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Abstract: The use of live biotherapeutic products (LBPs), including single strains of beneficial
probiotic bacteria or consortiums, is gaining traction as a viable option to treat inflammatory-mediated
diseases like inflammatory bowel disease (IBD). However, LBPs’ persistence in the intestine is
heterogeneous since many beneficial bacteria lack mechanisms to tolerate the inflammation and
the oxidative stress associated with IBD. We rationalized that optimizing LBPs with enhanced
colonization and persistence in the inflamed intestine would help beneficial bacteria increase their
bioavailability and sustain their beneficial responses. Our lab developed two bioengineered LBPs
(SBT001/BioPersist and SBT002/BioColoniz) modified to enhance colonization or persistence in the
inflamed intestine. In this study, we examined colon-derived metabolites via ultra-high performance
liquid chromatography-mass spectrometry in colitic mice treated with either BioPersist or BioColoniz
as compared to their unmodified parent strains (Escherichia coli Nissle 1917 [EcN] and Lactobacillus
reuteri, respectively) or to each other. BioPersist administration resulted in lowered concentrations
of inflammatory prostaglandins, decreased stress hormones such as adrenaline and corticosterone,
increased serotonin, and decreased bile acid in comparison to EcN. In comparison to BioColoniz,
BioPersist increased serotonin and antioxidant production, limited bile acid accumulation, and
enhanced tissue restoration via activated purine and pyrimidine metabolism. These data generated
several novel hypotheses for the beneficial roles that LBPs may play during colitis.

Keywords: live biotherapeutics; gut–liver–brain axis; inflammatory bowel disease; immunometabolism

1. Introduction

The use of probiotics to induce health benefits has existed for decades, albeit with
conflicting outcomes [1]. This is partly because probiotics colonize, persist, and induce
responses in the host in highly individualized patterns, limiting their universality [2]. The
persistence of probiotics is heterogeneous [3], with low persistence rates in humans [4].
While not yet known, the native microbiome’s permissiveness to new species likely plays a
role. In cases where health benefits are observed, commensal bacteria promote intestinal
health through multiple mechanisms, including modulation of inflammatory cytokines,
strengthening of the intestinal barrier, and normalization of dysbiosis [5]. Unlike conven-
tional drugs that often target one pathway or effector, the advantages of using “bugs as
drugs” are that bacteria can elicit multiple beneficial effects via various pathways. This
multi-targeted approach may be more desirable in biologically complex conditions, such
as inflammatory bowel disease (IBD).
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Inflammation during IBD leads to oxidative stress in the intestine, which hinders
effective persistence by commensal bacteria [6]. Indeed, the intestine is hostile to many
commensal microbes during chronic inflammation, such as during an active IBD flare [7].
Therapies, like live biotherapeutics (LBPs), elicit health benefits via interaction with the gut
microbiota and epithelium, influencing intestinal barrier function, the mucosal immune
system, and the functional metabolic responses of the gut microbiome [8,9]. Live microbes,
unlike molecules, have more potential for sustained protection if the microbe can persist in
the inflamed intestinal niche.

Bio-engineering of probiotics such as Lactococcus lactis and Lactobacillus casei BL23 [10]
to locally deliver therapeutic agents such as IL-10 [11], trefoil factors [12], and TNF-α
neutralizing antibodies [13], has shown some benefit during gut inflammation. Similarly,
Bifidobacterium longum bio-engineered to reduce reactive oxygen species by overexpressing
manganese superoxide dismutase has demonstrated benefits in preclinical studies [14]. The
FDA has approved clinical trials of bio-engineered LBP, SYNB1618, to treat the metabolic
disease phenylketonuria (Synlogic, Cambridge, MA, USA) [15], indicating regulatory
bodies will consider genetically modified organisms as viable therapeutics.

From several commercially available probiotics strains, Escherichia coli Nissle 1917
(EcN) stands out as an effective treatment against infectious [16] and ulcerative colitis [17].
EcN inhibits pathogenic bacteria colonization by secreting antimicrobial peptides [18],
outcompeting pathogens for nutrient uptake [19], and displaying anti-inflammatory effects
with reduced expression of colonic COX-2 (cyclooxygenase-2) and IFN-γ (interferon-γ)
[20,21]. Therefore, engineering EcN may provide increased bioavailability of these bacteria
to enable their beneficial effects in the intestine. Indeed, EcN overexpressing cystatin is
immunomodulatory when compared to the unmodified strain [22]. Another probiotic that
has previously shown protection against colitis is Lactobacillus reuteri [23]. In particular, it
inhibits inflammatory cell infiltration [24] and decreases the expression of inflammatory
markers such as myeloperoxidase and IL-6 [25].

Despite the promising use of these probiotics, a meta-analysis for EcN in IBD con-
cluded that while EcN is equivalent to mesalazine in preventing disease relapse, its use
in inducing the remission cannot be recommended [26]. This could be due to the lack of
consistent persistence of the probiotic in the IBD intestine [4]. Hence, we hypothesized that
optimizing LBPs with enhanced persistence in the inflamed intestine would help certain
bacteria sustain their beneficial action in the intestine. To this end, our lab developed a
bio-engineered LBP called SBT001/BioPersist, which was modified to enhance the parental
probiotic EcN persistence in the inflamed IBD intestine, and SBT002/BioColoniz, which
was modified to enhance the parental probiotic L. reuteri’s colonization in the intestine
(PCT/CA2018/050188) [27]. The objective of the current study was to identify changes in
the colon-derived metabolites during colitis in response to BioColoniz and BioPersist. We
used an untargeted metabolomics approach to detect and identify metabolites in colitic
mice colons treated with the LBPs or their unmodified parental strains. Our data analysis
provides insights into how LBPs modulate specific metabolic pathways that impact both
microbiome health and diversity as well as intestinal immunity. These data support several
novel hypotheses on the mode of action and impact of BioPersist in the intestine.

2. Materials and Methods
2.1. Bacterial Culture

EcN and BioPersist were grown in Luria–Bertani overnight (LB, 10 g tryptone, 5 g
yeast extract, and 10 g sodium chloride dissolved in 1 L of water, adjusting pH to 7.5)
for 16 h at 37 ◦C under 180 rpm agitation. L. reuteri and BioColoniz were grown in De
Man, Rogosa, and Sharpe broth (MRS, 10 g peptone, 10 g beef extract, 5 g yeast extract,
20 g dextrose, 5 g sodium acetate, 1 g polysorbate 80, 2 g dipotassium phosphate, 2 g
ammonium citrate, 0.1 g magnesium sulfate, and 0.05 g manganese sulfate dissolved in 1 L
of water, adjusting pH to 6.5) for 24 h at 37 ◦C static under anaerobic conditions given by
the BD GasPak system (BD Biosciences, Franklin Lakes, NJ, USA). The mice were gavaged
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immediately with the fresh probiotics kept at room temperature. Parallel and to confirm
the dose given to mice, 0.1 mL of the probiotics were plated on 100 × 15 mm agar plates of
the corresponding medium and grown for 24 h at 37 ◦C for EcN and BioPersist, and for
48 h at 37 ◦C under anaerobic conditions for L. reuteri and BioColoniz.

