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Abstract The rising number of primary joint

replacements worldwide causes an increase of revision

surgery of endoprostheses due bacterial infection.

Revision surgery using non-cemented implants seems

beneficial for the long-term outcome and the use of

antibiotic-impregnated bone grafts might control the

infection and give a good support for the implant. In

this study we evaluated the release of antibiotics from

fresh-frozen and lyophilized allogeneic bone grafts.

Lyophilized bone chips and fresh frozen bone chips

were mixed with gentamicin sulphate, gentamicin

palmitate, vancomycin, calcium carbonate/calcium

sulphate impregnated with gentamicin sulphate, and

calcium carbonate/calcium sulphate bone substitute

material impregnated with vancomycin. The efficacy

of each preparation was measured by drug release tests

and bacterial susceptibility using B. subtilis, S. aureus

and methicillin-resistant Staphylococcus aureus. The

release of gentamicin from lyophilized bone was

similar to the release rate from fresh frozen bone

during all the experimental time. That fact might be

related to the similar porosity and microstructure of

the bone chips. The release of gentamicin from

lyophilized and fresh frozen bone was high in the first

and second day, decreasing and keeping a low rate

until the end of the second week. Depending on the

surgical strategy either polymethylmethacrylate or

allogeneic bone are able to deliver sufficient concen-

trations of gentamicin to achieve bacterial inhibition

within two weeks after surgery. In case of uncemented

revision of joint replacements allogeneic bone is able

to deliver therapeutic doses of gentamicin and peak

levels immediately after implantation during a fort-

night. The use of lyophilized and fresh frozen bone
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allografts as antibiotic carriers is recommended for

prophylaxis of bone infection.

Keywords Bone grafts � Antibiotics � Lyophilized
bone chips � Local delivery � Joint infection

Introduction

Bone grafts are used for reconstructing bone defects

caused by implant associated complications, trauma

and tumors (Putzer et al. 2011; Hinsenkamp et al.

2012). While autografts can be used, donor site

morbidity can be avoided using allografts. (Barbour

and King 2003; Butler et al. 2005; Haimi et al. 2008).

Bone grafts might derive from post mortem donors or

might be donated from femoral heads of living patients

undergoing hip arthroplasty creating bone chips to fill

bone defects during revision surgery of joint replace-

ments since impaction bone grafting increases primary

stability and bone stock which is essential for the

longevity of the implant.

However, fresh frozen bone chips bear a higher risk

of transmission of diseases and local contamination

compared with processed bone grafts (Brewster et al.

1999; Hofmann et al. 2005). Surgery with bone

allografts is complex and time-consuming; therefore

it is per se prone to a higher infection rate (2.0–2.5 %)

(Blom et al. 2003; Parvizi et al. 2007, 2008). Addi-

tionally, the impaction used for placing bone trans-

plants can disrupts the local circulation and reduce the

bone ingrowth (Tagil and Aspenberg 1998; Duffy

et al. 2007; Buttaro et al. 2012; Ding et al. 2015). In the

case of a site infection, systemically administered

antibiotics cannot reach the infected bone graft

(Isefuku et al. 2003). As a known complication factor,

biofilms can be formed on the surface of foreign

materials thus increasing antibiotic resistance (Cor-

aça-Huber et al. 2012a, b). Staphylococcus epider-

midis and Staphylococcus aureus are the germs which

mostly colonize implant surfaces (Christensen et al.

1989).

The number of infection related to multi resistant

bacteria is increasing (Ascherl 2010). Also, biofilm

forming bacteria is a major concern for treatment of

implant-related infections (Costerton et al. 1999; Patel

2005; Frommelt 2006; Esteban et al. 2010; Coraça-

Huber et al. 2012a). Biofilm has been defined as

multicellular community composed of prokaryotic

and or eukaryotic cells embedded in matrix (Frommelt

2004; Esteban et al. 2010). In this case, sessile bacteria

become antibiotic-resistant making treatment and

diagnosis difficult (Patel 2005). Antibiotic treatment

are directed against planktonic bacteria which relieves

symptoms but does not cure the infection and therefore

might delay adequate treatment (Frommelt 2006).

High antibiotic concentrations at the implantation site,

immediately available after surgery, should prevent

development of biofilm.

Antibiotics delivered from an implanted biomate-

rial can be potentially used to prevent infections

caused by biofilm formation, providing high concen-

trations of antibiotics at the surgical site without local

or systemic toxicity. In addition, these materials

should be osteoconductive and osteoinductive, thus

supporting bone healing without further surgery (Saraf

et al. 2010). Promising results have been achieved

using bone substitutes or bone grafts mixed with bone

substitutes and antibiotics. Among a broad variety of

materials, calcium sulphate and calcium carbonate

beads proved to be a suitable osteoconductive material

for bone reconstruction (Wichelhaus et al. 2001;

Evaniew et al. 2013; Roberts et al. 2013; Coraça-

Huber et al. 2015).

