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Abstract

Background: Silicosis, a progressive inflammatory lung disease attributed mainly to occupational exposure to silica
dust, shows loss of lung function even after cessation of exposure. In addition to conventional evaluation methods
such as chest X-ray, computed tomography, and spirometry, we identified heme oxygenase (HO)-1, an inducible
antioxidant, as a potential biomarker to identify at-risk patients. We found that HO-1 was critical in attenuating the
disease progression of silicosis; however, the key signaling pathway has not yet been elucidated. Here, we report
the critical pathway after silica exposure, focusing on the role of silica-derived reactive oxygen species (ROS)
signaling and its attenuation, which is mediated by HO-1 induction, in vivo and in vitro.

Methods: Normal bronchial epithelial cells and a macrophage cell line, as well as a murine silicosis model
generated by intratracheal administration of 2.5 mg of crystalline silica, were used in this study. The pathways
activated in response to silica exposure, including the mitogen-activated protein kinase (MAPK) signaling pathway,
were examined and compared with or without super-induction of HO-1.

Results: The murine silicosis model was first assessed for the evaluation of activated pathways after silica exposure,
focusing on ROS-MAPK activation. In the murine model, increased expression of HO-1 in the lungs was observed
after silica-instillation. Moreover, silica-medicated activation of extracellular signal-regulated kinase (ERK) in the lungs
was attenuated in response to silica-induced HO-1 upregulation. Activation of other MAPKs, such as p38 and c-Jun
N-terminal kinase pathways, after silica exposure was not significantly different irrespective of HO-1 induction.
Further in vitro studies showed that 1) silica-induced HO-1 was significantly attenuated by inhibiting ERK activation,
and 2) carbon monoxide and bilirubin as final byproducts of HO-1 could inhibit ERK activation. Taken together,
silica-induced HO-1 upregulation was mediated by ERK activation, and HO-1 further regulates ERK activation via its
final byproducts, carbon monoxide and bilirubin.

Conclusions: This is the first study to demonstrate the regulatory role of HO-1 in silicosis. This finding could
contribute to the development of a treatment strategy of monitoring HO-1 levels as a marker of therapeutic
intervention.
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Background

Silicosis is an irreversible and incurable lung disease
caused by the inhalation of crystalline silica particle-con-
taining dust, and is one of the most important occupa-
tional diseases in the world [1]. Silicosis typically occurs
in workers exposed to abrasive blasting with sand, jac-
khammering, silica milling, rock drilling, and tunneling,
and is thus especially common in industrializing coun-
tries [2]. Despite vigorous efforts to prevent exposure by
dust control measures, silicosis continues to be a global
problem [3]. In China, 6000 new cases of silicosis are re-
ported annually and 24,000 silicosis patients die per year
due to disease progression [1]. The most clinically im-
portant health impact from silicosis is lung function im-
pairment due to massive inflammation, especially in
acute silicosis, followed by destruction of the lung tissue,
which is characterized by granulomatous and fibrotic le-
sions, in chronic silicosis [4, 5]. Regarding the mechan-
ism of silicosis development and progression, various
hypotheses such as cytotoxicity, oxidative stress, stimula-
tion of inflammatory responses and induction of fibrosis
have been proposed [6]. Elucidation of the molecular
mechanisms triggered by exposure to silica may contrib-
ute to establish useful clinical markers and develop novel
therapeutic strategies.

Crystalline silica produces reactive oxygen species (ROS),
which play a major role in the development and progres-
sion of silicosis via the mitogen-activated protein kinase
(MAPK) pathway [7—10]. ROS generated by silica exposure
triggers phosphorylation of MAPK including extracellular
signal-regulated kinases (ERK), c-Jun N-terminal kinases
(JNK) or stress-activated protein kinases, and p38 kinases
in vitro, leading to the activation of a number of transcrip-
tional factors for genes involved in cellular proliferation,
apoptosis, and inflammatory responses [11]. Therefore, tar-
geting ROS with antioxidants is thought to be beneficial for
silicosis treatment.

Heme oxygenase (HO)-1 is a rate-limiting enzyme that
degrades heme into bilirubin, free iron, and carbon mon-
oxide (CO) [12], and this HO-1 system including bilirubin
and CO as byproducts represents a powerful cytoprotec-
tive antioxidant system [13, 14]. HO-1 is one of the pro-
teins regulated by the MAPK signaling systems [15-18].
Conversely, Ryter et al. suggested that activated-MAPK
signaling pathways, especially p38 MAPK, is modulated
by CO, resulting in anti-inflammatory tissue protection
[19]. Thus, the evidence suggests that there is cross-talk
between the HO-1 metabolic system and the MAPK sig-
naling systems.

Previously, we reported the association between HO-1
and silicosis in both murine model and human silicosis.
Briefly, our findings are summarized as follows: 1) HO-1
was present in silicotic nodules in both murine and hu-
man lung samples, 2) HO-1 acts in a protective role by
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attenuating lung inflammation, 3) induced HO-1 in the
lungs of silicosis subjects could be detected in serum
and thus be monitored, and 4) low serum HO-1 could
predict accelerated lung function decline in chronic sili-
cosis [20, 21]. However, a key signaling pathway involved
in the HO-1-mediated response to silica exposure has
not yet been elucidated. Thus, the present study aimed
to evaluate the critical pathway after silica exposure, fo-
cusing particularly on the role of silica-derived ROS sig-
naling and its attenuation mediated by HO-1 induction.