2.2. Animal Experiments

The animal experimental protocol (A19-0286) was approved by the University of
British Columbia’s Animal Care Committee in accordance with guidelines drafted by
the Canadian Council and Animal care on the Use of Laboratory Animals. Female
C57BL/6 mice (Charles River, Massachusetts, USA) were maintained under specific
pathogen-free conditions, with a controlled temperature at 22 ± 2 ◦C, 12 h light/dark
cycles, and autoclaved sterile drinking water and food (Teklad 7001, Envigo, Indianapolis,
IN, USA) provided ad libitum. Mice were acclimatized and divided into four groups
with n = 4 each, where each group came from various cages to minimize cage effects: L.
reuteri DSM20016, BioColoniz, EcN (Mutaflor, Ardeypharm GmbH, Herdecke, Nordrhein-
Westfalen, Germany), and BioPersist (16 mice total). Mice in the L. reuteri and BioColoniz
received one single oral gavage dose of 0.1 mL of 2× 109 CFU/mL of the assigned probiotic.
Mice in the EcN and BioPersist groups received 0.1 mL of 3× 1012 CFU/mL of the assigned
probiotic for three consecutive days via oral gavage. After that, mice were exposed to 3.5%
dextran sodium sulphate (DSS, MP Biomedicals) via drinking water for 7 days to induce
colitis. Then, mice were anesthetized with isoflurane and euthanized by CO2 asphyxiation,
followed by cervical dislocation. Colon samples were collected, and flash frozen in liquid
nitrogen. Samples were storage at −80 ◦C until further analysis.

2.3. Sample Preparation for Metabolomics Analysis

We extracted metabolites from the colon tissues based on previous methods [28–31].
Briefly, colon tissues were accurately weighed by difference using an analytical balance
(Ohaus; VWR, Mississauga, ON, Canada) into a 1.5 mL microcentrifuge tube (Eppen-
dorf, Mississauga, ON, Canada). Tissues were homogenized in 70% ethanol (200 µL
70% ethanol/100 mg tissue) with a disposable tissue grinder (Kontes Pellet Pestle; Fisher
Scientific, Ottawa, ON, Canada). The resulting suspension was centrifuged at 3000× g
for 3 min (Galaxy 16DH centrifuge, VWR, Mississauga, Ontario, Canada), and the su-
pernatant was decanted and centrifuge-filtered using a 0.2 µm Ultrafree-MC centrifugal
filter (Millipore-Sigma, Oakville, ON, Canada) at 3000× g for 3 min (Galaxy 16DH cen-
trifuge). One hundred µL of the filtrate was transferred to an autosampler vial (300 µL
polypropylene with pre-slit Teflon-coated caps; Waters Corp., Mississauga, ON, Canada)
fitted with a conical bottom spring insert (250 µL glass; Canadian Life Science, Peterbor-
ough, ON, Canada) for ultra-high performance liquid chromatography-mass spectrometry
(UHPLC-MS) analysis.

2.4. Metabolomics Analysis by UHPLC-MS

All samples were analyzed by UHPLC-MS with a Thermo Scientific Vanquish UHPLC
binary system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap with a heated elec-
trospray ionization (HESI) probe (Waltham, MA, USA). Analyte separation was achieved
using a Phenomenex Kinetex EVO C18 column (2.1 × 150 mm, 1.7 µm; Torrance, CA,
USA). A gradient-elution of 0.1% aqueous formic acid (Solvent A) and acetonitrile (Fisher,
Ottawa, ON, Canada, Optima LC/MS grade; Solvent B) with initial conditions of 95:5,
reaching 5:95 at 25.00 min and 95:5 at 30.00 min, was used; it had a re-equilibration time
of 5.00 min to reach initial starting conditions and a curve 6 during the entire run. The
column temperature was set to 30 ◦C, and the injection volume was 10 µL. For MS analysis,
the scan range was set to full MS—we selected ion monitoring (SIM) with a scan range
between 100–1200 m/z, a resolution of 70,000, a maximum injection time of 200 ms, and no
fragmentation. The HESI source was run in positive ionization mode with a sheath gas flow
rate of 65 units, an auxiliary gas flow rate of 20 units, and a sweep gas flow rate of 4 units.
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The spray voltage was 3.50 kV, while the capillary temperature was 300 ◦C, the auxiliary
gas heater temperature was 500 ◦C, and the S-lens RF level was 50.0. Quality control
(QC) samples were included as solvent blanks and alignment standards were analyzed in
randomized order throughout the sample sets.

2.5. Data Processing & Annotation

Data including both samples and quality control samples were preprocessed with the
online XCMS (https://xcmsonline.scripps.edu/) platform for peak detection, grouping,
and alignment [32]. The key parameters were selected as: positive mode, 15 ppm (feature
detection), mzdiff = 0.01, retention time correction method = obiwarp, and mouse database,
with all other parameters set as default. The data matrix containing variables (retention
time, mass, peak intensity) was obtained for further analyses.

2.6. Data Quality Analyses

Data quality and false discovery rates were determined by directional fold changes,
differential volcano analyses, t-test, significant analysis of microarray (SAM), and empirical
Bayesian analysis of microarray (EBAM) data using MetaboAnalyst Ver. 5.0 [33]. Colonic
samples from four different LBP-treated C57BL/6 mice were fingerprinted, and the ob-
tained data underwent a filtering and quality check procedure to produce four data sets
with 4 biological replicates each (16 samples total). Next, a non-metric multidimensional
scaling plot was performed to check the classification of the QC samples. Clustering of QCs
(Figure S1) indicated the system’s stability and performance during analyses. Three pair-
wise comparisons were completed to investigate if enhanced colonization and persistence
of probiotics possibly improved the DSS-caused inflammation. The three comparisons
were: EcN and BioPersist, L. reuteri and BioColoniz, and BioPersist and BioColoniz.

2.7. Data Visualization

Unsupervised principal component analysis (PCA) and supervised partial least squares
discriminant analysis (PLS-DA) were used to visualize data variances by MetaboAnalyst
Version 5.0 [33]. Cross-validation of the PLS-DA was also performed to exhibit the classifica-
tion performance with the top three components. The scores were plotted for downstream
data exploration of each pairwise comparison. Statistical differences between groups
were determined by the Wilcoxon rank-sum test for each metabolite in the MetaboAnalyst
Version 5.0 platform.

2.8. Enrichment Analysis

The resulting data set of significant features was annotated using XCMS and exported.
The monoisotopic mass, or the most simple isotopic mass of each annotated metabolite,
was mined within our dataset for the exploration of pathway enrichment and metabolite
identification with MetaboAnalyst ver 5.0 [33].

