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suggest potentially relevant relationships between the datasets.
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¤a Current address: Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
¤b Current address: Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

. These authors contributed equally to this work.

This is a PLoS Computational Biology Software Article

Introduction

Manual exploration of high-dimensional whole-genome datasets

is possible, to a limited extent, with newer, high-capacity genome

browsers. While biologists can browse their data and can often

suggest relevant hypotheses for statistical testing, fully informed

and thorough data exploration is impossible to do by eye.

A common theme in biological experiments is that the

nucleotide-level proximity of a set of genomic regions (points or

intervals) to genome annotations or to other experimentally derived

data sets (such as coverage peaks, mutation locations, and break-

points) is a useful proxy for a functionally relevant or otherwise

interesting interaction. For example, the well established overlap of

CpG islands with the promoter regions of genes [1] is critically

related to the gene-silencing mechanism of DNA hypermethylation.

While using spatial proximity to infer functional relationships is

a valid approach in many cases, this is not necessary for functional

interaction, as chromatin is flexible and many activating and

repressive marks act at a distance [2], so ideally any software that

attempts to automatically uncover important relationships should

be sensitive to these interactions as well. Others have given

thought to examining some of the interactions that we will discuss,

(for a review see Bickel et al, 2009 [3]); however, the only software

for performing such analyses focuses on overlapping features [4].

Here we present a method for identifying whether two sets of

intervals are spatially correlated across a genome, detected as a

deviation from a nonuniform distribution of one set of intervals

with respect to the other. This is not a trivial task, computationally

or conceptually. Many different spatial rearrangements are

possible, each with different biological implications and each

requiring specialized statistical analyses. The software performs all

analyses on each input, so that a variety of biologically significant

relationships are queried. This includes looking for proximity,

looking for uniform spacing, looking for increased or decreased

overlaps of intervals or points, and presenting the data in a way

that a biologist can understand. Results from each test are

provided for each chromosome from the dataset and for the
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entirety of the dataset, which in most cases is the entire genome.

As we have found that asking ‘‘is A related to B’’ is completely

different from asking ‘‘is B related to A,’’ we encourage users to

not only perform all comparisons but to perform them in both

orientations.

Design and Implementation

Overview and general considerations
GenometriCorr is written in R (using S4 classes) and makes use

of the Bioconductor [5] packages IRanges and GRanges to

create sets of intervals that are then compared. The input data can

be in a variety of commonly used biological data formats, and the

core functions work from a configuration file that sets parameters

in a straightforward, easy to edit format that can be archived to

ensure reproducibility. We provide a Tk interface so that non-

programmers may access the functions via straightforward menus,

and we also provide a Galaxy [6] plugin that runs the analysis in

an environment widely used by biologists, in which the results

may be explored more thoroughly. Finally, we provide two

auxiliary methods for output, so that graphical results can be

obtained in addition to the statistics produced by the main

function. The configuration and the result, GenometriCorrConfig

and GenometriCorrResult are designed such that once a

configuration file has been read, the software proceeds with a

simple run.config call.

The main function, GenometriCorrelation, implements various

statistical approaches to assess whether the positions of two sets of

intervals are associated in genomic space. As stated above, almost

all of the tests are asymmetrical, in that one of the two interval sets

is considered to be a reference, fixed in the genome, while the

other set, the query, is evaluated statistically with respect to the

fixed reference. The results can be very different if the reference

and query sets are swapped, as shown below. In essence, each of

the tests is designed to evaluate whether the spatial distribution of

the query intervals is independent of the positions of the reference

intervals, and each test is sensitive to a different aspect of known

biological relationships.

Two types of graphical output are produced. Calling the

graphics.plot() function produces a straightforward statistical

summary and ECDF plot for the relative and absolute distances

for each chromosome and/or the entire genome. Summary results

for all chromosomes together are displayed in a window and

results for the individual chromosomes are written to a PDF. The

visualize() function produces a more elaborate and biologist-

friendly color-coded density plot, intended to represent areas of

high and low absolute and relative distance correlation; again,

summary results appear in a window and chromosome-by-

chromosome results are written to a PDF. The two types of

output are shown in Figure 1, along with detailed descriptions of

the features of each. These data are Hermes transposon insertions

in the yeast genome; this transposon generally inserts into

nucleosome free regions [7].

An important consideration here is that two sets of genomic

features may only be correlated in one direction. As an example,

we found all NF-kappa-B (NFKB1) sites using a simple exact string

search of the human genome and correlated their positions to the

positions of all RefSeq gene [8] start sites. NF-kappa-B is a family

of transcription factors critical in many processes, including

immunity, inflammation, and cell growth [9].