Methods

Mice

Male BALB/c mice (6 weeks of age) were purchased from
Japan SLC (Shizuoka, Japan), housed in light- and tempera-
ture-controlled rooms, and given free access to tap water
and commercial laboratory chow. The mice were used for
experiments following a one-week acclimation period.

Murine silicosis model

The mice were anesthetized with ketamine (80 mg/kg;
Sigma-Aldrich, St. Louis, MO, USA) or sodium thiopental
(50 mg/kg Nembutal; Dainippon-Sumitomo Seiyaku. Co.,
Ltd.,, Osaka, Japan) and xylazine (10 mg/kg; Sigma). A
22-gauge cannula (Terumo, Tokyo, Japan) was inserted
through the orotracheal route. Sterilized crystalline silica
(Min-U-Sil-5, 100 mg/kg; US Silica, Berkeley Springs, WV,
USA) in 100 pl of sterile saline was instilled into the tra-
chea [21]. To induce HO-1 gene expression, 100 pmol/kg
hemin (Sigma) was administered intraperitoneally 48, 24,
and 0.5 h before silica administration. To inhibit ERK or
HO-1 enzyme activity, U0126 (30 mg/kg; Merck, Darmstadt,
Germany) or HO-1 inhibitors of either zinc protoporphyrin
(ZnPP, 100 pmol/kg; Porphyrin Products, Logan, UT, USA)
as a competitive HO-1 inhibitor or ketoconazole (KTZ,
100 umol/kg; Sigma) as a selective HO-1 inhibitor was ad-
ministered intraperitoneally in the same manner, respectively
[22-25]. The lungs were removed 1, 2, 3, 7, and 14 days after
silica instillation.

Cell culture

The mouse macrophage-like cell line RAW264.7 (de-
rived from BALB/c mice) from the American Type Cul-
ture Collection (ATCC; Rockville, MD, USA), and
bronchial epithelial cells, transformed human bronchial
epithelial cells 16HBE, kindly provided by D.C. Gruenert
(Gene Therapy Center, University of California, CA,
USA) were used [26]. The cells were cultured in DMEM
(Sigma) supplemented with 10% FCS (Equitech-Bio,
Kerrville, TX, USA), 1% penicillin, and 1% streptomycin
(Sigma) at 37 °C in 5% CO,. The cells were cultured to
subconfluence in 6-well plates (Sumitomo, Osaka,
Japan), then rendered quiescent in medium containing
0.5% FCS for another 1 day, followed by exposure of 0.1
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or 0.5 mg/ml of sterilized silica for 24 h. In some experi-
ments, the cells were pretreated with one of the follow-
ing agents before silica treatment: 1 h with 50 or
100 uM of the ERK inhibitor, U0126 (Cell Signaling
Technology, Danvers, MA, USA), 1 h with 25 mM or
50 mM tetramethylthiourea (TMTU; MP Biomedicals,
Santa Ana, CA, USA), 16 h with 5 or 10 uM bilirubin
(Sigma), 1 h with 20 or 50 pM RuCO (CO-releasing
molecule; Sigma), 1 h with 100 or 200 uM hemin, or 1 h
with 100 or 200 uM ZnPP. The cells were collected ei-
ther 2—-6 or 8-24 h after silica exposure and evaluated
for ERK activation or HO-1 induction, respectively, in
RAW264.7 or 16HBE cells.

Immunoblotting analysis

The lung was homogenized in lysis buffer containing
0.25 M sucrose, 20 mM Tris-HCl (pH 7.4), and protease
inhibitor (Sigma). After centrifugation (15,000xg for
10 min), the supernatants were collected as the cyto-
plasm fraction. The pellets were sonicated and further
separated into the nuclear, mitochondrial, and micro-
somal fractions by multi-step centrifugations as previ-
ously described [27]. The nuclear fractions were resolved
with nuclear extraction buffer containing 20 mM HEPES
(pH 7.6), 20% glycerol, 500 mM NaCl, 1.5 mM MgCl,,
0.2 mM EDTA (pH 8.0), 1 mM DTT, 0.1% NP-40, and
protease inhibitor. The protein concentration in each
sample was determined by the Bradford method using
the Bio-Rad Protein assay kit (Bio-Rad, Hercules, CA,
USA). After 5 min boiling of 10 pug microsomal extrac-
tion or 20 ug nuclear extraction with an equal volume of
sample buffer, the samples were run on 4-20% gradient
polyacrylamide gels (Daiichi Kagaku, Tokyo, Japan) for
electrophoresis. Then, the proteins in the membranes
were transferred onto Immobilon polyvinylidene difluoride
membranes (Millipore, St. Louis, MO, USA). The mem-
branes were blocked in blocking buffer (5% nonfat dry milk
in Tris-buffered saline, pH 7.5, 0.05% (v/v) Tween20
(TBST)) for 1 h at room temperature, and then incubated
with the relevant antibodies for 1 h at room temperature.
The following rabbit polyclonal antibodies were used:
phospho-ERK1/2 (1:1000 dilution), phospho-JNK (1:1000
dilution), phospho-p38 (1:1000 dilution), ERK1/2 (1:1000
dilution) from Cell Signaling Technology, and HO-1
(OSA-111; ENZO Life Sciences, Farmingdale, NY, USA;
1:1000 dilution). After washing with TBST, the blots were
incubated with the appropriate peroxidase-conjugated sec-
ondary antibody (1:5000 dilution) for 1 h at room
temperature and developed using an enhanced chemilu-
minescence system (ECL; Amersham, Buck, UK) and
Hyperfilm (Amersham). The blotted protein was quantified
densitometrically with Image] image analysis and image
processing software (Version 1.51; National Institutes of
Health Image Engineering, Bethesda, MD, USA). B-Actin
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(A1978; Sigma; 1:10000 dilution) was used as a positive
control.

