Training time
on CNN and BiLSTM networks is 139 s and 85 s, respectively.
However, these times are directly related to the number of epochs
and iterations. In the training step, the number of iterations for
mAlexNet is determined as 1520, the number of epochs is 5, and
the training duration is 139 s. In hybrid architecture training, the
number of iterations is 1150 and the number of epochs is 50,
the training takes 224 (139+85) seconds. The proposed method
is not complicated and easy to implement since it automatically
realizes segmentation and does not include feature extraction
step due to its end-to-end learning architecture. Confusion ma-
trices obtained according to the classification accuracy are shown
in Fig. 11. In addition, different performance metrics such as
accuracy, recall, specificity, precision, F1-score, MCC, Kappa, Area
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Under Curve (AUC) calculated for performance measurement.
Receiver operating characteristic (ROC) curves are also shown in
Fig. 12. The formula for each metric is defined between Egs. (5)-
(12) [61]. More detailed information on metrics can be found
in reference [62]. The performance values obtained with these
formulas are shown in Table 4.

t] t
Accuracy = L x 100 (5)
tp+fp+tn+fn
t]
Precision = —= (6)
tp+fp
1/ tp tn
AUC = = + 7
2 (tp+fn tn+f19) )
tp
Recall = 8
tp + fn ®
Specificity = 9
pecificity tn+fp ®
False Positive Rate = b (10)
fp+tn
2t
F1—score= ——P (11)
2tp+fp+fn

c— (tp * tn) — (fn * fp) (12)

V(tp + fr) * (en + fp) * (tp + fp) * (tn + f)

tp: True Positive tn: True Negative fp: False Positive fn: False
Negative

Considering the results obtained in Table 4, it can be seen
that the results of both architectures are successful. However, the
classification success of the hybrid structure formed by adding
BiLSTM to the mAlexNet model is higher. The calculated accuracy
rates are 98.14% and 98.70% for mAlexNet and mAlexNet+BiLSTM,
respectively. In addition, as shown in Table 4, Precision, Recall,
F1-Score, Specificity and MCC values are also higher for the hybrid
architecture. This shows that the hybrid architecture performs
better overall performance and unbiased classification.

5. Discussion

The main goal of this study is to show that the CNN-based
transfer learning-BiLSTM hybrid structure is highly effective for
the diagnosis of COVID-19. Similar to other previous studies,
our study is based on deep learning. However, it differs due
to its methodological contribution. Studies suggesting different
methods previously made using deep learning are compared in
Table 5 in terms of their accuracy. Accordingly, it is seen that the
proposed method is comparable with previous studies in terms
of accuracy.

As can be seen in Table 5, many studies including CNN archi-
tecture have been carried out so far. The biggest advantage of
these architectures is that they contain an end-to-end learning
structure, i.e. there is no handcrafted e feature extraction step. In
addition, the new trend is transfer learning-based CNN architec-
tures, as it improves classification accuracy. Therefore, the com-
bination of different pre-trained models or pre-trained model-
machine learning methods have been frequently proposed re-
cently. However, the approach suggested in this study is different
from the previous ones.



M.FE. Aslan, MLF. Unlersen, K. Sabanci et al.

100

LUl

! !

3

Accuracy (%)
3

| Epocn2

Applied Soft Computing Journal 98 (2021) 106912

0 T 1
il

I (N8

@ Final

‘Y
‘ AP ACLAT) i

[

\
|
|

Epoch 3 Epoch 4
I gtoc I I | B I

300 400

500
Iteration

600 700 900 1000

Accuracy

Training (smoothed)

Training
- -® - - Validation

Loss.

Training (smoothed)
Training

- -® - - Validation

500
Iteration

900 1000

(a) mAlexNEt

Accuracy (%)

20

Final

40
| | | | | |

0 100 200 300 400

500 600 700 900 1000
Iteration

Accuracy

Training (smoothed)

Training
- - @ - - vaiidation

Loss

Training (smoothed)
Training

- -® - - Validation

0 100 200 300 400 500 600 700 800 900 1000
Iteration
(b) mAlexNEt+BiLSTM (hybrid)
Fig. 10. Training graphics of proposed architectures.
Table 4
Performance metrics of the proposed architectures.
Architecture Acc. (%) Error Recall Specificity Precision False Positive rate Fl-score  AUC MCC Kappa
mAlexNet 98.14 0.0186  0.9826  0.9906 0.9816 0.0094 0.9820 0.9855 09726  0.9581
mAlexNet + BiLSTM  98.70 0.0130 0.9876  0.9933 0.9877 0.0067 0.9876 0.9900 09809 0.9707

The proposed method owes its success to lung segmenta-
tion and hybrid architecture. Most of the deep learning-based
studies for the diagnosis of COVID-19 are only CNN-based, as
shown in Table 5. In addition, most studies give raw images as
input to the CNN without lung segmentation. This causes the
features extracted from the X-ray image to express that image

class poorer. Since the proposed study performs the segmenta-
tion process automatically, it provides both high classification
accuracy and convenience. Also, according to the study by Liu
and Guo [29], BILSTM have greater effects than the convolutional
layer on the classification accuracy. In this study, CNN is used
for feature extraction and BiLSTM is used to classify COVID-19
according to these features. This provides a high classification



M.FE. Aslan, MLF. Unlersen, K. Sabanci et al.