Gentamicin sulphate (GS) salt is commonly used

antibiotic for local application in orthopaedic surgery,

for example mixed with PMMA cements. Gentamicin

base (GB) consists of a mixture of gentamicin C1, C1a

and C2 a ? b. Gentamicin sulphate is highly water

soluble. This substance can be used as a coating

material for biomaterials and tissues by turning the

water-soluble GS into a low-soluble gentamicin fatty

acid salt (converting gentamicin sulphate to gentam-

icin palmitate; GP) (Kühn et al. 2003; Kuhn et al.

2008; Coraça-Huber et al. 2013a, b). Herafill� powder

is used in the composition of bioabsorbable beads and

is composed of calcium sulphate, calcium carbonate

and glycerine tripalmitate as bonding additive. It

contains 1 % of GS corresponding to 2.5 g of GB.

Herafill� is also manufactured as granules to be used

as a bone void filling material as well as an antibiotic

carrier (Coraça-Huber et al. 2014).

In this study we evaluated two different prepara-

tions of femoral heads allografts as antibiotic carrier.

Lyophilized bone chips and fresh frozen bone chips

were mixed with gentamicin sulphate, gentamicin

palmitate, vancomycin, calcium carbonate/calcium
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sulphate impregnated with gentamicin sulphate, and

calcium carbonate/calcium sulphate bone substitute

material impregnated with vancomycin. The efficacy

of each preparation was measured by drug release tests

and bacterial susceptibility using B. subtilis, S. aureus

and methicillin-resistant Staphylococcus aureus.

Materials and methods

Bone tissue

Different preparation of femoral heads allografts

obtained from living donors (telos GmbH, Marburg,

Germany and Tissue Bank, Charité–Medical Univer-

sity Berlin, Berlin, Germany) were used as antibiotic

carrier. Two different preparations were tested:

lyophilized bone chips (BChT) and fresh frozen bone

chips (FF-BChT). All patients gave their written

consent that the removed tissue was allowed to be

used for research purposes.

Antibiotic and reference substances

Gentamicin sulphate (GS), gentamicin palmitate (GP),

vancomycin (V), calcium carbonate/calcium sulphate

bone substitute material impregnated with 5 and 10 %

gentamicin sulphate (HeraG; Herafill�) and calcium

carbonate/calcium sulphate bone substitute material

impregnated with 5 and 10 % vancomycin hydrochlo-

ride (HeraV; Herafill�) were used in this study.

Polymethylmethacrylate beads impregnated with gen-

tamicin sulfate (Heraeus PMMA Chain G30, Heraeus

Medical GmbH, Wehrheim, Germany; approximately

4.5 mg gentamicin per bead) and calcium carbon-

ate/calcium sulfate bone substitute beads impregnated

with gentamicin sulfate (Herafill� beads G�, Heraeus

Medical GmbH,Wehrheim, Germany; 2.5 mg gentam-

icin per bead) were used as reference materials. Also,

FF-BChT (telos GmbH, Marburg, Germany and Tissue

Bank, Charité–Medical University Berlin, Berlin, Ger-

many) samples were used as reference materials.

Microorganisms

Bacillus subtilis (Merck KGaA, Germany in Test Agar

pH 8.0 Merck KGaA, Germany), Staphylococcus

aureus ATCC 29213 (American Type Culture Col-

lection, LGC Standards GmbH, Wesel, Germany) and

methicillin-resistant Staphylococcus aureus MRSA

DSM 46320 (Leibniz Institute DSMZ Deutsche

Sammlung von Mikroorganismen und Zellkulturen—

German Collection of Microorganisms and Cell

Cultures, Braunschweig, Germany) were used for

antibiotic delivery and antibiotic susceptibility assays.

Gentamicin base release

To evaluate the release rate of antibiotics from

allografts, the BChT samples were mixed with GS,

GS ? GP, V, HeraG, HeraV. The exactly concentra-

tion of each mixtures is detailed on Table 1. The

antibiotic release assay was carried out using phos-

phate-buffered saline (PBS) pH 7.4 (Sigma-Aldrich,

Schnelldorf, Germany). For that, 3 ml of PBS were

added into each tube containing 1 cm3 of each BChT

mixture. The tubes were vortexed for 1 min and placed

on a shaker at 37 �C. Daily, from 1 to 14 days, the

elution medium was completely removed and fresh

PBS was added. The removed elution was vortexed

and stored at -20 �C until the tests.