Statistical analysis

Data were analyzed using a statistical software package
(ystat2004.xls; Igaku Tosho Shuppan, Tokyo, Japan) or
MedCalc version 18 software (Mariakerke, Belgium).
Densitometric data were analyzed using either a Student’s
t-test or one-way analysis of variance with the post hoc
Student-Newman-Keuls test. Values are expressed as the
mean + SD. Differences with a P value of < 0.05 were con-
sidered significant.

Results

HO-1 expression in murine silicosis

To confirm the effect of silica on HO-1 activation, we
studied a murine model of silicosis. After acclimation,
crystalline silica was administered intratracheally to
BALB/c mice under anesthesia. Immunoblotting analysis
was performed on lung homogenates of silicosis mice.
The expression levels of HO-1 protein in the lungs were
significantly increased 2 days after silica instillation com-
pared with those from control mice (Fig. 1a/b). These ob-
servations are consistent with the previous findings [21].

HO-1 induction suppresses ERK1/2 activation in murine
silicosis

MAPK systems are known to be major factors affecting
the disease progression of silicosis [7, 28], with HO-1 as a
newly recognized factor [20, 21]. However, the relation-
ship between MAPK systems and HO-1 after silica expos-
ure has not yet been elucidated. To investigate the key
signaling pathway involved in the HO-1-mediated re-
sponse to silica exposure, we first examined phosphory-
lated MAPK proteins of ERK, p38, and JNK in lungs from
murine silicosis. Mice were divided into four groups: 1)
pretreated with hemin, an inducer of HO-1, then treated
with silica, 2) pretreated with ZnPP, a competitive inhibi-
tor of HO-1, then treated with silica, 3) treated with silica
alone, and 4) treated with saline alone. Silica-induced
MAPK activation was examined and compared with or
without pretreatment with the HO-1 inducer and inhibi-
tor. As shown in Fig. 2a, expression levels of phosphory-
lated ERK in the lungs were upregulated 1 day after silica
exposure, and then gradually decreased. In contrast, ex-
pression levels of phosphorylated p38 and JNK were con-
tinually increased after silica exposure and were not
altered with or without pretreatments of either hemin or
ZnPP (Fig. 2a). Most importantly, the expression level of
phosphorylated ERK was significantly decreased by pre-
treatment with hemin, but was significantly increased by
pretreatment with ZnPP (Fig. 2a/b). These results suggest
that the beneficial effects of HO-1 induction in murine
silicosis are associated with the ERK signaling pathway.
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Fig. 1 HO-1 expression in the lungs in murine silicosis. Mice were
instilled with 2.5 mg of silica particles. a The lung samples collected
2 days after silica instillation were subjected to SDS-PAGE (10%;

15 g of total protein/lane) and analyzed by Western blotting using
anti-HO-1 and anti-actin antibodies. b Densitometric analysis of
band intensity representing the mean + SD level of HO-1 protein
relative to actin (n = 3/group). The ratio of HO-1/actin was
significantly increased in the lungs in murine silicosis compared to
the saline control (Student’s t-test). * P < 0.05
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Consistent with this, mice subjected to intraperitoneal ad-
ministration of the ERK inhibitor, U0126, 2 h before and
6 h after silica administration showed attenuated HO-1 in-
duction in the lungs (Additional file 1). These results indi-
cated the feedback system between HO-1 and ERK
activation. To determine the specific involvement of
HO-1, further experiments using KTZ as a selective in-
hibitor of HO-1 were performed. Mice were administered
KTZ intraperitoneally 48, 24, and 0.5 h before silica ad-
ministration. As shown in Fig. 3a/b, pretreatment with
KTZ significantly inhibited HO-1 induction in the lungs
2 days after silica instillation, and the level of activated
ERK was significantly higher in silicosis mice pretreated
with KTZ compared to those without (Fig. 3c/d). These
results are comparable to those using the competitive
HO-1 inhibitor ZnPP (Fig. 2). Taken together, these data
suggested that HO-1, rather than another heme oxygen-
ase, negatively regulates phosphorylation of ERK.

