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Abstract

We present TransLiG, a new de novo transcriptome assembler, which is able to integrate the sequence depth and
pair-end information into the assembling procedure by phasing paths and iteratively constructing line graphs
starting from splicing graphs. TransLiG is shown to be significantly superior to all the salient de novo assemblers in
both accuracy and computing resources when tested on artificial and real RNA-seq data. TransLiG is freely available
at https://sourceforge.net/projects/transcriptomeassembly/files/.
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Background
Alternative splicing is an important form of genetic
regulation in eukaryotic genes, increasing the gene
functional diversity as well as the risk of diseases [1–
3]. As reported [4, 5], most of the eukaryotic genes
including human genes undergo the process of alter-
native splicing, and so one gene could produce tens
or even hundreds of splicing isoforms in different cel-
lular conditions, causing different functions and po-
tential diseases. Therefore, the identification of all the
full-length transcripts under specific conditions plays
a crucial role in many subsequent biological studies.
However, we are still far from a complete landscape
of human transcripts, and the situation is even much
less clear for non-human eukaryotic species [6].
RNA-seq is a powerful technology that enables the

identification of expressed genes as well as abundance
measurements at the whole transcriptome level with
unprecedented accuracy [7–10]. The RNA-seq proto-
col takes as input the sampled expressed transcripts
and produces more than 200 million short reads for a
run, and each sequencing read is generally of length
50–150 base pairs, posing great challenges to recon-
struct the full-length transcripts from the RNA-seq
reads. Firstly, different transcripts could have highly
different expression abundances, which makes the
constructed sequence graph (splicing graph, de bruijn

graph, etc.) have quite uneven coverage. Secondly, dif-
ferent transcripts from the same gene can share ex-
onic sequences due to alternative splicing, making the
splicing graph even more complicated. Thirdly, a
large amount of RNA-seq reads contain sequencing
errors, making it more difficult to assemble those
lowly expressed transcripts from the RNA-seq data.
All of the above have made the transcriptome assem-
bly problem highly challenging.
There have been a growing number of methods de-

veloped for solving the transcript assembly problem
in recent years, and most of them could be catego-
rized into two approaches: the reference-based (or
genome-guided) and the de novo [11, 12]. The
reference-based approaches such as Scallop [13],
TransComb [14], StringTie [6], Cufflinks [15], and
Scripture [16] usually first map the RNA-seq reads to
a reference genome using alignment tools such as
Hisat [17], Star [18], Tophat [19], SpliceMap [20],
MapSplice [21], or GSNAP [22], and the reads from
the same gene locus would fall into a cluster to form
a splicing graph, and all the expressed transcripts
could be assembled by traversing the graphs. The as-
sembled transcripts by this strategy generally have
higher accuracy compared to those by de novo strat-
egy as it benefits from a reference genome, but it is
seriously limited in practice because such a
high-quality reference genome is currently unavailable
for most species.
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De novo assembly is a desired approach when the
reference genome is unavailable, incomplete, highly
fragmented, or substantially altered as in cancer tis-
sues. There have been a number of de novo assem-
blers, such as BinPacker [23], Bridger [24], Trinity
[12], IDBA-Tran [25], SOAPdenovo-trans [26], ABySS
[27], and Oases [28]. This strategy usually directly
constructs splicing graphs from RNA-seq reads based
on their sequence overlaps, and then assembles
transcripts by traversing the graphs using different
algorithms. Assemblers like IDBA-Tran, SOAPdenovo-
trans, ABySS, and Oases were developed based on the
key techniques in genome assembly, and so in gen-
eral, they do not work well in transcriptome assem-
bly. Trinity opens the door to design a method
specifically for handling the de novo assembly of tran-
scriptome. It first extends the sequencing reads into
long contigs by a k-mer extension strategy, then con-
nects those contigs into a de bruijn graph, and finally
infers all the expressed transcripts by traversing the
de bruijn graph. As noticed in the Trinity paper, there
are some limitations hindering its applications. The
sequence depth information which would be useful in
the assembling procedure was not adequately used,
and a brute force strategy was applied to search for
transcript-representing paths in the de bruijn graph,
causing it to suffer seriously from false positive rates.
Bridger successfully transplants the minimum
path-cover model from the reference-based assembler
Cufflinks to the de novo assembly and effectively
avoids the exhaustive enumeration, making the false
positives highly decreased. However, it does not make
full use of the sequence depth information which
should be useful in the development of assembling
procedure as mentioned in the Trinity paper. Subse-
quently, a new assembler BinPacker was developed to
fully use the sequence depth information by a
bin-packing model without limiting the minimum
number of paths. BinPacker performs better than
others of same kind, but it has not integrated the
paired-end information into the assembling procedure,
leaving a big room to be improved.
In this paper, we introduce a new de novo assem-