N

1.6 %

% 3.6 %

100.0
%

mAlexNet

Applied Soft Computing Journal 98 (2021) 106912

\Y 22%

N W 15 %
100.0

C %

98.4 98.0

%

mAlexNet
+

BiLSTM

%

1.6% | 2.0%

Fig. 11. Confusion matrices of proposed methods.

2.7% 1.6 % 1.2 %
l -
0.8
]
o6k
[
2z
Z AUC =0.985
2
(] -
2 0.4
H
02+
—— Viral
0F — COVID-19
Normal
0 0.2 0.4 0.6 0.8 1
False positive rate
a) ROC curve for mAlexNet

True positive rate

1 |- F
0.8
0.6 -
AUC=10.99
0.4+
0.2+
—— Viral
0r ——COVID-19
Normal
0 0.2 0.4 0.6 0.8 1

False positive rate

b) ROC curve for mAlexNet+BiLSTM

Fig. 12. ROC curves of the proposed methods.

success compared to most previous studies. Moreover, the pro-
posed architecture gives the features extracted from CNN directly
to the BiLSTM layer. Therefore, its application is simple and
uncomplicated.

The general disadvantage of deep learning studies is that the
ability to generalize is largely dependent on training data. Today,
millions of people around the world have been infected with
COVID-19. Therefore, it is not certain whether the proposed deep
learning-based studies will show the same success in a different
patient’s CT image. This uncertainty can be overcome by perform-
ing the training process using millions of images. The number
of CT images and classification accuracy can be increased with
data augmentation techniques. However, this does not provide
as strong learning as adding a real and different sample. There-
fore, the number of image data should be increased and training
should be done for a real and general success. Successes obtained
with limited data do not fully reflect the truth. Of course, in-
creasing the number of data requires a more powerful computer

10

and the training time increases. Although the transfer learning
based CNN-BiLSTM structure proposed in this study has achieved
a high success, it requires more training time since it includes
both CNN and BiLSTM. In addition, the lungs are not separated
from each other in the ANN-based segmentation step performed
in the application. Although the extracted features represent the
infection better than the raw image, it would be more accurate
to segment both lung images regionally.

6. Conclusion and future work

Early detection of COVID-19 disease is crucial to preventing
the disease from spreading to other people. This study uses chest
X-ray images to easily diagnose COVID-19. First, ANN-based seg-
mentation is applied to the raw images, so that only the lung area
is evaluated for COVID-19 detection. Then, in order to provide
data diversity in the images, images belonging to the COVID-
19 class are augmented. The last step after the segmentation
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Table 5
Comparison of the proposed hybrid method with previous studies.
Study Method Accuracy (%)
Wang and Wong [63] Deep Learning 92.30
Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis and Mohammadi [64] Capsule network 95.70
Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Igbal and Al-Emadi [30] Transfer Learning 97.94
Farooq and Hafeez [65] Transfer Learning 96.20
Ucar and Korkmaz [41] Bayes-SqueezeNet 98.30
Apostolopoulos and Mpesiana [66] Transfer Learning 93.48
Xu, Jiang, Ma, Du, Li, Lv, Yu, Ni, Chen and Su [67] ResNet + Location Attention 86.70
Ozturk, Talo, Yildirim, Baloglu, Yildirim and Acharya [42] DarkCovidNet 87.02
Narin, Kaya and Pamuk [45] Transfer Learning 98.00
Asif and Wenhui [39] Transfer Learning 96.00
Nour, Comert and Polat [38] Deep-Machine Learning 98.97
Khan, Shah and Bhat [43] Transfer Learning 95.00
Gupta, Anjum, Gupta and Katarya [68] InstaCovNet-19 99.08
Sethy and Behera [69] ResNet50 + SVM 95.40
Hemdan, Shouman and Karar [70] VGG19 90.00
Rahimzadeh and Attar [71] Xception + ResNet50V2 91.40
Proposed Method Hybrid 98.70

and data augmentation steps is to give the result images as
input to the designed deep learning network. Both proposed
architectures include the pretrained Alexnet architecture. While
the first architecture is only a transfer learning application, the
second architecture includes an additional BiLSTM layer. The re-
sults show that the proposed second hybrid architecture is more
successful for COVID-19 detection. The different aspects of this
study compared to other studies are that it proposes ANN-based
segmentation and uses a hybrid architecture.

Since the proposed model has an end-to-end learning struc-
ture, it provides automatic detection of COVID-19 by using chest
X-ray images without requiring any handcrafted feature extrac-
tion technique. In this way, a fast and stable system helps expert
radiographs as a decision support system. In this way, the work-
load of radiologists is reduced and misdiagnosis is prevented.

Although the proposed method is successful, different meth-
ods based on deep learning will be proposed for the detection
of COVID-19 in future studies. The first planned study is to in-
crease the success by increasing the number of datasets. As is
known, the success of deep learning depends largely on the num-
ber of labeled data. Therefore, generative adversarial network
(GAN) combined with a deep neural network (DNN) structure
will be developed. Another planned study is to develop a stronger
CNN-based lung segmentation.
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