Silica-mediated ERK activation and HO-1 induction in
vitro

As shown in our previous report, silica-induced HO-1
upregulation was evident in macrophages and bronchial
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epithelial cells in silicotic lungs from both mice and humans
[21]. Thus, to further investigate the relationship between
HO-1 and its products with the ERK pathway, the protein
expression of phosphorylated ERK and HO-1 in silica-stimu-
lated RAW?264.7, a macrophage cell line (Fig. 4a), and
16HBE, a bronchial epithelial cell line (Fig. 4b), was analyzed
by immunoblotting. As shown in Fig. 4a/b, phosphorylated
ERK expression, indicating ERK activation, was obvious
when more than 30 pg or 300 pg of silica was administered
in RAW?264.7 or 16HBE cells, respectively. HO-1 expres-
sions were increased in a dose-dependent manner in both
cell lines exposed to silica (Fig. 4a/b). For subsequent studies,
the dose of silica was set at 100 or 500 pg for either
RAW264.7 or 16HBE cells, concentrations which produced
significant ERK activation and HO-1 induction, respectively
(Fig. 4a/b lower panel).

Silica-derived ROS induces HO-1 via ERK1/2 activation in
vitro

Since ROS are thought to play a major role in the
pathogenicity of crystalline silica [8], we next evalu-
ated the relationship between ROS and HO-1. Cells
were stimulated with silica in the presence of a hy-
droxyl radical scavenger, TMTU, and ERK inhibitor,
U0126. As shown in Fig. 5, either TMTU or U0126
dose-dependently suppressed not only phosphorylation
of ERK but also HO-1 induction in both RAW264.7
(Fig. 5a) and 16HBE (Fig. 5b) cells exposed to silica.
These data suggest that ROS blocking by the radical
scavenger led to the suppression of ERK activation,
resulting in decreased HO-1 expression.

HO-1 expression levels regulate silica-induced ERK1/2
activation in vitro

As shown in the result from the silicosis model (Fig. 2),
pretreatment with hemin could effectively pre-induce
HO-1 in the lungs, whereas pretreatment with ZnPP
suppressed HO-1 induction after silica administration.
Similarly, Fig. 6a/b shows expression levels of phos-
phorylated ERK were suppressed by pretreatment with
hemin, but not with ZnPP in both RAW264.7 and 16HBE
cells. These results indicated that HO-1 negatively regu-
lates phosphorylation of ERK, which is in agreement with
that observed in murine silicosis (Fig. 2).

HO-1-derived metabolites suppress ERK1/2 activation in
vitro

Based on the results so far, the ROS-ERK pathway
could be a key mediator of silica-induced HO-1 upreg-
ulation. Finally, we further investigated which of the
heme degradation products (bilirubin or CO) was
responsible for regulation of the ERK pathway, be-
cause hemin-mediated pre-induction of HO-1 could
suppress ERK activation (Figs. 2 and 6a/b). Cells were
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group (silica alone), whereas those pretreated with HO-1 inhibitor showed a sustained increase in the pERK/ERK ratio over time. Densitometric
data were analyzed by one-way analysis of variance with the post hoc Student-Newman-Keuls test. ** P < 0.01

*k *%

*k Kk *k

pERK/ERK

.

exposed to bilirubin, an antioxidant, or RuCO, a Discussion

CO-releasing molecule, before silica treatment, and We have reported that the anti-oxidant protein HO-1
the results showed that CO especially suppressed could be a key monitoring parameter as well as a poten-
phosphorylated ERK expression (Fig. 7a/b). These re-  tial therapeutic for silicosis [20, 21]. The present study
sults are consistent with previous reports describing demonstrated for the first time that HO-1 could have a
the effect of HO-1 (and its by-product) on modulating regulatory role in silica-mediated ERK activation both in
ERK [29-31]. Interestingly, HO-1 expression was as-  vivo and in vitro. In the murine model, phosphorylated
sociated dose-dependently with pretreatment of either ~ ERK expression in the lungs was elevated after exposure
bilirubin or RuCO (Fig. 7a/b). As the ERK pathway to crystalline silica, while ERK activation was attenuated
has been shown to be involved in the transcription of in response to silica-induced HO-1 expression or pre-
HO-1 [32], the present results indicate that the expos-  treatment with HO-1 inducer (Figs. 1 and 2). Activation
ure to silica particles triggered hydroxyl radical gener- of other MAPKs, such as the p38 and JNK pathways,
ation and induced HO-1 through activation of the after silica exposure was not significantly different with
ERK pathway (Figs. 4a/b and 5a/b). Furthermore, high  or without HO-1 induction (Fig. 2). These results sug-
HO-1 expression could regulate silica-mediated ERK  gested that the silica-ERK-HO-1 pathway might be regu-
activation by heme degradation products, CO and bili- lated via a negative feedback loop, as illustrated in the
rubin (Figs. 6a/b and 7a/b). schematic diagram shown in Fig. 8. Thus, HO-1
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induction might be a novel therapeutic strategy to control
excess activation of ERK after silica exposure (Fig. 8). This
strategy was further assessed in another experiment using
either U0126 as a specific inhibitor of ERK1/2 or KTZ as
a selective inhibitor of HO-1 to determine the association
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representing the mean + SD level of pERK to ERK or HO-1 to actin from
three independent experiments. * P < 0.05; ™ P < 0,01 vs silica only
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Fig. 7 Effect of HO-1 byproducts on silica-induced pERK and HO-1
upregulation in RAW264.7 and 16HBE cells. Immunoblotting analysis
showed that HO-1 byproducts, bilirubin and CO, suppress silica-induced
ERK activation and subsequent HO-1 upregulation in (@) RAW264.7 cells
and (b) 16HBE cells. Cells were pretreated with bilirubin or RuCO (CO
releasing molecule) 1 h before silica exposure at the indicated
concentrations and incubated as described in Fig. 4. Representative
immunoblot images from three independent experiments are shown.
Densitometric analysis of band intensity representing the mean + SD level
of pERK to ERK or HO-1 to actin from three independent experiments. *
P <005; ™ P <001 vs silica only
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Fig. 8 Schematic diagram of the regulatory pathway involved in
silica-induced HO-1 expression. Exposure to silica particles produces
ROS, which in turn initiates the activation of ERK and ultimately
induces HO-1 expression. Silica-derived ROS are scavenged by the
heme degradation product bilirubin. Silica-induced ERK activation is
attenuated by the heme degradation products CO and bilirubin