bler TransLiG developed by phasing paths and
iteratively constructing weighted line graphs starting
from splicing graphs. The idea of phasing paths in
TransLiG was motivated from Scallop [13], a
reference-based transcriptome assembler, which also
adopted a similar strategy of phasing paths in a
graph. Although Scallop and TransLiG shared the
same idea of graph decomposition, they were
differently using the sequence depth and paired-end
information. Different from Scallop which decom-
posed graphs by iteratively constructing local bipartite

graphs, TransLiG pursued the globally optimum solu-
tion by iteratively building weighted line graphs.
TransLiG was developed to integrate the sequence

depth and pair-end information into the assembling pro-
cedure by phasing paths and iteratively constructing line
graphs, making it substantially superior to all the salient
tools of same kind, e.g., Trinity, Bridger, and BinPacker.
When tested on both the artificial and real data, it
reaches the precision 6% higher than BinPacker and
Bridger, and nearly 15% higher than Trinity on artificial
data, and 7%, 14%, and 21% higher than BinPacker, Brid-
ger, and Trinity respectively, on the tested mouse data.
Not only does TransLiG achieve the highest precision,
but also it reaches the highest sensitivity on all the tested
datasets. In addition, TransLiG stably keeps the best per-
formance with different assessment parameters.

Results and discussion
We compared TransLiG with five salient de novo assem-
blers: BinPacker (version 1.0), Bridger (version r2014-12-01),
Trinity (version 13.02.25), IDBA-Tran (version 1.1.1), and
SOAPdenovo-trans (version 1.0.3) on both artificial and real
datasets. The parameter settings for each of them are de-
scribed in the Additional file 1: Supplementary Notes.

Assessment metrics and performance evaluation
Commonly used criteria were applied to the evaluation
of all the salient de novo assembling algorithms in this
experiment. Assembled transcripts by each assembler
were aligned to the expressed transcripts in ground truth
using BLAT [29] with 95% sequence identity as cutoff.
An expressed transcript is called full-length recon-
structed if it was covered by an assembled transcript
with at least 95% sequence identity and no more than
5% insertions or deletions (indels), and this assembled
transcript is called a true positive. To make more con-
vincing comparisons, we also considered different se-
quence identity levels (90%, 85%, and 80%) to define
full-length reconstructed reference transcripts and true
positives. Accuracy is measured by sensitivity and preci-
sion, where sensitivity is defined as the number of
full-length reconstructed transcripts in ground truth by
an assembler, and precision is defined as the fraction of
true positives out of all assembled transcripts.