As there are nearly five times as many transcription start sites as

potential NF-kappa-B sites, most transcription start sites will not be

near a NF-kappa-B site even if they are perfectly correlated, while

the NF-kappa-B sites will nearly all be close to transcription start

sites. Figure 2a depicts the excellent correlation between human

NF-kappa-B sites to transcription start sites (same distribution,

perfect absolute distance correlation), and Figure 2b depicts the

poor (and not statistically significant) correlation of transcription

start sites to NF-kappa-B sites (absolute distance indicates a

separation, K-S not significant). As this level of asymmetry is

common, if not expected, in biological datasets, we recommend

performing all comparisons in both directions, using each dataset

as the fixed set in turn. While the relevant comparison is not

known a priori, the results of the two comparisons will clearly

indicate whether the relationship is asymmetric.

Many of the tests we used are performed on pointwise

representations of the intervals rather than on the intervals

themselves. When the input includes intervals, the midpoints of

these intervals are used for those analyses. Very large intervals may

relate to genomic features in different ways, depending on whether

we examine their start points, stop points, both boundaries, or just

a point in the middle. Rather than trying to address this ambiguity

or to randomly guess at what the user hopes to do, we expect the

user to specify the points when the exact point is important, and

we use the midpoint when the user inputs an interval.

We have developed and tested four useful and relevant metrics,

which will be discussed below: the relative distance test, the

absolute distance test, the Jaccard test, and the projection test,

intended to measure a variety of biologically relevant correlations.

In Figure 3 we summarize the metrics and their uses, and in

subsequent figures we demonstrate the utility of each type of test,

using both published and novel observations. Each figure shows

both a standard histogram representation of the relationships

between the query and reference sets, in addition to the results and

p-values generated by our software. As a strong correlation

between the query and reference may involve just a subset of a

very large number of points, a histogram of the absolute or relative

distances can be uninformative, while the tests performed by the

software are sensitive to true correlations within large and overall

not strongly correlated datasets. All p-values cited are computed

by the GenometriCorr functions. For each test we describe a

published dataset for which the test is particularly useful. Table 1

and table 2 summarize the results.

Relative distance test
The relative distance test measures whether two sets of positions

are closer together or further apart than expected, where the exact

distances are not as important as the relative relationship. For

example, a recent publication [10] reported that transposable

elements found in genes tend not to be located near splice sites.

We tested this association with the GenometriCorr software and

found that, first, the two entities do not overlap (the Jaccard and

projection tests, summarized in figure 3 and described in detail

later, are both significant and in the lower tail) and that both the

relative and absolute distance tests show a correlation. Upon closer

examination, the transposable element and splice site positions are

actually negatively correlated in terms of relative distance; that is,

the two types of genomic features tend not to co-occur but are

consistently spaced apart, though not by a uniform distance

(Figure 4). Results are shown for Alu elements but the relationship

holds true for both L1 and Alu elements, in agreement with the

reported trends.

The idea behind the relative distance test is that if the query

locations are independent of the references, then the relative

position of each query point, with respect to the adjacent reference

points, will have a uniform distribution. Thus, the null distribution

for relative distance test as formulated here is simply a straight line

at y = 0.5. For this test, intervals are represented as points, located

Correlation across Genomewide Data
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at the midpoint of the interval, so that the size of intervals and

overlap between query and reference are not included in the

analysis.

For each query point, qi, we identify the flanking reference

points, rk and rkz1, and calculate the relative distance

di = (qi ,2rk)/(rkz1,2rk), comparing this to a uniform null

distribution. More formally, the ‘‘relative distance’’ di for the i-

th query point is:

di~
min Dqi{rkD,Drkz1{qi Dð Þ

Drkz1{rk D
; k~arg min

qiwrk

qi{rkð Þ,

Figure 1. Two types of graphic output are available. (A) A statistical summary and ECDF plots. (B) A graphical interpretation of the spatial
relationships. The query features are depicted along the plot according to their distance to a reference feature; the colors indicate deviation from the
expected distribution while the overlay line indicates the density of the data at each absolute or relative distance. The data density mirrors but is
independent from the log-odds colors; at small distances in the absolute distance plot the data density is higher than expected but this represents a
very small percentage of the total query points.
doi:10.1371/journal.pcbi.1002529.g001
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and under the null, the di’s would be distributed uniformly in

[0, 1/2].

Two different tests are available to evaluate the uniformity of

the distribution the di ’s. The first and simplest is the standard

Kolmogorov-Smirnov test, assessing the maximum difference

between CDFs.