between ERK and HO-1 following silica exposure
(Additional file 1 and Fig. 3). These results clearly indi-
cated that silica-induced HO-1 was a key in controlling
ERK activation, as evidenced by HO-1 competitive/select-
ive inhibitors augmenting ERK activation after silica ex-
posure (Figs. 2 and 3). Therefore, we attempted to
elucidate the precise mechanism in vitro.

There is accumulating evidence that HO-1 plays a pro-
tective role in the progression of various disease [33]. Be-
sides our previous silicosis studies, there have been many
reports showing that HO-1 induction is effective for
lipopolysaccharide-induced acute lung injury [23], influenza
virus-induced lung injury [34], and Pseudomonas aerugino-
sa-induced lung inflammation in murine models [35].

MAPK has been shown to regulate a variety of cellular
functions including cell growth, proliferation, differentiation,
migration, and apoptosis [36]. MAPK activation has been
demonstrated in mouse epithelial cells [7, 37, 38], macro-
phages [39], and fibroblasts [40] in response to crystalline sil-
ica. In the present study, we confirmed that silica induced
the activation of MAPK pathways (ERK, JNK, and p38) in
vivo. Of these, we clarified that ERK plays an important role
in silica-induced HO-1 expression (Figs. 4 and 5). The results
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seem reasonable in light of a report that ERK is involved in
translocation of the transcription factor NF-E2-related factor
2, which regulates induction of the HO-1 gene [32].

Production of ROS such as hydrogen peroxide follow-
ing silica exposure is not only generated directly by the
silica particles, but also by phagocytic cells attempting to
digest silica particles, and ROS is one of the most im-
portant factors in the development of silicosis [8, 41].
For example, ROS-induced apoptosis of phagocytic mac-
rophages releases large amounts of inflammatory media-
tors that induce tissue damage, which is associated with
the fibrotic changes observed in silicosis [42, 43]. As
shown in the present study, ROS also activates the
MAPK/ERK signaling pathway (Fig. 5).

Accumulating evidence suggests that persistent activa-
tion of the ERK pathway is associated with pulmonary fi-
brosis and subsequent carcinogenesis in lung diseases
[44, 45]. As aberrant activation of ERK leads to pro-
longed inflammation, dysregulation of proliferation and
further malignancy development, the concept of negative
feedback regulation of ERK or ERK inhibition seems
more attractive for fibrosis prevention and cancer treat-
ment [46, 47]. In this regard, the present study con-
firmed a negative feedback regulation of ERK activation
by high induction of HO-1 and its metabolites (bilirubin
and CO), which have powerful antioxidant properties
derived from the silica-ERK-HO-1 axis (Figs. 6 and 7).
This mechanism could exert prompt attenuation of the
silica-induced lung inflammation and subsequent lung
injury shown previously [21].

In the present study, it should be noted that 1) as
ZnPP is a competitive but non-specific inhibitor of
HO-1 [48], we performed the in vivo experiments using
KTZ as a HO-1 selective inhibitor. However, since KTZ
has been examined only in vivo, we plan to examine the
in vitro effects of KTZ prior to future clinical use of
HO-1 as a therapeutics [49], and 2) as HO-1 activity
does not necessarily correlate with HO-1 mRNA or
protein levels [50], we further plan to examine silica-in-
duced HO-1 activity in macrophages and epithelial cells
in the lung.

In human silicosis, persistent inflammation from the
deposition of silica particles in the lungs could be modu-
lated similarly by the negatively regulated mechanism of
the silica-ERK-HO-1 axis (Fig. 8). Therefore, it should
be proposed again that the monitoring of HO-1 as a
diagnostic marker regulating silica-ERK signaling could
be useful for slowing disease progression [20]. Recently,
the HO-1 inducer hemin was examined in a phase IIB
clinical trial of renal transplantation, and showed
successful HO-1 upregulation [51]. Therefore, we would
advocate the monitoring of HO-1 as a marker of thera-
peutic intervention. Thus, we have developed a tool for
HO-1 supplementation by using genetically modified
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strains of lactic acid bacteria (LAB) that secrete bioactive
HO-1 [52]. Further studies are planned to assess the ef-
fect of site, dose, and duration of HO-1-secreting LAB
administration on the fibrosis and tumor development
associated with silica exposure.