Evaluation on simulation data
We first tested TransLiG against the other assemblers
on the simulation data which was generated by the tool
Flux Simulator [30] using all the known human tran-
scripts (approximately 83,000 sequences) from the
UCSC hg19 gene annotation. The generated dataset con-
tains approximately 55 million strand-specific RNA-seq
paired-end reads of 76-bp length.
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Testing all the six assemblers on the simulation
data, we found that TransLiG reconstructed 7935
full-length expressed transcripts, while BinPacker,
Bridger, Trinity, IDBA-Tran, and SOAPdenovo-trans
respectively recovered 7602, 7572, 6863, 5405, and
7080 full-length expressed transcripts. Therefore,
TransLiG reaches the highest sensitivity followed by
BinPacker and Bridger. The reason why BinPacker
and Bridger are inferior to TransLiG while superior
to the others is simply because they employed appro-
priately mathematical models in their assembly proce-
dures, while they did not sufficiently use the
paired-end and sequence depth information. Trinity
was brutally enumerating all the paths over de Bruijn
graphs, and thus generating a large amount of tran-
script candidates. However, the brute force strategy
involves too many false positives, leading to a poor
sensitivity. IDBA-Tran behaves the worst among all
the compared tools. We can see from Fig. 1a that
TransLiG recovered 4.38% more full-length expressed
transcripts than the next best assembler BinPacker,
and 15.62% more than Trinity. In addition, TransLiG
consistently behaves the best in sensitivity under dif-
ferent sequence identity levels (95%, 90%, 85%, and
80%) as illustrated in Fig. 1a and Additional file 1:
Table S1. Not only does TransLiG perform better in
sensitivity than all the compared tools, but also it
does in precision. It reaches the highest precision of
44.21% versus BinPacker of 38.01%, Bridger of
37.94%, Trinity of 29.43%, IDBA-Tran of 27.33%, and
SOAPdenovo-trans of 27.37%, and keeps its superior-
ity under different sequence identity levels (see Fig. 1b
and Additional file 1: Table S1). SOAPdenovo-trans
recovered more full-length expressed transcripts than

Trinity, but its precision is the lowest among all the
compared tools.
We also compared their abilities of reconstructing

expressed full-length transcripts at different abun-
dance levels, which was evaluated by recall defined as
the fraction of full-length reconstructed expressed
transcripts out of all expressed transcripts under dif-
ferent transcript abundance levels. We can see from
Fig. 1c that IDBA-Tran shows the lowest recall under
all the abundance levels, and the recalls of Trinity
under low abundances (1–10 and 10–20) are similar
with BinPacker and Bridger, a little higher than
SOAPdenovo-trans. However, SOAPdenovo-trans
demonstrates much higher recalls than Trinity under
high abundances (20–100). TransLiG is consistently
superior to all the compared tools in recall across all
the expression levels.
We further compared the performance of the assem-

blers in identifying expressed genes. A gene is considered
to be correctly identified if at least one of its transcripts
was correctly assembled. We found that TransLiG cor-
rectly identified 6189 genes, while BinPacker, Bridger,
Trinity, IDBA-Tran, and SOAPdenovo-trans identified
5984, 5979, 5247, 4865, and 5951, respectively. Therefore,
TransLiG outperforms all the compared assemblers in
terms of the number of expressed genes identified.

Evaluation on real data
In this section, we tested the six assemblers on the fol-
lowing three real biological datasets, the human K562
cells, the human H1 cells, and the mouse dendritic cells
datasets, containing 88 million, 41 million, and 53 mil-
lion paired-end reads, respectively. They were collected
from the NCBI Sequence Read Archive (SRA) database

Fig. 1 Comparison results on simulated data. a Comparison of sensitivity distributions of the six tools against different sequence identity levels. b
Comparison of precision distributions of the six tools against different sequence identity levels. c Comparison of recall distributions of the six
tools against transcript expression levels
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with accession codes SRX110318, SRX082572, and
SRX062280, respectively. Different from simulated data-
sets, which provide us the explicit ground truth, it is im-
possible for us to know all the genuine transcripts
encoded in the real datasets. Despite this, we collected
all the currently known transcripts in the UCSC genome
databases as references. The versions of human and
mouse reference transcripts used in this study are
GRCh37/hg19 and GRCm38/mm10, respectively.
Running the six assembling tools on the human