2.9. Pairwise Comparison

Three pairwise comparisons were applied to explore the signature pathways and
metabolites: EcN vs. BioPersist, L. reuteri vs. BioColoniz, and BioPersist vs. BioColoniz. For
all three pairwise comparisons, data were normalized to the former group. The data matrix
of two groups exported from the XCMS online platform was loaded into the MetaboAnalyst
platform (v5.0) [33] for further analysis. Of the three pairwise comparisons, L. reuteri vs.
BioColoniz did not show good separation with the PCA plot. To eliminate the overfitting
issue, which might have been raised by the PLS-DA, k-means clustering was performed.

2.10. Functional Analysis

Positive ion mode was applied for metabolite identification, with all other parameters
set as default. The data were normalized, log-transformed, and scaled by autoscaling
(mean-centering/standard deviation). Mouse BioCyc and mouse Kyoto Encyclopedia

https://xcmsonline.scripps.edu/
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of Genes and Genomes (KEGG) databases were selected separately for further analyses.
Monoisotopic mass in these two databases was used for metabolite matching. The data
frame was exported and loaded to R studio for further data filtering. The simplest adduct
of each metabolite was filtered out and retained with the dplyr package [34]. The output
peak intensity tables were used for further pathway, network, and statistical analyses. The
metabolites received from KEGG and BioCyc pathways displayed discriminate-annotated
IDs. To compare the common metabolites received from the two databases, dplyr packages
were used to apply feature-matching referencing both retention time and compound mass.
because of the discrepancy of ID names between BioCyc IDs and the common chemical
names, the KEGG ID was applied to the further analysis.

2.11. Pathway Analysis

The peak intensity table with KEGG IDs of each pairwise comparison was uploaded
to the pathway analysis module of the MetaboAnalyst platform (v5.0). Compound labels
were matched with uploaded KEGG IDs, and the Mus musculus KEGG database was
selected for pathway analysis. Next, pathway enrichment analysis was performed with the
global-test method to identify the most relevant pathways of the two groups. To define the
connections between pathways, betweenness centrality was selected for topology analysis.

2.12. Biomarker Analysis

Biomarker analysis was additionally performed in the MetaboAnalyst platform to
identify key metabolites that may be driving differences between the treatment groups.
Data were processed using the support vector machine (SVM) algorithm. The receiver
operating characteristic curve (ROC) analysis was used to evaluate the performance of the
biomarker model using default settings and fitting to a 15-factor model.

2.13. Correlation-Based Network

Pairwise peak intensity tables were subjected to the Correction Calculator (v1.0.1) [35]
of the metabolomics analysis. The data were normalized using the “log-2 transform data”
and “autoscale data” options. Next, the annotated data were imported to Metscape version
3.1 in Cytoscape version 3.8.2 for visualization [36]. Correlation networks were calculated,
tested, and structured by applying Pearson’s correlation coefficient (Pearson’s R). The
threshold of correlation parameter was set as −1 to −0.5 for negative correlation and 0.5
to 1 for positive correlation. Partial correlations were calculated with the debiased sparse
partial correlation (DSPC) algorithm [35]. The significant network correlation (p < 0.05)
was obtained by setting the threshold p-value as 0.05.

2.14. Pathway-Based Network

Features annotated by the MetaboAnalyst platform (v5.0) with peak intensity were
uploaded to Metscape version 3.1 in Cytoscape version 3.8.2 directly for building pathway-
based networks. Data were matched to the mouse KEGG database and important individ-
ual pathways were selected to build sub-networks to better visualize the important features.
Each sub-network was built by pathway names, which only included the metabolites of
the selected pathway. The p-value was set as 0.05 with the fold-change as 1.5.

3. Results
3.1. The Comparison between EcN and BioPersist
3.1.1. The Administration of EcN and BioPersist Shows Discriminate Features from
DSS-Treated Mice Colons

A total of 94,235 features were called from the UHPLC-MS profile, and matching
to the BioCyc database yielded 686 known metabolites, whereas annotation using the
KEGG database yielded 839 unique metabolites (Table 1). All data were normalized to
the EcN group. There were 533 common features the KEGG database shared with the
matching compounds from the Biocyc database. Similarly, 483 metabolites from the Biocyc
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database were found in the matching compound list referring to the KEGG database
(Table 1). The PCA (Figure 1A) and PLS-DA (Figure 1B) analyses with Components 2
and 3 both accounted for a significant portion of the variability in the first component.
The PCA principal component one (PC1) accounted for 48.3% of the variability in the
dataset in the unsupervised method, whereas PC2 and PC3 explained only a further
13.8% and 10.3%, respectively. The PLS-DA and Component 1 explained 47.2% of the
variability, whereas Component 2 explained 9.1% and Component 3 explained 8%. Cross
validation scores for the PLS-DA showed good model performances with R2 and Q2 of
0.99917 and 0.91013, respectively. Both methods showed no overlap in the 95% confidence
intervals. This indicated that the administration of EcN and BioPersist affected the colonic
metabolites in distinct patterns. Next, we explored the functional analysis with the mouse
KEGG (Figure 1C) and mouse BioCyc (Figure 1D) databases. The common significant
pathways with the KEGG and BioCyc databases were bile acid biosynthesis and lipid-
associated metabolism. Twelve significant pathways with the BioCyc database were
called, including: anandamide degradation, bile acid biosynthesis, glycerol-3-phosphate
shuttle, triacylglycerol biosynthesis, CDP (Cytidine diphosphate) diacylglycerol I and II,
glycerol degradation, estrogen biosynthesis, cardiolipin biosynthesis, and biosynthesis
of serotonin and melatonin (Table 2). Seven significant pathways were identified with
the KEGG database including: primary bile acid synthesis, steroid hormone biosynthesis,
glycerolipid metabolism, steroid biosynthesis, biosynthesis of unsaturated fatty acids,
glycosaminoglycan degradation, and tryptophan metabolism (Table 2). Full pathway lists
and details are shown in Tables S1 and S2. Of 839 unique KEGG metabolites, 536 of them
were statistically significant. The top 30 metabolites identified by correlation analysis and
the top 15 biomarkers (class accuracy 100%, AUC = 1) are shown in Figure S2. The peak
intensity of these metabolites was subjected for enrichment analysis and pathway analysis
on the MetaboAnalyst platform. The p-values from the enrichment analysis were adjusted
by the Holm–Bonferroni method and by the false discovery rate. The impact value of
each pathway was calculated by pathway topology analysis (as stated in the Materials
and Methods section). As a result, 73 pathways were picked (Table S3), and 67 pathways
showed statistical significance (FDR < 0.05, False Discovery Rate). The top 25 pathways are
shown in Figure 2A and Table S4. The correlation and network connection of all metabolites
and pathways are shown in Figures S3 and S4.

Table 1. Summary of metabolites hit by the two databases.