Conclusions

In conclusion, our findings showed that the silica-media
ted ROS-ERK signaling pathway leads to HO-1 induc-
tion, whose byproducts negatively regulate ROS-ERK
signaling. Taken together with our earlier results, the
strategy of HO-1 supplementation, which originates
from monitoring serum HO-1 and ROS such as hydro-
gen peroxide in patients with silicosis, could offer a new
treatment option by inhibiting the excess activation of
ROS-ERK signaling.

Additional file

Additional file 1: Effect of ERK inhibitor on HO-1 induction in the lungs in
murine silicosis.Mice were administered intraperitoneally with the ERK inhibitor,
U0126, 2 h before and 6 h after 2.5 mg of silica particles instillation. A) Lung
samples collected 2 days after silica instillation were analyzed as described in
Fig. 2. B) Densitometric analysis of band intensity representing the mean + SD
level of HO-1 protein relative to actin (n = 3/group). Although not significant,
U0126 attenuated HO-1 induction after silica exposure. * P < 0.05; ** P < 0.01.
(PDF 18 kb)

Abbreviations

CO: Carbon monoxide; ERK: Extracellular signal-regulated kinases; HO-

1: Heme oxygenase-1; JNK: c-Jun N-terminal kinases; KTZ: ketoconazole;
MAPK: Mitogen-activated protein kinases; ROS: Reactive oxygen species.;
TMTU: Tetramethylthiourea.; ZnPP: Zinc protoporphyrin.

Acknowledgements
We thank Ms. Mitsuyo Tamaki (Department of Internal Medicine and Clinical
Immunology, Yokohama City University) for providing technical assistance.

Funding

This study was supported by JSPS KAKENHI Grant Numbers JP15K09224 and
JP18K19935 to TSA. The funding body had no role in the design of the study
and collection, analysis, and interpretation of data, or in writing the
manuscript.

Availability of data and materials
Please contact the corresponding author for data requests.

Authors’ contributions

TSA, TSH, MS, and TK conceived and designed the experiments. KN, TSA, and
SS conducted the experiments, participated in the data acquisition, analysis
and interpretation, and the statistical analysis. All authors read and approved
the final manuscript.

Ethics approval

All animal experiments were performed in accordance with the protocols
approved by the Institutional Animal Care and Use Committee of Yokohama
City University (approval nos. F-A-14-058 and 17-031).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.


https://doi.org/10.1186/s12931-018-0852-6

Nakashima et al. Respiratory Research (2018) 19:144

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Pulmonology, Yokohama City University Graduate School of
Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 2360004, Japan.
2r\/latebo\ogemomics Core, Transborder Medical Research Center, University of
Tsukuba, Ibaraki, Japan. *Department of Interdisciplinary Genome Sciences
and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University,
Nagano, Japan.

Received: 3 March 2018 Accepted: 26 July 2018
Published online: 01 August 2018

References

1. Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379:2008-18.

2. Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline
silica and autoimmune disease. Environ Health Perspect. 1999;107(Suppl
5):793-802.

3. Greenberg MI, Waksman J, Curtis J. Silicosis: a review. Dis Mon. 2007;53:394-416.

4. Fujimura N. Pathology and pathophysiology of pneumoconiosis. Curr Opin
Pulm Med. 2000;6:140-4.

5. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and
silicosis. Am J Respir Crit Care Med. 1998;157:1666-80.

6. Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in
silicosis: current understanding. Curr Opin Pulm Med. 2005;11:169-73.

7. Ding M, Shi X, Dong Z, Chen F, Lu Y, Castranova V, Vallyathan V. Freshly
fractured crystalline silica induces activator protein-1 activation through
ERKs and p38 MAPK. J Biol Chem. 1999;274:30611-6.

8. Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen
species (RNS) generation by silica in inflammation and fibrosis. Free Radic
Biol Med. 2003;34:1507-16.

9. Hamilton RF Jr, Thakur SA, Holian A. Silica binding and toxicity in alveolar
macrophages. Free Radic Biol Med. 2008;44:1246-58.

10.  Vallyathan V, Castranova V, Pack D, Leonard S, Shumaker J, Hubbs AF,
Shoemaker DA, Ramsey DM, Pretty JR, McLaurin JL, et al. Freshly fractured
quartz inhalation leads to enhanced lung injury and inflammation. Potential
role of free radicals. Am J Respir Crit Care Med. 1995;152:1003-9.

11. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals
and antioxidants in normal physiological functions and human disease. Int J
Biochem Cell Biol. 2007;39:44-84.

12. Kikuchi G, Yoshida T, Noguchi M. Heme oxygenase and heme degradation.
Biochem Biophys Res Commun. 2005;338:558-67.

13. Choi AM, Alam J. Heme oxygenase-1: function, regulation, and implication
of a novel stress-inducible protein in oxidant-induced lung injury. Am J
Respir Cell Mol Biol. 1996;15:9-19.

14.  Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection
against hyperoxic lung injury. Am J Phys. 1999,276:L688-94.

15. Hong HY, Jeon WK, Kim BC. Up-regulation of heme oxygenase-1 expression
through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the
anti-inflammatory effect of 15-deoxy-delta 12,14-prostaglandin J2 in murine
macrophages. FEBS Lett. 2008;582:861-8.