A permutation-based test is carried out as well, to more

comprehensively compare the two cumulative distribution func-

tions using the area of the region in which they differ as the test

statistic. Here ECDF (Empirical Distribution Cumulative Function)

designates the observed distribution of relative distances di, while

ECDFideal describes the expected distribution under the uniform,

null distribution, which is a straight line. The area between the

ECDF and ECDFideal is then calculated as:

S~

ð1=2

0

ECDF (d){ECDFideal(d)j jdd

and a p-value for S obtained by permutation, in which we randomly

draw Q (number of query points) values from the ideal uniform

distribution of di and calculate the area Sp.

The integral of the difference between the ECDF and the

ECDFideal also permits us to derive a natural measure of association

for the two sets of intervals. The sign of the integral indicates the

direction of the correlation, so the positive sign indicates that di’s

tend to be low and thus the query intervals are attracted to

reference intervals while, vice versa, the negative sign suggests that

query intervals avoid reference intervals. With appropriate

rescaling, we define a correlation-like measure:

Correcdf ~

Ð1=2

0

ECDF (d){ECDFideal(d)ð Þdd

Ð1=2

0

ECDFideal(d)dd

to express this. The Correcdf equals zero for independent query

and reference; it equals 1 if each query point coincides with a

query point and, finally, it equals {1 if each query point falls in

the middle of the reference gap.

Absolute distance test
In some cases, particularly in small genomes in which reference

points are closely spaced, the relative distance test produces

misleading results. For example, if the promoters in a genome are

generally found roughly 100–1500 bases apart (for example, yeast),

an element that is positioned consistently 500 bp from promoters

will look uncorrelated with promoters in relative terms, as it will

sometimes be extremely close to a promoter that is not the one it is

functionally related to, thereby diluting the distribution of query-

reference distances with many incorrect data points. In these

situations the absolute distance test is useful. We created a toy

dataset for this analysis, first taking the positions of the start points

of all human promoters (31083 sites), creating a new set of small

intervals placed randomly from 10–10000 base pairs from each

promoter start, and adding an additional 3000 small intervals

randomly placed between 75 and 100 bp from a promoter. We

then compared these intervals to the actual promoter intervals in

the human genome, and the software uncovered the signal of the

fixed distance points within the shifted points, whereas a simple

histogram approach fails (Figure 5). The null distribution for the

Figure 2. NFkappaB sites vs human RefSeq promoter start sites. Query and reference colors as in Figure 1. (A) NFkappaB as the query gives a
significant Kolmogorov-Smirnov association and anticorrelation that is visible from the graph, in absolute distances. (B) Correlation in the reverse
direction suggests no significant relationship between the two classes of sites.
doi:10.1371/journal.pcbi.1002529.g002
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Figure 3. A schematic of the various tests implemented in the software package, showing when certain tests are most useful. (A)
depicts the intervals created in silico and (B) shows how the query distances are evaluated within the intervals. (C) depicts a random distribution of

Correlation across Genomewide Data
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absolute distance test depends on the data. If the inter-reference

intervals are somewhat randomly distributed, then the null

distribution will be exponential, but if the inter-reference intervals

are constrained somehow, the null distribution will have a very

different shape.

As in the relative distance test, intervals are represented by their

midpoints.

The statistic used is very simple and intuitive. We suppose there

are Q query points and R reference points on a chromosome, and

for each query point i, find the distance to the closest reference

point, scaled by the expected inter-reference gap for the

chromosome

di~ min
k

qi{rkj jð Þ R

Length of chromosome
:

The final test statistic is the mean value of di

D~
1

Q

X
i~1::Q

di,

which characterizes the spatial association between the query and

the reference points. The lower it is, the closer together they tend

to be.

The p-value is obtained by permutation test. At each iteration,

we draw Q simulated query points uniformly distributed along the

chromosome and calculate the permuted statistic Dp. The p-value is

the proportion of permuted statistics that exceed the observed D.

As implemented in the package, the test is two-sided and returns

both the p-value and the direction of the association.

Projection test
Another test included in the software is the projection test. As

seen in figure 3, this tests whether pointwise data overlap interval

data in a significant way. To confirm the biological relevance of

this test we examined data from the Roadmap Epigenomics

Project [11]. Using the RNAseq data and histones H3K27me3

and H3K4me3 ChIP data from UCSF-UBC (GEO accessions

GSM484408 (RNAseq), GSM428295 (H3K27me3), and

GSM410808/GSM432392, (replicates for H3K4me3)), we used

the projection test to examine the relationship between the two

histone marks and the promoters of the most highly expressed

genes. The software was able to determine that the H3K4me3

marks significantly overlap the gene positions (Figure 6A) and the

H3K27me3 marks are significantly underrepresented near active

genes (Figure 6B). Note that in both cases the projection test is

highly significant, but in opposite directions; for the H3K4me3

data the projection test is in the lower tail, indicating significant

overlap, while the opposite is true for the H3K4me3 data,

indicating very little overlap with promoters of active genes.