KEGG Database BioCyc Database

Total hits Common hits Total hits Common hits
839 533 686 483

3.1.2. BioPersist Enhances the Efficiency of Bile Acid Recycling through
Enterohepatic Circulation

Of the 67 significant pathways, three super pathway families were grouped and well
noted: steroid metabolism, prostaglandin metabolism, and energy metabolism. Steroid
super family pathways include androgen and estrogen metabolism, the steroid biosynthesis
pathway, the steroid hormone biosynthesis pathway, and bile acid biosynthesis. Colitic
mice treated with BioPersist showed an increased cholesterol level in the colon yet de-
creased metabolites involved in cholesterol degradation pathways (Table S5). Cholesterol
downstream pathways contained multiple biological functions such as bile acid biosyn-
thesis and steroid hormone biosynthesis. Of the bile acid biosynthesis pathway, more
than 17 metabolites were observed (Table S5). The sub-network projected to the bile acid
pathway showed the significant metabolites between the two comparisons (Figure S5), with
the green highlighted as statistically significant features. The correlation map indicated
that three metabolites were negatively correlated (−1, −0.5) (Figure S5) but not statistically
significant (data not shown). Of all the important metabolites of the bile acid biosynthesis
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pathways, cholic acid, the major primary bile acid, conjugated primary and secondary bile
salts including glycochenodeoxycholate, taurochenodeoxycholate, glycocholate, glycolitho-
cholate, and glycolithocholate-3-sulfate, which were all decreased (Figure 2B,C) in colitic
mice treated with BioPersist. This illustrated an efficient bile acid recycling in enterohepatic
circulation with the intervention of BioPersist. Taurocholate, the conjugated primary bile
salt, was increased in mice treated with BioPersist (Figure 2C). Taurine, the precursor of
taurocholate, was also increased in the BioPersist group (Figure 2C). Given that taurine is
the functional metabolite that positively regulates microbial composition and promotes the
production of beneficial short-chain fatty acids [37], increased taurine may be indicative
of the benefits that BioPersist elicits during colitis. Similarly, the reduction of bile acid
accumulation, including the decreased glycolithocholate and its sulfate conjugate as well
as other primary bile acids, suggests BioPersist is beneficial in colitic mice.
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Table 2. Significant pathways hit by the mouse BioCyc database.

BioCyc_Pathway Pathway Total Hits Total Hits Sig p-Value

Anandamide degradation 6 6 6 <0.001
Bile acid biosynthesis, neutral pathway 44 44 23 0.002

Glycerol-3-phosphate shuttle 7 7 6 0.004
Triacylglycerol biosynthesis 6 6 5 0.012

CDP-diacylglycerol biosynthesis I 8 8 6 0.012
CDP-diacylglycerol biosynthesis II 8 8 6 0.012

Glycerol degradation IV 8 8 6 0.012
Biosynthesis of estrogens 20 20 11 0.020

Cardiolipin biosynthesis II 7 7 5 0.032
Cardiolipin biosynthesis I 7 7 5 0.032

Biosynthesis of serotonin and melatonin 19 19 10 0.038
Serotonin and melatonin biosynthesis 19 19 10 0.038

KEGG_Pathway Pathway Total Hits Total Hits Sig p-Value

Primary bile acid biosynthesis 57 57 34 <0.001
Steroid hormone biosynthesis 137 137 60 <0.001

Glycerolipid metabolism 9 9 7 0.005
Steroid biosynthesis 68 68 30 0.011

Biosynthesis of unsaturated fatty acids 37 37 18 0.016
Glycosaminoglycan degradation 17 17 9 0.045

Tryptophan metabolism 125 125 47 0.051
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3.1.3. BioPersist Attenuates Inflammation in Colitic Mice

The significant features involved in the prostaglandin biosynthesis pathway were
shown in its corresponding subnetwork (Figure S6). The correlation between metabo-
lites is presented in Figure S6, yet no statistically significant correlations were annotated
(data not shown). To further investigate the change of the intestine-derived metabolites,
individual metabolites were called to evaluate the pro-inflammatory response between
the two treatments. Mice treated with BioPersist exhibited decreased accumulation of
arachidonic acid, the precursor of pro-inflammatory eicosanoids, and its downstream
prostaglandin (PG), including PGG2, PGH2, PGE2, PGI2, PGD2, and thromboxane A2 and
leukotriene A4 (Figure S6, Figure 3). Despite increased PGF2a, the consistency of other
decreased pro-inflammatory eicosanoids revealed that BioPersist intervention attenuated
the inflammatory response in the DSS colitis mouse model. From this data, BioPersist
appears to suppress colon-derived metabolites involved in inflammation during colitis.
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3.1.4. BioPersist Reduces Stress Hormones and Signals through the Gut–Brain Axis

As demonstrated in Figure 4A, several major steroid hormones including the inter-
mediate products were altered with the treatment of EcN compared to BioPersist when
the subnetwork was built referencing C21 steroid hormone biosynthesis and metabolism.
Compared to the mice treated with EcN, BioPersist reduced the levels of major stress
hormones, including cortisone, corticosterone, androsterone, L-adrenaline, and aldosterone
(Figure 4B,C). Taken together, not only major steroid hormones were altered with the treat-
ment of BioPersist but also their intermediate metabolites involved in the same pathway.
This revealed that BioPersist exhibited a global effect on the steroid biosynthesis pathway.
Aldosterone regulates water and salt retention in the kidney [38], which is upregulated
with the increased production of reactive oxygen species and inflammation [39]. Similarly,
androsterone is one of the downstream metabolites of testosterone, which is shown to be
elevated under stress, such as brain injury [40]. The other three major stress hormones, cor-
tisone [41], corticosterone [42], and adrenaline [43], are well-known to increase blood flow
and muscle contraction towards the brain, indicating an amplified and accelerated commu-
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nication between intestine and brain [44]. On the contrary, anti-stress and anti-depressant
hormones and neurotransmitters were increased in mice treated with BioPersist, such as
acetylcholine and serotonin (Figure 4D). In addition, the steroid hormone biosynthesis path-
way relates to many other upstream and downstream pathways including androgen and
estrogen biosynthesis and metabolism, squalene and cholesterol biosynthesis, histamine
metabolism, and bile acid metabolism. Hence, these pathways were selected to observe
the correlation among the metabolites (Figure S7). The correlation analyses indicated
statistically significant correlations between estrone and carnosine, and among urocanate,
L-histidine, and 4-imidazolone-5-propanoate (Figure S7). Histamine metabolism, along
with the altered hormones, indicated a linear regulatory relationship between intestine and
brain. A number of studies have reported the importance of the gut–brain axis, focusing
on the interaction of bi-directional communication between the central and the enteric
nervous systems [44]. This interaction highlights the mutual regulation of gut microbiota
and the cognitive center of the brain through the alteration of hormonal, immune, and
neural responses.