Bacillus subtilis assay for estimation of antibiotic

release concentrations

Concentrations of the delivered antibiotic in the elution

were determined by a conventional microbiological

agar diffusion assay using Bacillus subtilis as the

indicator strain already described by Coraça-Huber

et al. (2015).Using a 6-mmdiametermetal punch, a hole

was made at the center of each B. subtilis agar plate into

which 100 lL of each collected elution or 100 lL of

10-fold dilutions of each standard concentration was

added. The plates containing the samples were incu-

bated at 37 �C for 24 h. After the incubation, the

diameter of the zones of inhibition in centimeters (cm)

was measured for each plate with a ruler. The diameter

was confirmed with a second measurement. The size of

punched area was subtracted for the final measurement.

The standard curve was obtained by logarithmic

regression and used to predict the concentration of GB

in each elution. This assay was carried out in triplicate.

Staphylococcus aureus and methicillin-resistant

Staphylococcus aureus susceptibility tests

Staphylococcus aureus ATCC 29213 and methicillin-

resistant Staphylococcus aureus MRSA DSM 46320
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suspensions at 2 9 105 cells (0.5 McFarland) were

prepared and 10 lL were inoculated using Müller-

Hinton agar plates.With a 6-mmdiametermetal punch,

a hole was made on the center of each plate where

100 lL of each sample was added. The plates were

incubated at 37 �C for 24 h. After 24 h, the zones of

inhibitionweremeasured on each platewith a ruler. The

diameter was confirmed with a second measurement.

The size of the punched areawas subtracted for the final

measurement. These tests were carried out in triplicate.

Statistical analysis

Statistical evaluation was carried out to detect differ-

ences between the delivery rate and susceptibility tests

between the samples tested. To evaluate the

differences between the samples taking into consider-

ation the elution concentration along the time Two-

way ANOVAwith Bonferroni’s multiple comparisons

test was applied. To detect the cumulative differences

and susceptibility of microorganisms between the

mixtures One-way ANOVA with Bonferroni’s multi-

ple comparisons test was carried out.

Results

Bacillus subtilis assay for estimation of antibiotic

release concentrations

Taking into consideration the release of antibiotics

from the BChT and PMMA and Herafill beads we

Table 1 Mixtures used for antibiotic delivery tests

Mixtures used for the antibiotic delivery assay

Test groups Concentration mixtures

BChT ? GS/GP (1.6 % GB) 1 g BChT ? 0.016 g GB (0.014 g GS) ? 0.016 g GB (0.04 g GP)

BChT ? GS/GP (3.2 % GB) 1 g BChT ? 0.032 g GB (0.028 g GS) ? 0.032 g GB (0.08 g GP)

BChT ? GS/GP (6.4 % GB) 1 g BChT ? 0.064 g GB (0.056 g GS) ? 0.064 g GB (0.16 g GP)

BChT ? HeraG 10 % (1.6 %GB) 1 g BChT ? 0.016 GB (0.16 g GS)

BChT ? HeraG 10 % (3.2 %GB) 1 g BChT ? 0.032 GB (0.32 g GS)

BChT ? HeraG 10 % (6.4 %GB) 1 g BChT ? 0.064 GB (0.64 g GS)

BChT ? HeraG 5 % (6.4 %GB) 1 g BChT ? 0.064 (1.28 g GS)

BChT ? HeraV 10 % (2 %VB) 1 g BChT ? 0.02 g VB (0.2 g V)

BChT ? HeraV 10 % (4 %VB) 1 g BChT ? 0.04 g VB (0.4 g V)

BCht ? HeraV 10 % (8 %VB) 1 g BChT ? 0.08 g VB (0.8 g V)

BCht ? HeraV 5 % (8 %VB) 1 g BChT ? 0.08 g VB (1.6 g V)

Reference groups Concentration mixtures

BChT ? GS 1 g BChT ? 1 mL (gentamicin 1 mg/mL) (Witso et al. 2005)

BChT ? V 1 g BChT ? 1 mL (vancomycin 1 mg/mL) (Witso et al. 2005)

PMMA beads ^1 g gentamicin sulfate/bead

Herafill beads 2.5 mg gentamicin sulfate/bead

FF-BChT ? GS ? GP (1.6 % GB) 1 g FF-BChT ? 0.016 g GB (0.014 g GS) ? 0.016 g GB (0.04 g GP)

FF-BChT ? GS/GP (3.2 % GB) 1 g FF-BChT ? 0.032 g GB(0.028 g GS) ? 0.032 g GB (0.08 g GP)

FF-BChT ? GS/GP ? (6.4 % GB) 1gFF-BChT ? 0.064 g GB(0.056 g GS) ? 0.064 g GB (0.16 g GP)

Test groups: lyophilized bone chips mixed with gentamicin sulfate and gentamicin palmitate powder (BChT ? GS/GP); gentamicin

base powder (GB); lyophilized bone chips mixed with calcium carbonate/calcium sulphate impregnated with gentamicin sulphate

powder (BChT ? HeraG); lyophilized bone chips mixed with calcium carbonate/calcium sulphate granulate impregnated with

vancomycin (BChT ? HeraV); Reference groups: lyophilized bone chips impregnated with gentamicin sulphate by immersion

(BChT ? GS) (Witso et al. 2005); lyophilized bone chips impregnated with vancomycin by immersion (BChT ? V) (Witso et al.