K562 cells, the human H1 cells and the mouse den-
dritic cells datasets, we found that TransLiG recov-
ered 9826, 10,017, and 12,247 full-length reference
transcripts respectively on the three real datasets, ver-
sus 9454, 9557, and 11,761 by the second best assem-
bler BinPacker, and 8315, 8516, and 9937 by Trinity,
i.e., TransLiG recovered 3.93%, 4.81%, and 4.13%
more full-length reference transcripts than BinPacker,
and 18.17%, 17.63%, and 23.25% more than Trinity.
In addition, TransLiG consistently keeps the highest
sensitivity under different sequence identity levels (see
Fig. 2 and Additional file 1: Table S2-S4), clearly indi-
cating its higher reliability and stability.
As for precision, TransLiG reaches 12.90%, 12.72%,

and 33.26% on the human K562 cells, the human H1
cells and the mouse dendritic cells datasets, respectively,
versus 10.18%, 8.57%, and 26.03% by the second best
BinPacker, and 7.24%, 4.92%, and 12.37% by Trinity.
Similar to the results on the simulation datasets,
SOAPdenovo-trans shows the lowest precision among
all the compared tools on the real datasets. By compari-
sons, we see that TransLiG has been significantly im-
proved in precision compared to the others, especially
on the mouse data, where the TransLiG achieves 7%
more than the next best BinPacker, and 21% more than

Trinity. In addition, the superiority of TransLiG was also
clearly demonstrated by changing the sequence identity
levels (see Fig. 3 and Additional file 1: Table S2-S4).
Similarly, we also compared the assemblers in terms of

the numbers of the expressed genes identified on real
datasets. We found that TransLiG correctly identified
5468, 5669, and 7425 genes on the human K562 cells, the
human H1 cells, and the mouse dendritic cells datasets,
respectively, versus 5359, 5485, and 7250 by BinPacker;
5330, 5509, and 7284 by Bridger; 4726, 5003, and 6262 by
Trinity; 2823, 3387, and 4533 by IDBA-Tran; and 4179,
4403, and 7145 by SOAPdenovo-trans.
The evaluations on both artificial and real datasets

have fully demonstrated that TransLiG consistently
shows the best performance among all the salient tools
of same kind no matter in terms of sensitivity, precision,
or the number of identified genes.

Evaluation of computing resource usage
De novo assemblers generally consume large computing
resources (e.g., CPU time and memory usage). We by
Fig. 4 and Fig. 5 illustrate the CPU time and memory
(RAM) usage by individual assemblers on the real data-
sets. We see from Fig. 4 that Trinity and IDBA-Tran
consume much more CPU times than all the others on
all the three datasets. SOAPdenovo-trans is the fastest
one among all the compared tools, while TransLiG,
BinPacker, and Bridger cost CPU times similar to
SOAPdenovo-trans. As for the RAM usage, Fig. 5 shows
that Trinity consumes much higher memory than all the
others on all the three datasets, where TransLiG,
BinPacker, and Bridger cost similar memory resources,
but higher than IDBA-Tran and SOAPdenovo-trans.
IDBA-Tran is the most parsimonious one followed by
SOAPdenovo-trans in terms of RAM usage. Overall,

Fig. 2 Comparison of sensitivity distributions of the six tools against the different sequence identity levels on the three real datasets: a human
K562, b human H1, and c mouse dendritic
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TransLiG is not the most parsimonious, but it is quite
acceptable for practical use.

Conclusions
In this study, we presented a novel de novo assembler
TransLiG for transcriptome assembly using short
RNA-seq reads. Compared to the salient assemblers
of same kind on both simulated and real datasets,
TransLiG consistently performs the best in accuracy
(including sensitivity and precision) and the number
of correctly identified genes. The superiority may attribute
to the following facts. Firstly, TransLiG constructs more
accurate splicing graphs by reconnecting fragmented
graphs via iterating different lengths of smaller k-mers.
Secondly, TransLiG substantially integrates the sequence
depth and paired-end information into the assembling
procedure via enforcing each pair-supporting path being

included in at least one assembled transcript. Thirdly,
TransLiG accurately links the in-coming and out-going
edges at each node via iteratively solving a series of quad-
ratic programmings, which are optimizing the utilizations
of the paired-end and sequencing depth information. Fi-
nally, TransLiG benefits from the iterations of weighted
line graphs constructed by repeatedly phasing
transcript-segment-representing paths. Notice that the
final line graph Ln(G) is empty, and the isolated nodes
generated during the line graph iteration could be ex-
panded into assembled transcripts.
To our best knowledge, TransLiG is the first de novo

assembler which effectively integrates the paired-end
and sequence depth information into the assembling
procedure via phasing and contracting paths with the
help of line graph iterations. The software has been de-
veloped to be user-friendly and expected to play a