Tryptophan metabolism in the colon has been implicated in the gut–brain axis net-
work [45,46]. Mapping the network based on tryptophan metabolism disclosed the
change of all metabolites with the treatment of EcN and BioPersist (Figure 4F), with
two sets of metabolites showing a positive correlation (Figure S8). However, only 4,6-
dehydroxyquinoline and 4,8-dehydroxyquinoline demonstrated statistical significance
(Figure S8). When looking into the metabolites involved in tryptophan metabolism, the
primary branches involved in this metabolism include kynurenine, indole, and serotonin
production (Figure 4E). The kynurenine pathway is the primary catabolic route of tryp-
tophan, which occupies 90% of the tryptophan degradation [47]. However, kynurenine
has also been demonstrated to have anti-inflammatory responses by promoting the se-
cretion of IL-10 from Treg cells [48,49]. BioPersist intervention decreased the abundance
of kynurenine (Figure 4G). Given that increased kynurenine is detected in patients with
ulcerative colitis [50], this may indicate that BioPersist attenuates the disease activity of
colitis. In addition, decreased N-acetyl-serotonin and 5-hydroxy-tryptophan (Figure 4G),
as well as elevated serotonin (Figure 4D) suggesting an increased production of tryptophan
derived serotonin, is implicated in stress reduction and a lower inflamed mucosa caused by
DSS [51]. Indole-3-acetate, the downstream product of the indole pathway, has been shown
to suppress gut dysbiosis [52]. Increased indole-3-acetate in mice administrated with
BioPersist may indicate a positive regulation in restoring and maintaining the homeostasis
of microbial composition in the colon of the colitis mouse model.

3.2. The Comparison between L. reuteri and BioColoniz

To understand the potential benefits enhanced by BioColoniz during colitis, the colonic
metabolites were evaluated from colitic mice treated with BioColoniz and its unmodified
parent L. reuteri. A total of 97,560 features were selected, with 651 unique metabolites
annotated with the BioCyc mouse database and 764 metabolites identified with the KEGG
mouse database. Overall, no significant changes were observed between BioColoniz and
the parental strain. PCA analysis showed overlap between 95% confidence intervals
with only a small proportion of the variance explained by the model, with the first three
PCs accounting for 27%, 22.8% and 16.3% of the variance (Figure S9B), despite distinct
differences with the PLS-DA (Figure S9A). Cross validation of the PLS-DA showed the
R2 as 0.99295, but Q2 only had 0.24281. K-means clustering (Figure S9C) showed the
mixture of two groups in the two major clusters. Cluster 1 had two samples from the
BioColoniz group and one sample from the L. reuteri group. Cluster 2 included two
samples from each of the two groups. Cluster 3 contained only one sample from the L.
reuteri group. No significant metabolite was identified with a t-test analysis (Figure S9C).
Only three significant metabolites were observed with the differential volcano plot analysis:
C03824 (2-aminomuconate semialdehyde), C02918 (1-methylnicotinamide), and C01152
(3-methylhistidine) (Figure S9D), whereas no significant pathways were identified by
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functional analysis. Similarly, no significant features were identified with the EBAM
analysis (Figure S9E), yet eight features were statistically significant with the SAM analysis
(Figure S9F,G). Overall, we did not detect significant differences between the colon-derived
metabolites from BioColoniz and its parent strain in the DSS model of colitis.
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Figure 4. BioPersist decreases production or stress hormones and increases tryptophan derived anti-stress hormones.
(A) Subnetwork of C21-steroid hormone biosynthesis and metabolism pathway. Metabolites highlighted in green indicated
statistically significant features. (B) Summary of differential expressions of hormones between mice treated with EcN and
BioPersist. (C) Concentrations of major stress hormones including cortisone, corticosterone, noradrenaline, adrenaline, aldos-
terone, testosterone, androsterone, and histamine in mice treated with EcN and BioPersist. (D) Serotonin and acetylcholine
concentration in mice treated with EcN and BioPersist. (E) Schematic summary of three major tryptophan-derived pathways.
(F) Subnetwork of the tryptophan metabolism pathway. Metabolites highlighted in green indicated statistically significant
features. (G) Individual metabolites involved in tryptophan degradation pathways. n = 4 per group. * p < 0.05.
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3.3. The Comparison between BioColoniz and BioPersist
3.3.1. The Administration of BioColoniz and BioPersist Shows Discriminate Features from
Intestine-Derived Metabolites between Each Other

The comparison of the two LBPs yielded 793 and 672 unique metabolites annotated
with the mouse KEGG and the BioCyc databases, respectively. PCA (Figure 5A) and
PLS-DA (Figure 5B) analyses with the top three principal components both indicated good
separation between the two genetically modified probiotic groups. The PCA PC1 accounted
for 35.9% of the variability in the dataset with the unsupervised method, with PC2 and PC3
explaining a further 18% and 13.3%, respectively. In the PLS-DA, Component 1 accounted
for 35.8% of the variability, with Components 2 and 3 showing 13.2% and 12.8%, respec-
tively. Cross validation scores for the PLS-DA showed a good model performance with R2

and Q2 values of 0.999 and 0.874, respectively. The SAM analysis showed 46 significant fea-
tures (Figure 5C). However, the EBAM analysis indicated zero significant features between
the two groups (data not shown). Functional analysis identified four significant pathways:
steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, arachidonic acid
metabolism, and primary bile acid biosynthesis (Figure 5D, Table S6).
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PC1 against PC3 for mice treated with BioColoniz and BioPersist. (C) Significant pathways annotated with the mouse
KEGG database. n = 4 per group. (D) Significance analysis of microarray (SAM) analysis identified 46 significant features of
the two probiotics.

Enrichment analysis of the pairwise comparison identified 17 significant pathways
with the filtered dataset of 793 unique KEGG IDs (Table 3). The monoisotopic metabolites
(Table S7) were used for pathway analysis. With the pathway analysis module in the
MetaboAnalyst platform, 79 pathways were annotated, with 56 of them being statistically
significant (FDR < 0.05) (Table S8). The top 25 pathways exported from the MetaboAnalayst
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(v 5.0) platform are shown in Table 5. The pathways and metabolite networks are shown
in Figure S10.

Table 3. Significant pathways hit with 793 unique KEGG IDs.