The projection test is the methodologically simpler of the two

overlap tests in the package; the other, the Jaccard measure, is

discussed below. For this test, query intervals are still represented

as midpoints, but the reference should be a set of intervals. If the

query points are independent of the reference, then the probability

that any one query point is contained in a reference interval is the

proportion of the chromosome covered by reference intervals:

query versus reference intervals; here the observed and expected distances for both the absolute and relative tests are the same. In (D) we show a
relationship best uncovered by the absolute distance test; useful especially for small genomes, this test determines whether the query and reference
are often separated by a fixed distance. In (E), the query points are consistently far away from the reference points, so the relative distance test will be
significant, while the absolute distances are not significant in this case. Interestingly, the query intervals are variable enough in size that even though
the query and reference points are usually separated, the absolute distances between them vary widely in size, including some fairly small distances.
(F) demonstrates the projection test, which evaluates whether pointwise data falls consistently inside or outside of a set of intervals. Finally, in (G) we
see the Jaccard test, which looks for significant overlaps between datasets by evaluating the ratio of the intersection of the datasets (dark grey) to the
union of the datasets (light grey). Perfect correlation will give a ratio of 1, and perfect anticorrelation will result in a ratio of zero.
doi:10.1371/journal.pcbi.1002529.g003

Table 1. Summary of all correlations performed in these experiments.

Direction
Relative Kolmogorov-
Smirnov p–value

Relative ECDF area
correlation Relative ECDF deviation area p–value

C F

Human transcription start sites (T)
versus NF-kappa-B sites (N)

TRN 2e207 0.015 ,0.001 !

NRT 0.13 0.012 0.072 !

L1 elements(T) versus Splice Sites (S) TRS ,0* 20.03 ,0.001 !

SRT ,0 20.16 ,0.001 !

Promoter sites (P) versus Promoter plus
spikein (S)

PRS ,0 0.25 ,0.001 !

SRP ,0 0.25 ,0.001 !

H3K4me3 histones (H) versus Promoters of
actively transcribed genes (P)

HRP ,0 0.22 ,0.001 !

PRH ,0 0.02 ,0.001 !

CpG Islands (I) versus Coding sequences (C) IRC ,0 20.195 ,0.001 !

CRI ,0 20.012 ,0.001 !

*,0 means that the default R precision for KS test p-value is not enough to distinguish the value from 0.
doi:10.1371/journal.pcbi.1002529.t001
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Figure 4. Alu elements vs splice sites in the graphics.plot() output (A) and in the visualize() output (B). Alu elements are consistently
located at a variable but always nonzero distance from splice sites. Query and reference colors as in Figure 1.
doi:10.1371/journal.pcbi.1002529.g004

Figure 5. A toy example of absolute distance correlation. (A) Histograms of the observed and expected ranges of minimum distances
between the reference and query. (B) GenometriCorr’s simple plot for the same data. Query and reference colors as in Figure 1.
doi:10.1371/journal.pcbi.1002529.g005
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p~
coverage of the reference

the chromosome length
:

The total number of query points QR contained in reference

intervals has a binomial distribution,

p QRjindependenceð Þ~
Q

QR

� �
pQR 1{pð ÞQ{QR :

A standard two-sided binomial test is used to evaluate statistical

significance. The test is unlikely to be informative if the genomic

coverage of the reference intervals is very close to 0 or 1. ; here the

p-values will be extremely high.

Jaccard test
The Jaccard test measures overlaps between two interval sets by

measuring the extent of intersection between two interval sets,

divided by the length of their union. Thus, two datasets that

overlap perfectly have a union that is equal to their intersection,

and the ratio is 1. This proves to be a very useful measure for

biological data, as demonstrated in Figure 7, in which CpG islands

[12] are compared with coding sequences in the human genome.

Comparing the CpG islands with the coding sequences we see that

the two interval sets overlap much less than expected, given the

amount of the genome that each occupies, and this anti-

correlation is statistically significant. This is expected, as CpG

islands generally occur in promoters and other non-genic regions.

The Jaccard statistic is calculated on intervals rather than

points, and is the ratio of the number of nucleotides in the

intersection of the reference and query, and the total number of

nucleotides spanned by the reference and query together.

More formally:

The Jaccard statistic, J, evaluates interval sets Qf g and Rf g
that are sets of chromosome positions that are covered by query

and reference intervals, respectively.