2005) polymethylmethacrylate beads impregnated with gentamicin sulfate (PMMA beads); calcium carbonate/calcium sulfate bone

substitute beads impregnated with gentamicin sulfate (Herafill beads); fresh frozen bone chips mixed with gentamicin sulfate and

gentamicin palmitate (FF-BChT ? GS/GP). The mixtures were kept for 24 h prior de addition of PBS for the elution tests
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could observe that the BChT ? GS and PMMA beads

showed a significant higher delivery rate in compar-

ison with BChT ? V and Herafill beads. PMMA

beads were the only material that allowed delivery of

antibiotic at least until the 14th day. However, the

significant release was observed only until the 5th day

(p\ 0.0001; Fig. 1a). The antibiotic delivery rate

from fresh frozen samples followed the concentration

of GS ? GP from each group where FF-

BChT ? GS ? GP 6.4 % showed significant higher

concentration in comparison with FF-

BChT ? GS ? GP 1.6 and 3.2 %. The highest con-

centration were detected until the 5th day of elution

(p\ 0.05; Fig. 1b). The antibiotic concentration in

the elution of BChT ? GS ? GP also followed the

mixture concentration. Here BChT ? GS ? GP

6.4 % showed higher antibiotic release when com-

pared to BChT ? GS ? GP 1.6 and 3.2 %. The

highest delivery was detected only until the 3rd

elution day (p\ 0.001; Fig. 2a). The antibiotic deliv-

ery from the BChT mixed with HeraG also followed

the concentration of the mixtures made prior the

elution tests. Here BChT ? HeraG 10 % (6.4 % GB)

and BChT ? HeraG 5 % (6.4 %GB) showed no

significant differences between the concentrations of

antibiotic released. The two groups showed the highest

levels of antibiotic being released until the 4th elution

day. Although, BChT ? HeraG 10 % (6.4 %GB) and

BChT ? HeraG 5 % (6.4 %GB) delivery significant

different concentration (p\ 0.05) of the antibiotic in

comparison to BChT ? HeraG 10 % (1.6 %GB) and

BChT ? HeraG 10 % (3.2 %GB). In these two

groups the highest delivery was detected until the

2nd elution day (Fig. 2b). A similar pathway could be

observed between the groups of BChT mixed with

HeraV. Here BChT ? HeraV (8 %VB) and

BChT ? HeraV 5 % (8 % VB) showed very high

concentration release in comparison with

BChT ? HeraV 10 % (2 % VB) and BChT ? HeraV

10 % (4 %VB). However BChT ? HeraV 10 % (8 %

VB) showed significant higher delivery (p\ 0.05) in

comparison with BChT ? HeraV 10 % (2 % VB) and

in comparison with BChT ? HeraV 10 % (2 % VB)

and BChT ? HeraV 10 % (4 % VB; p\ 0.0001).

Also here, the highest delivery rate was detected until

the 3rd and 4th elution day (Fig. 2c).

Staphylococcus aureus and methicillin-resistant

Staphylococcus aureus susceptibility tests

Here we calculated the cumulative values from all

time intervals to show the mixture with better

antibacterial effect. Within the group of reference

samples, against S. aureus, the best activity was

observed by PMMA beads and all the FF-

BChT ? GS ? GP. Also BChT ? GS showed high

efficacy. These mixtures showed significant higher

activity (p\ 0.05) in comparison with the other

mixtures. BChT ? V and Herafill beads showed less

activity and no significant difference between each

other (Fig. 3a). Similar results were obtained with the

samples tested against MRSA (Fig. 3b). The cumula-

tive results for the susceptibility tests against S. aureus

and MRSA for the BChT mixed with GS ? GP,

HeraG and HeraV, showed that the activity of BChT

mixed with GS ? GP was significantly higher in

comparison with BChT mixed with HeraG and HeraV

(p\ 0.05; Fig. 4a, b). Besides the cumulative results

for the susceptibility tests against S. aureus and

MRSA, the measurement of the zone of inhibition is

also presented for each time interval. In the reference

groups we can also observe the highest efficacy of

PMMA beads and BChT ? GS against S. aureus and

MRSA in comparison with BChT ? V and Herafill

beads (Fig. 5a, b). For the fresh frozen samples,

besides the difference in antibiotic concentration, the

three groups (FF ? BChT ? GS ? GP 1.6 %,

FF ? BChT ? GS ? GP 3.2 %, FF ? BChT ?