KEGG Pathway Total Hits Raw p FDR

Steroid hormone biosynthesis 85 70 <0.001 <0.001
Steroid biosynthesis 42 38 <0.001 <0.001

Arachidonic acid metabolism 36 32 <0.001 <0.001
Tryptophan metabolism 41 34 <0.001 <0.001

Tyrosine metabolism 42 32 <0.001 0.007
Arginine and proline metabolism 38 29 <0.001 0.010

Histidine metabolism 16 14 0.002 0.024
Galactose metabolism 27 21 0.003 0.028
Caffeine metabolism 10 9 0.010 0.088

Phenylalanine metabolism 10 9 0.010 0.088
D-glutamine and D-glutamate metabolism 6 6 0.015 0.117

One carbon pool by folate 9 8 0.019 0.123
Vitamin B6 metabolism 9 8 0.019 0.123

Retinol metabolism 17 13 0.024 0.142
Metabolism of xenobiotics by cytochrome P450 68 42 0.030 0.169

Valine, leucine, and isoleucine biosynthesis 8 7 0.035 0.181
Pentose and glucuronate interconversions 18 13 0.047 0.230

3.3.2. BioPersist Increases the Production of Tryptophan-Derived Serotonin

The data above revealed that BioPersist increased the tryptophan-derived serotonin
production compared to EcN (Figure 4D). Similarly, the BioPersist treatment increased the
concentration of serotonin and 6-hydroxymelatonin, a downstream metabolite of mela-
tonin, compared to the treatment of BioColoniz (Table 4, Table S9). The integrated tryp-
tophan pathway showed many distinct features that were altered with the treatment of
the two LBPs (Figure S11A) such as tryptamine and metabolites involved in indole path-
ways. Of all correlated metabolites, seven pairs of metabolites including methylserotonin/
indole-3-acetaladehyde, indole-3-acetaldehyde/2-amino-3-carboxymuconate-semialdehyde,
3-hydroxyanthranilate/L-kynurenine, indole-3-acetate/5-hydroxyindoleacetaldehyde, 4,5-
dihydroxyquinoline/4,6-dihydroxyquinoline, 4(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoate
/5-hydroxy-L-tryptophan, and 5-hydroxykynurenamine/3-hydroxykunurenamine were sig-
nificantly correlated together, with 3-hydroxyanthanilate and L-kynurenine showing a neg-
ative correlation (Figure S11B). Several other indole compounds were upregulated in mice
treated with BioPersist compared to that of BioColoniz (Table 4), which was similar to the
pairwise comparison between the EcN and BioPersist groups. Taken together, it appears that
BioPersist, unlike BioColoniz, can signal through the colon-derived serotonin pathway.

Table 4. Significant features involved in the tryptophan metabolism pathway.

Common Name KEGG ID Significance Relative to BioColoniz

4,6-dihydroxyquinoline C05639 0.02 Down
4-(2-aminophenyl)-2,4-dioxobutanoate C01252 0.0048 Down

4,8-dihydroxyquinoline C05637 0.02 Down
Tryptamine C00398 0.0382 Down

Indolepyruvate C00331 0.0325 Up
Indole-3-acetaldehyde C00637 0.037 Up

5-hydroxyindoleacetate C05635 0.0012 Down
Formylanthranilate C05653 <0.001 Up
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3.3.3. BioPersist Attenuates Pro-Inflammatory Responses in DSS Treated Mice

Studies have shown that elevated histamine degradation, or anti-histamines, helps to
ease gastrointestinal discomfort such as diarrhea and abdominal pain [53]. By comparing
the metabolites between two genetically modified probiotics treatments, we observed
that metabolites from both treatments had a full coverage of the histamine degradation
pathway (Figure S12A). Two major downstream histamine metabolites (N-methylhistamine
and imidazole-4-acetate) were increased with the treatment of BioPersist (Table 5). Be-
cause of the tight connection of inflammatory metabolism, antioxidant, and histamine
metabolism pathways, the metabolite correlations among these pathways were calcu-
lated and mapped (Figure S12B). Six sets of metabolites were statistically significant
(Figure S12B). Interestingly, the products of alternative arachidonic acid-derived metabo-
lites, 8,9-dihydroxyicosatrienoic acid (DHET), 11,12-DHET, 5,6-DHET, and 14,15-DHET,
were all positively correlated with each other. DHET metabolites have been shown to rescue
chemotaxis, especially MCP-1 derived chemotaxis [54]. Arachidonic-acid-derived DHETs
were all decreased in mice treated with BioPersist. Similarly, trihydroxy-eicosatrienoic
acid (THETA), the metabolite produced by 15-lipoxygenase, was positively correlated with
the prostaglandin metabolites (Figure S12C). These data reveal that BioPersist attenuates
the inflammatory response. In support of this, mice treated with BioPersist significantly
increased the production of spermine, a potent antioxidant and anti-inflammatory agent
(Table 5). The well-known glutathione also displayed an increasing trend (p = 0.061) in
mice treated with BioPersist. Therefore, with the reduced pro-inflammatory metabolites
and inducted antioxidants, BioPersist may shed light on attenuating the inflammatory
response due to the treatment of DSS.

Table 5. Significant features involved in histamine degradation and glutathione metabolism pathways.

Common Name KEGG ID Significance Relative to BioColoniz

L-histidine C00135 0.0023 Down
Histamine C00388 0.057 Up

N-methylhistamine C05127 0.0276 Up
Imidazole-4-acetate C02835 0.0336 Up

Methylimidazole C05827 <0.001 Up
spermidine C00315 0.0173 Up
Spermine C00750 0.0012 Up
Cyc-gly C01419 0.0219 Down

L-cysteine C00097 0.0058 Down
Glutathione C00051 0.0061 Up

3.3.4. Mice Treated with BioPersist Reduce Primary Bile Acid Accumulation in the Colon

We have already shown that BioPersist had increased bile acid recycling efficiency
with low accumulation of primary bile acids in the colon compared to that of EcN. Here,
BioPersist treatment again showed the similar alteration when compared to the mice treated
with BioColoniz (Figure S11D). With the same concentration of cholesterol between the
two LBPs, the production of major bile acids was reduced, including chenodeoxycholate,
taurochenodeoxycholate, taurocholate (p = 0.053), and glycocholate in the BioPersist group
(Table 6). However, glycochenodeoxycholate was increased in mice treated with BioPersist
(Table 6). The intermediate metabolites of producing bile acids were all downregulated.
Therefore, with the same concentration of the precursor of bile acid, the decreased accumu-
lation of bile acid derivatives in the colon may represent better bile acid recycling through
enterohepatic circulation.

3.4. BioPersist Initiates the Process of Tissue Repair via Increased Cell Proliferation

The DSS-induced colitis mice model damages the colon epithelium and develops
severe inflammation, particularly in the distal colon [55]. The severe inflammatory re-
sponse impairs the integrity of the protective mucus and suppresses tissue regeneration,
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resulting in an exaggerated loss of epithelium integrity. In our study, mice treated with
BioPersist showed increased purine and pyrimidine metabolism, with elevated production
of adenine (A), guanosine (G), uracil (U), and thymine (T) (Table 7). Two sub-networks
of purines (Figure 6A) and pyrimidines (Figure 6B) also demonstrated major changes in
A, G, U, T, and cytidine as well as other major intermediate metabolites. In particular,
the correlation analysis (Figure 6C) disclosed similar results to the individual metabolites’
expression. As an example, adenine and CTP (Cytidine-5’-triphosphate), dCMP (Deoxy-
cytidine monophosphate) and cytidine, and deoxycystidine and cytidine were positively
correlated, with both sets of metabolites upregulated in mice treated with BioPersist. In
addition, biosynthesis of O-glycans also helps to restore and maintain the mucus barrier
function [56]. Tn antigen, as well as (Gal)1 (GalNAc)1 (Neu5Ac)2 (Ser/Thr)1, were in-
creased in mice treated with BioPersist (Table 7). With increased free nucleic acids, as well
as their upregulated biosynthesis pathway, this could suggest that BioPersist helps mice to
restore intestinal tissues damaged during the DSS challenge.