Fig. 3 Comparison of precision distributions of the six tools against different sequence identity levels on the three real datasets: a human K562, b
human H1, and c mouse dendritic

Fig. 4 Comparison of CPU times for the six tools on the three datasets: a human K562, b human H1, and c mouse dendritic
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crucial role in new discoveries of transcriptome studies
using RNA-seq data, especially in the research areas of
complicated human diseases such as cancers, discoveries
of new species, and so on.

Methods
We designed the new de novo assembler TransLiG to
retrieve all the transcript-representing paths in splicing
graphs by phasing paths in the splicing graphs and itera-
tively constructing line graphs starting from the splicing
graphs. For a graph G = (V, E), the line graph L(G) of G
is the graph with nodes representing edges of G, and
edges representing incident relationship between edges
in G, i.e., two nodes u, v of L(G), that are edges of G, are
connected by an edge in L(G) if and only if they share a
node in G. Obviously, the line graph of a directed acyclic
graph (DAG) remains a DAG. Therefore, the line graph
of a splicing graph must be a DAG. By Ln(G), we define
the line graph of G of order n, i.e., Ln(G) = L(Ln-1(G)),
where L0(G) =G. It then turns out that Ln(G) is an
empty graph, i.e., a graph with all nodes being isolated
for a DAG graph G of n nodes. Obviously, each isolated
node generated during the line graph iteration can be
expanded into a transcript-representing path P in G.
The basic idea behind TransLiG is to globally optimize

the accuracy of retrieving all the full-length transcripts
encoded in a splicing graph by phasing paths and itera-
tively constructing the next line graph Li + 1(G) weighted
by solving series of quadratic programming problems
defined on the current (line) graph Li(G). After removing
all the zero-weighted edges from the constructed line
graph, the remaining graph ideally consists of the line
graph edges of individual transcript-representing paths
in the current graph Li(G). Continuing the iteration until
Ln(G) becomes empty. Hopefully, each isolated node
generated during the line graph iteration will be ex-
panded into a transcript-representing path, which

exactly corresponds to an expressed transcript. The
flowchart of the TransLiG is roughly outlined in Fig. 6
and followed by the pseudo-codes of TransLiG.

De novo assembling algorithm TransLiG
Step 1: Construction of splicing graphs
We first construct initial splicing graphs based on the
graph-building framework of BinPacker [23], and then,
we designed a novel technique to effectively modify the
initial splicing graphs by merging the isolated pieces (see
Additional file 1: Methods 2.1 for details).

Step 2: Phasing pair-supporting paths
Ideally, each expressed transcript T corresponds to a
unique path PT in the splicing graph, and so a segment
in the transcript T corresponds to a sub-path of PT,
which is called a transcript-segment-representing path
later on. Two paired-end reads r1 and r2 are supposed to
come from a single transcript, corresponding to a seg-
ment in the transcript, and so a transcript-segment-re-
presenting path in the splicing graph. The
transcript-segment-representing path in this paper is
called a pair-supporting path. TransLiG retrieves a set,
denoted by PG, of all the pair-supporting paths for each
splicing graph G.
In detail, for each single-end read r, if it spans a

sub-path P = ni1→ ni2→…→ nip of graph G and p ≥ 3,
then we add a pair-supporting path P = ni1→ ni2→
…→ nip to PG. For the case of paired-end reads r1 and
r2, if r1 spans a sub-path P1 = ni1→ ni2→…→ nip, and
r2 spans a sub-path P2 = nj1→ nj2→…→ njq, and there
exists a unique path Pin = nip→ nm1→ nm2→…→
nmk→ nj1 between nip and nj1 in G, and p + k + q ≥ 3, we
then add a pair-supporting path P = P1→ Pin→ P2 to PG.
Different reads (single-end or paired-end) may generate
the same pair-supporting path. So, each pair-supporting

Fig. 5 Comparison of RAM usages for the six tools on the three datasets: a human K562, b human H1, and c mouse dendritic
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path P is assigned a weight cov(P) as the number of
reads that could generate the path P.