GS ? GP 6.4 %) showed similar effect against the

microorganisms showing its activity until the 14th

elution day (Fig. 5c, d). For the samples of the test

group, the mixture that most efficiently delivered the

antibiotic substances until the last day was

BChT ? GS ? GP, for all concentration of gentam-

icin base used. Here we can see that even at the last

day, all the concentration reached a zone of inhibition

of approximately 2 cm. The efficiency of

BChT ? GS ? GP was similar against S. aureus

and MRSA. The mixtures of BChT with HeraG

showed high antimicrobial activity until the end of the

first week for S. aureus and MRSA. The mixture of

BChT with HeraV showed less activity against

the microorganisms in comparison with BChT ?

Cell Tissue Bank (2016) 17:629–642 633

123



GS ? GP, however, this activity could be observed

until the 10th elution day (Fig. 6).

Discussion

Once an infection is established, the removal of

implanted devices is necessary for a proper treatment

(Zimmerli et al. 2004; Frommelt 2006). Biomaterial-

mediated infections are resistant to antibiotic treat-

ment even at high doses (Gristina 1987). Only early

infections might be managed with systemic antibiotic

therapy (Zimmerli et al. 2004; Frommelt 2006).

Surgical debridement removing all suspicious tissue

is essential to achieve control of infection and good

long-term results (Frommelt 2006). Early detection of

infection and aggressive treatment has a high eradi-

cation rate since only 64 % of all infections occurred

within the first 12 months of primary surgery (Phillips

et al. 2006).

In this study we evaluated two different prepara-

tions of femoral heads allografts as antibiotic carrier.

Lyophilized and fresh frozen bone chips. Lyophilisa-

tion of bone allografts can be conducted under

complete screening of donors, does not use any

chemical agents for preparation and can help decrease

the contaminants. The lyophilisation process of bone

causes only a small reduction of pull-out force which

Fig. 1 Reference groups:

antibiotic release

concentrations obtained

from Bacillus subtilis assay.

a Lyophilized bone chips

impregnated with

gentamicin sulphate by

immersion (1 mg/mL;

BChT ? GS); lyophilized

bone chips impregnated

with vancomycin sulphate

by immersion (1 mg/mL;

BChT ? V)

polymethylmethacrylate

beads impregnated with

gentamicin sulfate (PMMA

beads); calcium

carbonate/calcium sulfate

bone substitute beads

impregnated with

gentamicin sulfate (Herafill

beads); b fresh-frozen bone

fragments mixed with

gentamicin sulfate and

gentamicin palmitate 1.6 %

of gentamicin base (FF-

BChT ? GS ? GP 1.6 %);

fresh-frozen bone fragments

mixed with gentamicin

sulfate and gentamicin

palmitate 3.2 % of

gentamicin base (FF-

BChT ? GS ? GP 3.2 %);

fresh-frozen bone fragments

mixed with gentamicin

sulfate and gentamicin

palmitate 6.4 % of

gentamicin base

(FF ? BChT ? GS ? GP

6.4 %)
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Fig. 2 Test groups:

antibiotic release

concentrations obtained

from Bacillus subtilis assay.

a Lyophilized bone chips

mixed with gentamicin

sulfate and gentamicin

palmitate 1.6 % of

gentamicin base

(BChT ? GS ? GP

1.6 %); lyophilized bone

chips mixed with

gentamicin sulfate and

gentamicin palmitate 3.2 %

of gentamicin base

(BChT ? GS ? GP

3.2 %); lyophilized bone

chips mixed with

gentamicin sulfate and

gentamicin palmitate 6.4 %

of gentamicin base

(BChT ? GS ? GP

6.4 %); b lyophilized bone

chips mixed with HerafillG

10 %with 1.6 % gentamicin

base (BChT ? HeraG

10 %—1.6 %GB);

lyophilized bone chips

mixed with HerafillG 10 %

with 3.2 % gentamicin base

(BChT ? HeraG 10 %—

3.2 %GB); lyophilized bone

chips mixed with HerafillG

10 %with 6.4 % gentamicin

base (BChT ? HeraG

10 %—6.4 %GB);

lyophilized bone chips

mixed with HerafillG 5 %

with 6.4 % gentamicin base

(BChT ? HeraG 5 %—

6.4 %GB); c lyophilized

bone chips mixed with

HerafillV 10 % with 2 %

vancomycin base

(BChT ? HeraV 10 %—

2 %GB); lyophilized bone

chips mixed with Herafill V

10 % with 4 % vancomycin

base (BChT ? HeraV

10 %—4 %GB);

lyophilized bone chips

mixed with HerafillV 10 %

with 8 % vancomycin base

(BChT ? HeraV 10 %—

8 %GB); lyophilized bone

chips mixed with HerafillV

10 % with 8 % vancomycin

base (BChT ? HeraV

5 %—8 %GB)
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Fig. 3 Cumulative results for susceptibility tests of antibiotic

released against a S. aureus ATCC 29213 and b MRSA DSM

46320. Reference groups: Lyophilized bone chips impregnated

with gentamicin sulphate by immersion (1 mg/mL;