Table 6. Significant features involved in the primary bile acid biosynthesis pathway.

Common Name KEGG ID Significance Relative to BioColoniz

25-hydroxycholesterol C15519 <0.001 Down
4-cholesten-7alpha,12alpha-diol-3-one C17339 0.0011 Down

7alpha-hydroxycholest-4-en-3-one C05455 0.036 Down
Chenodeoxycholate C02528 <0.001 Down

3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-al C01301 0.0584 Up
7alpha-hydroxycholesterol C03594 <0.001 Down

Cerebrosterol C13550 <0.001 Down
3alpha,7alpha-dihydroxy-5beta-cholestanate C04554 0.0584 Up

3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoate C04722 0.0513 Down
3beta-hydroxy-5-cholestenoate C17333 0.0011 Down

Glycochenodeoxycholate C05466 0.0062 Up
Taurochenodeoxycholate C05465 0.0018 Down

7alpha,26-dihydroxy-4-cholesten-3-one C17336 0.0011 Down
7alpha,25-dihydroxy-4-cholesten-3-one C17332 0.0011 Down

Glycocholate C01921 0.0361 Down
Taurocholate C05122 0.053 Down

7alpha,24-dihydroxy-4-cholesten-3-one C17331 0.0011 Down

Table 7. Significant features involved in purine, pyrimidine, and O-glycan biosynthesis pathways.

Common Name KEGG ID p-Value Relative to BioColoniz

alpha-D-ribose 1-phosphate C00620 0.0152 Down
5-phosphoribosylamine C03090 <0.001 Up

2-(formamido)-N1-(5′-phosphoribosyl)acetamidine C04640 0.0012 Up
1-(5′-phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole C04832 0.0017 Up

N6-(1,2-dicarboxyethyl)AMP C03794 <0.001 Up
Inosine C00294 0.0139 Up

Hypoxanthine C00262 0.0604 Up
dAMP C00360 0.0074 Up
dADP C00206 0.003 Up

Adenine C00147 <0.001 Up
Guanosine C00387 <0.001 Up
Guanine C00242 <0.001 Down
Xanthine C00385 0.006 Up

Xanthosine C01762 0.0111 Up
dGTP C00286 0.01 Up
UTP C00075 0.0044 Down

Uridine C00299 0.0258 Up
Deoxyuridine C00526 <0.001 Down

Uracil C00106 0.0013 Up
5,6-dihydrouracil C00429 0.0374 Down

3-ureidopropionate C02642 <0.001 Down
Thymine C00178 0.0336 Up

(R)-3-amino-2-methylpropanoate C01205 0.0379 Up
Tn antigen G00023 0.0031 Up
T antigen G00024 0.0135 Down

(Gal)1 (GalNAc)1 (Neu5Ac)2 (Ser/Thr)1 G00027 0.0018 Up
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4. Discussion

LBPs comprise a growing segment of the IBD market [57]. Single bacteria or consor-
tiums of commensal bacteria are considered safe but they lack consistent clinical efficacy
for IBD [3], perhaps because of their inability to persist in the highly inflamed IBD intesti-
nal environment [2,58,59]. In this study, we enhanced the persistence and colonization
of EcN and L. reuteri, to evaluate their effect on modulating colon-derived metabolites.
While we did not identify metabolic pathways specific to BioColoniz, we were able to
generate several hypotheses about the mechanism in which BioPersist (compared to EcN
and BioColoniz individually) may provide therapeutic potential for the treatment of IBD.
The hypotheses include that, during colitis, BioPerist:

1. Attenuates the inflammatory response by suppressing the production of
pro-inflammatory eicosanoids;

2. Provides beneficial effects to the intestine by increasing the production of antioxidants;
3. Improves the stress response through the reduction of stress hormones and elevation

of anti-depressant hormones via the gut–brain axis;
4. Restores epithelial and mucosal tissue damage with increased purine and pyrimi-

dine metabolism;
5. Enhances the efficiency of bile acid recycling through enterohepatic circulation.

EcN is one of the most widely used probiotics for the treatment of intestinal diseases
such as irritable bowel syndrome [60] and ulcerative colitis [61]. The mechanisms through
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which EcN provides benefits to various intestinal conditions are diverse. Reports have shown
that EcN enhances the bioactivity of the tryptophan-derived serotonin pathway [62] and
suppresses the enzymes involved in the production of pro-inflammatory eicosanoids [63]. In
our study, the enhanced persistence of EcN (BioPersist) further consolidated these benefits,
with increased serotonin and decreased proinflammatory prostaglandins.

Here, we found that BioPersist intervention in colitic mice resulted in suppressed
metabolites involved in the pro-inflammatory eicosanoid pathway. The high concentration
of proinflammatory eicosanoids, as well as their converting enzymes (COX1 and COX2),
have been observed in a number of rodent colitis models and clinical subjects [64–67].
During colitis, inflammatory prostaglandins exacerbate intestinal inflammation and induce
the dysregulation of Treg cells known to suppress the damaging inflammatory response
in the intestine [68]. Controlling inflammation is always the first approach for treatment
of IBD. The most historical and classic anti-inflammatory drugs, NSAIDs nonsteroidal
anti-inflammatory drugs (NSAIDs), however, are not recommended for patients with
IBD [69,70]. NSAIDs reduce inflammation through blockage of COX2 [71]. However, their
well-known side effect of damaging the intestinal epithelial layer cannot be neglected. With
the constructive enzyme COX1 and the inducible enzyme COX2, arachidonic acid is metab-
olized to proinflammatory eicosanoids including series II prostaglandin, leukotrienes, and
thromboxane [71]. One of the well-known mechanisms of the side effects is to completely
block the formation of pro-inflammatory eicosanoids via COX2 inhibition [69,70]. Although
the series II prostaglandins are pro-inflammatory, they are also essential to maintain the
integrity and defense of the epithelial and mucosal layer [72]. Introducing NSAIDs to a
DSS-induced colitis mice model has shown to exaggerate the manifestations of colitis [73].
Therefore, maintaining low levels, instead of complete deletion, of prostaglandins is es-
sential to protect the integrity and the functionality of the intestine. BioPersist reduces
prostaglandin production from their precursor, arachidonic acid, to its downstream prod-
ucts. Yet, BioPersist did not block prostaglandins like NSAIDs; instead, it achieved the goal
of maintaining the prostaglandins at a biologically relevant low level and, at the same time,
limited the prostaglandin-derived inflammatory response.