Step 3: Iteratively construction of weighted line graphs
Starting from a splicing graph, let G be the current
weighted (line) graph. TransLiG weights the line graph

L(G) of G via solving a quadratic program at each node
of G. Assume that node v in G has n in-coming edges
and m out-going edges. In theory, there are m × n feas-
ible connections between the n in-coming edges and m
out-going edges. We expect to find the correct connec-
tions that the to-be-assembled transcripts pass through.

Fig. 6 Flowchart of TransLiG. a TransLiG takes as input the RNA-seq reads (single or pair) to construct splicing graphs by first using the graph-
building framework of BinPacker to build initial splicing graphs, and then modifying initial splicing graphs by merging the isolated pieces in a
specific way. b TransLiG phases pair-supporting paths from the splicing graphs to ensure that each pair-supporting path is covered by an
assembled transcript. c TransLiG assembles transcripts by iteratively constructing weighted line graphs until empty. d The transcript-representing
paths are obtained by expanding all the isolated nodes generated during the line graph iteration
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To achieve this goal, we designed the following pro-

gramming, in which ðs j−
X

j¼1;…;m

wijxijÞ2 measures the de-

viation between the weight of the in-coming edge ei and
the sum of the weights of all the transcript-representing
paths passing through ei, and similarly for

ðc j−
X

i¼1;…;n

wijxijÞ2 , where si is the weight of the

in-coming edge ei at v, cj the weight of the out-going
edge ej at v; xij represents a binary variable with xij = 1 if
there is at least one transcript-representing path passing
through ei and ej, and 0 otherwise, and wij represents the
coverage value of all the transcript-representing paths
passing through ei and ej. We then minimize the devia-
tions for all the in-coming and out-going edges to find
the correct connections between the in-coming and
out-going edges. Therefore, the correct way of all the
transcript-representing paths passing through the node v
could be determined by solving the following quadratic
program.

min z ¼
X

i¼1;…;n

si−
X

j¼1;…;m

wijxij

 !2

þ
X

j¼1;…;m

cj−
X

i¼1;…;n

wijxij

 !2

s:t:

xij ¼ 1; if ei; e j
� �

⊂P;P∈PG

wij≥
X

P∈PG ; ei;e jð Þ⊂P
cov Pð Þ; i ¼ 1;…; n; j ¼ 1;…;m

X

i¼1;…;n

xij≥1; j ¼ 1;…;m

X

j¼1;…;m

xij≥1; i ¼ 1;…; n

wij≥0
xij ¼ 0; 1f gX

i ¼ 1;…;n
j ¼ 1;…;m

xij ¼ M

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

where PG is the set of pair-supporting paths, and cov(P)
is the coverage of pair-supporting path P; M represents
the expected number of transcript-representing paths
passing through the node v, and clearly max{m, n} ≤
M ≤m × n (see Additional file 1: Methods 2.2 in details
for the determination of M). Clearly, this is a mixed inte-
ger quadratic programming, an NP-hard problem. How-
ever, it is computationally acceptable in our assembly
procedure due to the specific properties of the con-
structed splicing graphs (see Additional file 1: Methods
2.3 in details for the solution of the quadratic
programming).
Let {xij, wij} be the optimum solution of the quadratic

program. Then the line graph L(G) of the current (line)
graph G is weighted by assigning wij to (ei, ej) if xij = 1,
and 0 otherwise. Reset G to be the graph L(G) by remov-
ing all the zero-weighted edges, and modifying the
pair-supporting paths in PG accordingly. Then TransLiG
repeats Step 3 until L(G) is empty.

Step 4: Recovery of transcripts
TransLiG recovers all the transcripts by expanding all
the isolated nodes generated during the line graph it-
eration, i.e., by tracking back to recover all the
transcript-representing paths in the original splicing
graphs.

Additional file

Additional file 1: This file contains the parameter setups of the
compared assemblers, the supplementary methods, figures and tables.
(PDF 368 kb)
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