16.  Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal
transduction pathways activated by stress and inflammation. Physiol Rev.
2001;81:807-69.

17. Li MY, Yip J, Hsin MK, Mok TS, Wu Y, Underwood MJ, Chen GG. Haem
oxygenase-1 plays a central role in NNK-mediated lung carcinogenesis. Eur
Respir J. 2008;32:911-23.

18. Naidu S, Vijayan V, Santoso S, Kietzmann T, Immenschuh S. Inhibition and
genetic deficiency of p38 MAPK up-regulates heme oxygenase-1 gene
expression via Nrf2. J Immunol. 2009;182:7048-57.

19.  Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from
basic science to therapeutic applications. Physiol Rev. 2006;86:583-650.

20. Sato T, Saito Y, Inoue S, Shimosato T, Takagi S, Kaneko T, Ishigatsubo Y.
Serum heme oxygenase-1 as a marker of lung function decline in patients
with chronic silicosis. J Occup Environ Med. 2012;54:1461-6.

21. Sato T, Takeno M, Honma K, Yamauchi H, Saito Y, Sasaki T, Morikubo H,
Nagashima Y, Takagi S, Yamanaka K, et al. Heme oxygenase-1, a potential
biomarker of chronic silicosis, attenuates silica-induced lung injury. Am J
Respir Crit Care Med. 2006;174:906-14.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

Page 10 of 11

Duan W, Chan JH, Wong CH, Leung BP, Wong WS. Anti-inflammatory
effects of mitogen-activated protein kinase kinase inhibitor U0126 in an
asthma mouse model. J Immunol. 2004;172:7053-9.

Inoue S, Suzuki M, Nagashima Y, Suzuki S, Hashiba T, Tsuburai T, lkehara K,
Matsuse T, Ishigatsubo Y. Transfer of heme oxygenase 1 cDNA by a
replication-deficient adenovirus enhances interleukin 10 production from
alveolar macrophages that attenuates lipopolysaccharide-induced acute
lung injury in mice. Hum Gene Ther. 2001;12:967-79.

Kinobe RT, Dercho RA, Vlahakis JZ, Brien JF, Szarek WA, Nakatsu K. Inhibition
of the enzymatic activity of heme oxygenases by azole-based antifungal
drugs. J Pharmacol Exp Ther. 2006;319:277-84.

Pittala V, Salerno L, Romeo G, Modica MN, Siracusa MA. A focus on heme
oxygenase-1 (HO-1) inhibitors. Curr Med Chem. 2013;20:3711-32.

Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE,
Widdicombe JH, Gruenert DC. CFTR expression and chloride secretion in
polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol
Biol. 1994;10:38-47.

Kitchin KT, Anderson WL, Suematsu M. An ELISA assay for heme oxygenase
(HO-1). J Immunol Methods. 2001;247:153-61.

Gambelli F, Di P, Niu X, Friedman M, Hammond T, Riches DW, Ortiz LA.
Phosphorylation of tumor necrosis factor receptor 1 (p55) protects
macrophages from silica-induced apoptosis. J Biol Chem. 2004;279:2020-9.
Song R, Zhou Z, Kim PK, Shapiro RA, Liu F, Ferran C, Choi AM, Otterbein LE.
Carbon monoxide promotes Fas/CD95-induced apoptosis in Jurkat cells. J
Biol Chem. 2004;279:44327-34.

Stoeckius M, Erat A, Fujikawa T, Hiromura M, Koulova A, Otterbein L, Bianchi
C, Tobiasch E, Dagon Y, Sellke FW, Usheva A. Essential roles of Raf/
extracellular signal-regulated kinase/mitogen-activated protein kinase
pathway, YY1, and Ca2+ influx in growth arrest of human vascular smooth
muscle cells by bilirubin. J Biol Chem. 2012;287:15418-26.

Taille C, Almolki A, Benhamed M, Zedda C, Megret J, Berger P, Leseche G,
Fadel E, Yamaguchi T, Marthan R, et al. Heme oxygenase inhibits human
airway smooth muscle proliferation via a bilirubin-dependent modulation of
ERK1/2 phosphorylation. J Biol Chem. 2003;278:27160-8.

Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a
Cap'n'Collar transcription factor, regulates induction of the heme
oxygenase-1 gene. J Biol Chem. 1999,274:26071-8.

Morse D, Choi AM. Heme oxygenase-1: the “emerging molecule” has
arrived. Am J Respir Cell Mol Biol. 2002,27:8-16.

Hashiba T, Suzuki M, Nagashima Y, Suzuki S, Inoue S, Tsuburai T, Matsuse T,
Ishigatubo Y. Adenovirus-mediated transfer of heme oxygenase-1 cDNA
attenuates severe lung injury induced by the influenza virus in mice. Gene
Ther. 2001,8:1499-507.

Tsuburai T, Kaneko T, Nagashima Y, Ueda A, Tagawa A, Shinohara T,
Ishigatsubo Y. Pseudomonas aeruginosa-induced neutrophilic lung
inflammation is attenuated by adenovirus-mediated transfer of the heme
oxygenase 1 cDNA in mice. Hum Gene Ther. 2004;15:273-85.