BioPersist, unlike BioColoniz, activates antioxidants in the DSS murine model of
colitis. Inflammation and oxidative stress cause and perpetuate tissue damage in any
inflammatory diseases. Inflammation triggers the oxidative stress, which in turn exagger-
ates the inflammatory response. During colitis, there are excessive free radicals such as
reactive oxygen species and reactive nitrogen species, which further deplete the defensive
potential granted by antioxidants. Oxidative stress can cause further cellular damage
including lipid peroxidation, DNA damage, and protein denaturation [74], which may
further develop inflammatory metabolic diseases such as IBD and cancer [75,76]. Hence,
antioxidant administration has been considered a potential strategy to scavenge free rad-
icals, effectively acting like an anti-inflammation agent. Clinical reports have indicated
deficient extracellular antioxidants levels in the blood and colons of patients with IBD
compared to healthy people [77]. Glutathione (GSH) is a well-known potent antioxidant,
which has been widely studied in several inflammatory states including IBD [75,78,79].
Supplementation of GSH has shown to reduce disease activity in TNBS-induced colitic
rats, improve mucosal function [80], and inhibit the production of malondialdehyde, a
lipid peroxidation product [81]. Spermine is another potent antioxidant that helps to
restore the concentration of endogenous antioxidant glutathione. A rodent study showed
that spermine enhanced the production of GSH, catalase, and anti-hydroxyl radical by
1.32%, 38.68%, and 15.53%, respectively [82]. Spermine supplementation in piglets induced
beneficial changes to the gut microbiome through the increased production of GSH in the
ileum [83]. BioPersist may act as an effective tool to restore the loss of antioxidants caused
by the inflamed intestine during colitis.

Intestine-derived serotonin is a hormone produced by enterochromaffin cells regu-
lated by the gut microbiome, which plays a role in regulating mood and GI motility [84].
Reduced levels of the anti-depressant hormones and their receptors can result in de-
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pression and anxiety [85]. The first-line clinical practice for depression has long been
prescribed selective serotonin reuptake inhibitors (SSRIs), which block the reabsorption of
serotonin [86,87]. Other alternative therapeutic solutions include introducing serotoniner-
gic postsynaptic receptors [88] and inhibition of the serotonin degradation with monoamine
oxidase inhibitors [88,89]. The commonality of all these strategies is to elevate the serotonin
concentration in serum, resulting in a positive effect on mood. Serotonin biosynthesis
and secretion are detected in both the central nervous system and the peripheral nervous
system, with 95% of serotonin produced in the intestine through the local microbiome [90].
Tryptophan is the only precursor of serotonin produced in the intestine [91]. The shortage
of the microbial-derived enzymes converting tryptophan to serotonin leads to decreased GI
motility including colonic peristaltic reflex [92], which is one classic colonic disruption in
colitis patients [93]. Additionally, patients with IBD have a higher risk of developing psy-
chiatric comorbidities including depression and dementia through the gut–brain axis [94].
Despite the limited evidence on the correlation between the modulation of serotonin levels
and IBD occurrence, a clinical trial in Denmark demonstrated beneficial effects of serotonin
administration on improving the IBD relapse rate [95]. In addition, people with depression
and IBD both showed increased production of stress hormones such as cortisol, which may
contribute to chronic inflammation [96,97]. In this context, BioPersist intervention may help
reduce stress hormones and the inflammatory response, promoting colitis remission unlike
the commercially available EcN. Hence, we hypothesize that enhanced persistence of EcN
(with BioPersist) helps to ameliorate colitic-induced inflammation via the gut–brain axis.

Endogenous reactive oxygen and nitrogen species must be kept in homeostasis to
avoid further tissue damage, especially DNA damage. Lack of DNA repair exaggerates the
pre-existing inflammatory response, and further progression would develop into colonic
cancer. A defect in DNA repair mechanism worsens DSS-induced ulcerative colitis and
results in larger colonic tumors [98]. Mice lacking OGG1 (8-oxoguanine DNA glycosylase)
increased the incidence of carcinogenesis with the treatment of DSS [98]. DNA repair
potential is positively correlated with the GC content of the genome [99]. Here, we found
that BioPersist increased guanosine and cystine concentration, suggesting its ability to
restore DNA damage due to the DSS challenge. In addition, the close correlations among
the major metabolites of purine and pyrimidine metabolisms integrated the upregulated
de novo biosynthesis and alternative salvage pathways. As an example, adenosine and
dAMP showed a positive correlation, which connects the salvage pathway and the de novo
biosynthesis of purine metabolism. In addition, purine and pyrimidine metabolism are
synchronized, with significant positive correlations between adenine and CTP, adenosine
and CTP, UTP and dADP, and 5,6-dihydrouracil and inosine monophosphate (IMP). The
increased available nucleotides and their intermediate metabolites may reflect the elevated
DNA and tissue repair system; however, further validation experiments are required to
consolidate this hypothesis.

Bile acid malabsorption or decreased bile acid recycling is often neglected in patients
with IBD, yet many observations have been established in different rodent models and clin-
ical human studies. Active IBD patients have increased conjugated bile acids accumulating
in feces due to the decreased microbial richness in the distal ileum and colon [100,101].
Similarly, many colitis rodent models present the same observations. In the DSS-induced
colitis model, the accumulation of cholic acid in feces has been reported [102]. TNBS-
induced colitis in rats has also shown increased bile acid accumulation in feces due to
decreased expression of bile acid transporters, resulting in the suppression of bile acid
recycling [103]. Similarly, supplementation of deoxycholic acid exacerbates the inflamma-
tory response in DSS-treated mice [104]. In clinical studies, enrichment of primary bile
acid cholate and conjugates are detected in dysbiotic samples [105]. Bile acid recycling
defect is also shown in patients with diarrhea [106]. Hence, increased bile acid excretion or
the reduced bile acid recycling are the concomitant signs of IBD. In this study, BioPersist
intervention resulted in decreased accumulation of bile acids, which may indicate that
BioPersist promotes efficient bile acid recycling via enterohepatic circulation, reduced bile
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acid synthesis through cholesterol, or improved homeostasis of intestinal microbial growth.
The promising metabolism of bile acid reflects the important role of BioPersist on modu-
lating the gut–liver axis through enterohepatic circulation, which is an essential bridge to
ensure multi-organ drug metabolism, hormone and energy metabolic homeostasis, and
detoxification. However, validation of these results and its definitive mechanism requires
further investigation.

5. Conclusions

In summary, discriminate pathways were annotated with two pairwise comparisons:
EcN vs. BioPersist and BioPersist vs. BioColoniz. Two universal benefits stand out with
the treatment of BioPersist from the two different comparisons. BioPersist showed distinct
benefits on (1) recycling bile acid through enterohepatic circulation and (2) attenuating the
inflammatory response due to the administration of DSS. Besides, the enhanced persistence
of EcN in mice reduced stress and activated the production of anti-stress hormones and
may explicate a beneficial effect on tissue restoration compared to the mice treated with
EcN. When comparing to BioColoniz, BioPersist may inhibit the inflammation-derived
DNA damage by activating purine and pyrimidine metabolism. Therefore, BioPersist can
not only enhance the pre-existing benefits inherited from its parental strain EcN but can
also provide an additional promising effect on improving colitis by restoring inflamed
tissue or by modulating the gut–brain axis.
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