BChT ? GS); lyophilized bone chips impregnated with van-

comycin sulphate by immersion (1 mg/mL; BChT ? V)

polymethylmethacrylate beads impregnated with gentamicin

sulfate (PMMA beads); calcium carbonate/calcium sulfate bone

substitute beads impregnated with gentamicin sulfate (Herafill

beads); fresh-frozen bone fragments mixed with gentamicin

sulfate and gentamicin palmitate 1.6 % of gentamicin base (FF-

BChT ? GS ? GP 1.6 %); fresh-frozen bone fragments mixed

with gentamicin sulfate and gentamicin palmitate 3.2 % of

gentamicin base (FF-BChT ? GS ? GP 3.2 %); fresh-frozen

bone fragments mixed with gentamicin sulfate and gentamicin

palmitate 6.4 % of gentamicin base (FF ? BChT ? GS ? GP

6.4 %)

Fig. 4 Cumulative results for susceptibility tests of antibiotic

released against a S. aureus ATCC 29213 and b MRSA DSM

46320. Test groups: lyophilized bone chips mixed with

gentamicin sulfate and gentamicin palmitate 1.6 % of gentam-

icin base (BChT ? GS ? GP 1.6 %); lyophilized bone chips

mixed with gentamicin sulfate and gentamicin palmitate 3.2 %

of gentamicin base (BChT ? GS ? GP 3.2 %); lyophilized

bone chips mixed with gentamicin sulfate and gentamicin

palmitate 6.4 % of gentamicin base (BChT ? GS ? GP

6.4 %); lyophilized bone chips mixed with HerafillG 10 %

with 1.6 % gentamicin base (BChT ? HeraG 10 %—

1.6 %GB); lyophilized bone chips mixed with HerafillG 10 %

with 3.2 % gentamicin base (BChT ? HeraG 10 %—

3.2 %GB); lyophilized bone chips mixed with HerafillG 10 %

with 6.4 % gentamicin base (BChT ? HeraG 10 %—

6.4 %GB); lyophilized bone chips mixed with HerafillG 5 %

with 6.4 % gentamicin base (BChT ? HeraG 5 %—6.4 %GB);

lyophilized bone chips mixed with HerafillV 10 % with 2 %

vancomycin base (BChT ? HeraV 10 %—2 %GB); lyophi-

lized bone chips mixed with Herafill V 10 % with 4 %

vancomycin base (BChT ? HeraV10 %—4 %GB); lyophi-

lized bone chips mixed with HerafillV 10 % with 8 %

vancomycin base (BChT ? HeraV 10 %—8 %GB); lyophi-

lized bone chips mixed with HerafillV 10 % with 8 %

vancomycin base (BChT ? HeraV 5 %—8 %GB)

636 Cell Tissue Bank (2016) 17:629–642

123



is not relevant regarding impaction of bone allograft in

revision surgery arthroplasty (Folsch et al. 2012).

The allografts in this study were mixed with

gentamicin sulphate, gentamicin palmitate, van-

comycin, calcium carbonate/calcium sulphate

impregnated with gentamicin sulphate, and calcium

carbonate/calcium sulphate bone substitute material

(Herafill�) impregnated with vancomycin. Local

administration of antibiotics delivered from cement

was introduced in orthopaedic surgeries in 1970

(Buchholz and Engelbrecht 1970). Cancellous bone

grafts were reported as antibiotic delivery system

and bone grafts are commonly used to augment bone

defects (Lindsey et al. 1993; Goldberg 2000).

Impacted morselized allograft bone is a recognized

method to obtain additional support for arthroplasty

in revision surgery (Toms et al. 2004; Oakes and

Cabanela 2006; Barckman et al. 2014). Antibiotic-

supplemented impacted bone grafts improve out-

come in revision surgery of infected endoprostheses

since systemic applied antibiotics do not reach

sufficient concentrations around the grafts (Buttaro

et al. 2005; Winkler et al. 2006; Barckman et al.

2014). Surgical revision of arthroplasty without

cement but augmentation with bone grafts improves

the bone stock and might be beneficial for the

longevity of the implant and further revision surgery

since the number of cementless primary joint

replacements is increasing in many countries. Antibi-

otic-loading of bone grafts seems appropriate to

deliver adequate local concentrations similar to

PMMA and even higher initial release within 24 h.

Good restoration of bone stock and low infection

rate after revision of total hip replacements was

shown for vancomycin-loaded impacted bone allo-

graft (Buttaro et al. 2005; Winkler et al. 2006) since

in vitro studies have shown the ability of bone grafts

to deliver antibiotics (Witso et al. 2005; Coraça-

Huber et al. 2013a, b; Barckman et al. 2014; Coraça-

Huber et al. 2015).