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F,
Lehmann B, Terrian DM, Milella M, Tafuri A, et al. Roles of the Raf/MEK/ERK
pathway in cell growth, malignant transformation and drug resistance.
Biochim Biophys Acta. 1773;2007:1263-84.

Ovrevik J, Lag M, Schwarze P, Refsnes M. p38 and Src-ERK1/2 pathways
regulate crystalline silica-induced chemokine release in pulmonary epithelial
cells. Toxicol Sci. 2004;81:480-90.

Shukla A, Timblin CR, Hubbard AK, Bravman J, Mossman BT. Silica-induced
activation of c-Jun-NH2-terminal amino kinases, protracted expression of
the activator protein-1 proto-oncogene, fra-1, and S-phase alterations are
mediated via oxidative stress. Cancer Res. 2001;61:1791-5.

Kang JL, Jung HJ, Lee K, Kim HR. Src tyrosine kinases mediate crystalline
silica-induced NF-kappaB activation through tyrosine phosphorylation of
lkappaB-alpha and p65 NF-kappaB in RAW 264.7 macrophages. Toxicol Sci.
2006,90:470-7.

Shen F, Fan X, Liu B, Jia X, Du H, You B, Ye M, Huang C, Shi X.
Overexpression of cyclin D1-CDK4 in silica-induced transformed cells
is due to activation of ERKs, JNKs/AP-1 pathway. Toxicol Lett. 2006;
160:185-95.

Castranova V. Generation of oxygen radicals and mechanisms of injury
prevention. Environ Health Perspect. 1994;102(Suppl 10):65-8.

Borges VM, Falcao H, Leite-Junior JH, Alvim L, Teixeira GP, Russo M, Nobrega
AF, Lopes MF, Rocco PM, Davidson WF, et al. Fas ligand triggers pulmonary
silicosis. J Exp Med. 2001;194:155-64.



Nakashima et al. Respiratory Research (2018) 19:144

43.

44,

45.

46.

47.

48.

49.

50.

51,

52.

Borges VM, Lopes MF, Falcao H, Leite-Junior JH, Rocco PR, Davidson WF,
Linden R, Zin WA, DosReis GA. Apoptosis underlies immunopathogenic
mechanisms in acute silicosis. Am J Respir Cell Mol Biol. 2002;27:78-84.
Robledo RF, Buder-Hoffmann SA, Cummins AB, Walsh ES, Taatjes DJ,
Mossman BT. Increased phosphorylated extracellular signal-regulated kinase
immunoreactivity associated with proliferative and morphologic lung
alterations after chrysotile asbestos inhalation in mice. Am J Pathol. 2000;
156:1307-16.

Yano T, Yano Y, Nagashima Y, Yuasa M, Yajima S, Horikawa S, Hagiwara K,
Kishimoto M, Ichikawa T, Otani S. Activation of extracellular signal-regulated
kinase in lung tissues of mice treated with carcinogen. Life Sci. 1999,64:229-36.
Lake D, Correa SA, Muller J. Negative feedback regulation of the ERK1/2
MAPK pathway. Cell Mol Life Sci. 2016;73:4397-413.

Madala SK, Schmidt S, Davidson C, lkegami M, Wert S, Hardie WD. MEK-ERK
pathway modulation ameliorates pulmonary fibrosis associated with
epidermal growth factor receptor activation. Am J Respir Cell Mol Biol. 2012;
46:380-8.

Rahman MN, Vukomanovic D, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z.
Structural insights into human heme oxygenase-1 inhibition by potent and
selective azole-based compounds. J R Soc Interface. 2013;10:20120697.
Srivastava P, Pandey VC, Misra AP, Gupta P, Raj K, Bhaduri AP. Potential
inhibitors of plasmodial heme oxygenase; an innovative approach for
combating chloroquine resistant malaria. Bioorg Med Chem. 1998;6:181-7.
lwamori S, Sato E, Saigusa D, Yoshinari K, Ito S, Sato H, Takahashi N. A novel
and sensitive assay for heme oxygenase activity. Am J Physiol Renal Physiol.
2015;309:F667-71.

Thomas RA, Czopek A, Bellamy CO, McNally SJ, Kluth DC, Marson LP. Hemin
preconditioning upregulates Heme Oxygenase-1 in deceased donor renal
transplant recipients: a randomized, controlled, phase IIB trial.
Transplantation. 2016;100:176-83.

Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, Suda Y,
Sato T, Kitazawa H, Shimosato T. Oral delivery of Lactococcus lactis that
secretes bioactive heme oxygenase-1 alleviates development of acute colitis
in mice. Microb Cell Factories. 2015;14:189.

Page 11 of 11

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Mice
	Murine silicosis model
	Cell culture
	Immunoblotting analysis
	Statistical analysis

	Results
	HO-1 expression in murine silicosis
	HO-1 induction suppresses ERK1/2 activation in murine silicosis
	Silica-mediated ERK activation and HO-1 induction in vitro
	Silica-derived ROS induces HO-1 via ERK1/2 activation in vitro
	HO-1 expression levels regulate silica-induced ERK1/2 activation in vitro
	HO-1-derived metabolites suppress ERK1/2 activation in vitro

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