J Qf g, Rf gð Þ~ Qf g\ Rf gj j
Qf g| Rf gj j where Yf gj j denotes the size of a set

Y.

The p-value and the direction of difference from the null

hypothesis (that the positions of Qf g and Rf g are independent)

are obtained by permutation. Each permutation randomizes the

query intervals uniformly across the chromosome, maintaining the

spacing between intervals.

Comparisons limited to genomic subsets
An investigator may want to explore correlations within defined

intervals rather than genomewide; for example, when looking at

binding sites within and very close to genes, the correlation

between these sites will be extremely high genomewide because

they are constrained to small intervals, but upon examination of

the sites within genes, there may be no correlation at all. For this

Figure 6. Promoter positions from highly expressed genes (as given from mRNAseq data) and histone ChIP data recently available
from the Roadmap Epigenomics Project [8]. (A) H3K4me3 versus highly expressed genes. (B) H3K27me3 versus highly expressed genes. Query
and reference colors as in Figure 1.
doi:10.1371/journal.pcbi.1002529.g006
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Figure 7. Human genomic CpG islands from Wu et al [9] correlated with the positions of coding sequences in the human genome.
Query and reference colors as in Figure 1.
doi:10.1371/journal.pcbi.1002529.g007

Figure 8. Ty1 retrotransposon insertion sites vs tRNA genes in the yeast genome. (A) ECDF plots (B) Graphic display. Arrows mark Ty1
insertion sites at nucleosome-occupied positions near tRNA genes. Nucleosomes are in green. The colored graph contains several regions of high
observed/expected Ty1 insertions (red colors), and the black line indicates a high density of Ty1 insertions, as well, in these regions. Relative to the
tRNA position, the Ty1 insertion sites are most dense inside the nucleosome occupied regions. Query and reference colors as in Figure 1.
doi:10.1371/journal.pcbi.1002529.g008
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reason we provide methods that restrict the correlations to

intervals defined by the investigator and that can be set up from

within the configuration file.

Results

We tested the software on our own high-dimensional data, a set

of cloned insertion sites of an exogenously supplied Ty1 retro-

transposon in the gene-rich yeast genome, for which we were

trying to determine Ty1 targeting specificity. After sequencing and

mapping it was clear that the insertions cluster near tRNA genes

but do not generally insert into these genes, as seen in Figure 8A.

Figure 8B displays the very complex relationship between Ty1 and

tRNA promoters; the insertions occur at very specific points along

nucleosome-bound DNA and follow a reproducible periodic

pattern. On further examination we were able to map the

insertion sites precisely to the nucleosome surface, as we have

previously reported [13].

The examples provided here illustrate the range of biological

questions that can be addressed with our software. A particularly

compelling feature of the package is that negative correlations

(overlap or proximity much less than expected if the query and

reference were unrelated) are reported, meaning that correlations

between factors that act at a distance are detectable. Also, we

Figure 9. A) The Galaxy interface to GenometriCorr. B) The Tk interface to GenometriCorr. Instructions for using both are found on the
website.
doi:10.1371/journal.pcbi.1002529.g009
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observe that absolute and relative distances are both important

and may measure different phenomena; thus the software provides

appropriate tests for these correlations as well.

We do not intend for our software to supplant the role of either

the biologist or the statistician in a team of investigators working

on high throughput sequencing or microarray data. Rather, by

determining the statistical significance of genomewide interactions,

the software serves as a hypothesis generator, enabling all

investigators to begin validating associations that are likely to be

real, much earlier than they would have otherwise.

We do not provide a built-in method for retrieving query and/

or reference features that may conform to a configuration

suggested by the correlation methods. As we provide methods to

use the software from within the Galaxy interface (below, and

Figure 9), users with minimal computational experience can create

any desired subsets using the many tools available in that

environment. More computationally experienced users will have

no trouble extracting query and reference intervals and overlap-

ping these intervals as suggested by the correlation output.

GenometriCorr can be customized for use with any genome and

any type of point or interval data.

Availability and Future Directions

GenometriCorr is available, along with examples and installa-

tion guidelines, from http://genometricorr.sourceforge.net/. The

software is written in R and can be used from the R command

line, through a Tk graphical interface, or through the Galaxy

interface; all of these options are documented on the site.

In future work we plan to implement the generalized Jaccard

measure, which can handle sparsely distributed query and

reference sets. Moreover, the generalized Jaccard measure can

account for intervals that have a weight or other numerical value,

in addition to coordinates. This weight can denote anything from

multiplicity of coverage to experimental confidence.
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