Fig. 5 Susceptibility tests of antibiotic released against a S.

aureus ATCC 29213 and b MRSA DSM 46320. Reference

groups: a, b lyophilized bone chips impregnated with gentam-

icin sulphate by immersion (1 mg/mL; BChT ? GS); lyophi-

lized bone chips impregnated with vancomycin sulphate by

immersion (1 mg/mL; BChT ? V) polymethylmethacrylate

beads impregnated with gentamicin sulfate (PMMA beads);

calcium carbonate/calcium sulfate bone substitute beads

impregnated with gentamicin sulfate (Herafill beads); c,

d fresh-frozen bone fragments mixed with gentamicin sulfate

and gentamicin palmitate 1.6 % of gentamicin base (FF-

BChT ? GS ? GP 1.6 %); fresh-frozen bone fragments mixed

with gentamicin sulfate and gentamicin palmitate 3.2 % of

gentamicin base (FF-BChT ? GS ? GP 3.2 %); fresh-frozen

bone fragments mixed with gentamicin sulfate and gentamicin

palmitate 6.4 % of gentamicin base (FF ? BChT ? GS ? GP

6.4 %)
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The mixing of bone allografts with antibiotic salts

in this study was carried out manually. As this

procedure can be easily applied, we affirm that this

is a suitable method for an operation room. As we used

as one of the reference tests, some authors first dilute

the antibiotic powder in a saline solution and then soak

the bone grafts in this solution before use (Winkler

et al. 2000; Witso et al. 2005). We believe that this is

an efficient method for bone chips incorporation with

antibiotics since the tissue would act as a sponge

absorbing the solution. According to these authors,

that could also be an alternative for long-term storage

Fig. 6 Susceptibility tests of antibiotic released against (a, c,
e) S. aureusATCC 29213 and (b, d, f) MRSA DSM 46320. Test

groups: a, b lyophilized bone chips mixed with gentamicin

sulfate and gentamicin palmitate 1.6 % of gentamicin base

(BChT ? GS ? GP 1.6 %); lyophilized bone chips mixed with

gentamicin sulfate and gentamicin palmitate 3.2 % of gentam-

icin base (BChT ? GS ? GP 3.2 %); lyophilized bone chips

mixed with gentamicin sulfate and gentamicin palmitate 6.4 %

of gentamicin base (BChT ? GS ? GP 6.4 %); c, d lyophilized
bone chips mixed with HerafillG 10 % with 1.6 % gentamicin

base (BChT ? HeraG 10 %—1.6 %GB); lyophilized bone

chips mixed with HerafillG 10 % with 3.2 % gentamicin base

(BChT ? HeraG 10 %—3.2 %GB); lyophilized bone chips

mixed with HerafillG 10 % with 6.4 % gentamicin base

(BChT ? HeraG 10 %—6.4 %GB); lyophilized bone chips

mixed with HerafillG 5 % with 6.4 % gentamicin base

(BChT ? HeraG 5 %—6.4 %GB); e, f lyophilized bone chips

mixed with HerafillV 10 % with 2 % vancomycin base

(BChT ? HeraV 10 %—2 %GB); lyophilized bone chips

mixed with Herafill V 10 % with 4 % vancomycin base

(BChT ? HeraV10 %—4 %GB); lyophilized bone chips

mixed with HerafillV 10 % with 8 % vancomycin base

(BChT ? HeraV 10 %—8 %GB); lyophilized bone chips

mixed with HerafillV 10 % with 8 % vancomycin base

(BChT ? HeraV 5 %—8 %GB)
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of the grafts with antibiotic solutions. However,

according to Sorger et al., the preservation of the

grafts for up to 100 h in an antibiotic solution might

influence the mechanical stability of the bone (Sorger

et al. 2001). Based on Parrish et al. (1973), mechanical

testing of osteochondral and structural allografts

impregnated with antibiotics in solutions should be

performed before this option is taken into clinical use.

In this study, drug concentrations were determined

using a conventional microbiological agar well diffu-

sion assay with Bacillus subtilis as indicator strain

(Stevens et al. 2005; Witso et al. 2005). Because of the

hydrophobic profile of GP which does not allow the

obtainment of a homogeneous elution, we suggest this

method for the concentration estimation instead of

spectrometry techniques which could not show accu-

rate results in these conditions. Due to its hydrophobic

profile, it is expected that the GP coats not only the

bone tissue but also the fat around the BCh (fresh

frozen samples), which could increase the adsorption

areas of the carrier. In this study, samples coated with

GS ? GP showed higher and longer release rates

compared to the other substances. This could be due to

its hydrophobic profile and affinity with the graft’s fat

tissue in some cases. Therefore, it could be an

advantage of the combination of two the gentamicin

salts (GS ? GP), comparing with pure or other

hydrophilic drugs that its concentrations are kept at

homogeneous and constant rates. This could improve

the protection of the bone grafts against infections for

longer periods.

For the bacterial susceptibility, we tested the eluted

substances against S. aureus and methicillin-resistant

Staphylococcus aureus in this study. A range of

bacterial species have been implicated in bone and

joint infections, although staphylococcal species have

been consistently shown to be the most common

causative agents, representing approximately 75 % of

all strains. Among the staphylococci, Staphylococcus

aureus remains a frequently isolated pathogen, caus-

ing 30–35 % of all orthopaedic implant related

infections (Arciola et al. 2005; Schäfer et al. 2008;

Esteban et al. 2010; Montanaro et al. 2011; Schwotzer

et al. 2014) especially methicillin-resistant S aureus

(MRSA) (Parvizi et al. 2009).

PMMA beads showed a constant delivery of

gentamicin within 14 days with a peak release at day

2 since lyophilized allogeneic bone revealed a con-

stant decline of delivery both providing an inhibition

of S. aureus and MRSA after 2 weeks. Herafill� beads

did not deliver antibiotics longer than day nine and

Herafill� and PMMA had a high peak release at day

two compared with lyophilized allogeneic bone.

Besides the positive results with PMMA in this study

and the fact that PMMA is the gold standard bioma-

terial for local delivery of antibiotics, the efficacy of

this material bears many limitations. Such shortcom-

ings include limited antibiotic release, incompatibility

with many antimicrobial agents, and the need for

follow-up surgeries to remove the non-biodegradable

cement before surgical reconstruction of the lost bone

(Inzana et al. 2016). Herafill� on the other hand could

be used as adjuvant in the bone impacting surgeries

once it offers the mechanical stability and capacity of

antibiotic local delivery. The capacity of bone grafts to

act as gentamicin carriers once mixed with Herafill�

granules has been confirmed by Coraça-Huber et al.

The combination of the Herafill� granules in different

sizes with two gentamicin salts (GS ? GP) showed

equivalent efficacy against S. aureus and S. epider-

midis (Coraça-Huber et al. 2015).

The release of gentamicin from lyophilized allo-

geneic bone was similar to the release rate from fresh

frozen bone during all the experimental time. That fact

might be related to the similar porosity and

microstructure of the bone chips (Witso et al. 2002).

The release of gentamicin from lyophilized and fresh

frozen bone was high in the first and second delivery

day, decreasing and keeping a low rate until the end of

the second week. Similar pathway for the delivery of

antibiotic from bone samples was observed and

described by Buttaro et al. 2005 and Winkler et al.

2008 where high initial release of antibiotics for

cancellous bone was detected as well.

The release of vancomycin from lyophilized bone

was effective against S. aureus until the 9th release

day and MRSA only until 7th release day. Better

results were observed by the release vancomycin from

lyophilized bone mixed with Herafill�. Here Her-

afill�mixed with vancomycin showed effect against S.

aureus until day the 14th release day (8 % VB) and

MRSA until the 13th release day (8 % VB). Witso

et al. also showed the total elution time for van-

comycin of 26–32 days in one of his studies using
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human cancellous bone as bone carrier (Witso et al.

2002).Witso did not describe a difference of release of

vancomycin depending on the degree of morselizing

of cancellous bone. Lyophilized bone mixed with

Herafill�G (up to 6.4 %GB) releases effective rates of

antibiotics against S. aureus until 8th day and MRSA

until 9th day.

In conclusion, lyophilized and fresh frozen bone

chips showed a release rate of GB from 10 to 0.3 mg/

mL from 1st to 4th day (FF-BChT) and from 4 to

0.4 mg/mL from 1st to 3rd day. Although it is a low

concentration of gentamicin, based on the literature

this amount would be enough to reach the minimal

inhibitory concentration (MIC) required for killing S.

aureus in planktonic form (Alt et al. 2004; Coraça-

Huber et al. 2012a). In this way, during the period of

7 days after implantation, the surgical site would be

protected against bacterial infection. Until the end of

14 days, the release was low but still efficient to

reduce bacteria counts. To maximize the delivery and

protection against infection, higher concentration

could be loaded to the bone allografts prior

implantation.

Conclusion

Lyophilized and fresh frozen bone allografts once

used as antibiotic carrier, provide efficient release

concentration to inhibit bacterial growth in vitro. The

protection of the grafts up to two weeks depending on

the amount of antibiotic loaded and a combination of

hydrophilic and hydrophobic antibiotics (e.g. gentam-

icin sulfate and gentamicin palmitate) are recom-

mendable. The use of lyophilized and fresh frozen

bone allografts as antibiotic carriers is recommended

for prophylaxis of bone infection.
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