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Abstract: In the area of gene-directed enzyme prodrug therapy (GDEPT), using herpes simplex virus
thymidine kinase (HSV-tk) paired with prodrug ganciclovir (GCV) for cancer treatment has been ex-
tensively studied. It is a process involved with two steps whereby the gene (HSV-tk) is first delivered
to malignant cells. Afterward, non-toxic GCV is administered to that site and activated to cytotoxic
ganciclovir triphosphate by HSV-tk enzyme expressed exogenously. In this study, we presented a
one-step approach that both gene and prodrug were delivered at the same time by incorporating them
with polymeric micellar nanovectors. GCV was employed as an initiator in the ring-opening poly-
merization of ε-caprolactone (ε-CL) to synthesize hydrophobic GCV-poly(caprolactone) (GCV–PCL),
which was furthered grafted with hydrophilic chitosan to obtain amphiphilic polymer (GCV–PCL–
chitosan) for the fabrication of self-assembled micellar nanoparticles. The synthesized amphiphilic
polymer was characterized using Fourier transform infrared spectroscopy and proton nuclear mag-
netic resonance. Micellar prodrug nanoparticles were analyzed by dynamic light scattering, zeta
potential, critical micelle concentration, and transmission electron microscopy. Polymeric prodrug
micelles with optimal features incorporated with HSV-tk encoding plasmids were cultivated with
HT29 colorectal cancer cells and anticancer effectiveness was determined. Our results showed that
prodrug GCV and HSV-tk cDNA encoded plasmid incorporated in GCV–PCL–chitosan polymeric
nanocarriers could be delivered in a one-step manner to HT-29 cells and triggered high cytotoxicity.

Keywords: polymeric micelles; ganciclovir; gene-directed enzyme prodrug therapy; prodrug; HT29
cells; HSV-tk

1. Introduction

To facilitate tumors susceptible to enzyme-prodrug cancer therapy, prodrug-activating
exogenous enzymes can be delivered to tumor cells using genes. This approach is so-called
gene-directed enzyme prodrug therapy (GDEPT) [1]. It is a two-step treatment for cancer
therapy. Enzymes are delivered to and expressed in target cells where they can activate
subsequently administered non-toxic prodrugs to cytotoxic drugs. In the first step, a gene
expressing the enzyme is delivered. In the second step, a prodrug is administered that can
be activated to a toxic drug by the enzyme that has been expressed in the tumor. So far, the
delivery of prodrug and gene was conducted via separate routes [2,3]. The widely used
GDEPT system is herpes simplex virus thymidine kinase (HSV-tk) in combination with
ganciclovir prodrug [4,5]. Ganciclovir (GCV) is also a well-known antiviral agent [6–8].
The HSV-tk/GCV system has been employed to catalyze GCV into its cytotoxic form [i.e.,
ganciclovir triphosphate (GCV-TP)] by exogenously expressed HSV-tk enzyme for the
treatment of brain tumors [9,10], colorectal tumors [11,12], and head/neck tumors [13,14].
Published accounts have shown that HSV-tk/GCV exhibits not only cytotoxicity but also
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a bystander effect that augments the anticancer effectiveness [5,15,16]. That being said,
significant therapeutic benefit has been limited by the delivery efficiency to tumor cells.
The studies of GDEPT have been focused on using viral vectors to deliver activating genes
to malignant cells [17,18]. However, viruses have the risk of rendering tumorigenicity
and immunogenicity [19]. Safety concerns involved with viral vectors have triggered the
development of nonviral vectors for cancer gene therapy. In particular, polymer micellar
nanoparticle formulations have gained attention due to their widespread use as drug
delivery vehicles [20–23].

In this study, we intend to develop a single polymeric micellar carrier that contains
both prodrug GCV and its activating HSV-tk gene for establishing a one-step approach
for GDEPT. The polymeric nanocarrier is composed of a hydrophobic inner core and a
hydrophilic outer shell. Poly(ε-caprolactone) (PCL) having been widely used as the core-
forming hydrophobic segment of nanoparticles is selected as the model polymer. PCL
is linear resorbable aliphatic polyester. It has been frequently explored as implantable
carriers for drug delivery systems due to the biocompatible nature of the degradation
products [24]. Moreover, PCL is currently approved by the FDA for use in humans. PCL is
commonly synthesized by ring-opening polymerization of ε-caprolactone using alcohol
(R-OH) as an initiator and stannous (II) octoate (Sn(Oct)2) as a catalyst [25,26]. Prodrug
GCV possessing hydroxyl groups was employed as the initiator to synthesize GCV–PCL
by ring-opening polymerization of ε-caprolactone [27]. The reported liphophilic GCV–PCL
were further grafted with hydrophilic biodegradable chitosan which has been widely
accepted as an efficient vector for nonviral gene delivery by forming complexes with DNA
plasmids [28,29].

To evaluate the anticancer efficacy of the self-assembled polymeric micelles formed
from the synthesized amphiphilic polymer, HT29/HSV-tk cells which expressed HSV-tk
gene encoding plasmid were treated with synthesized polymeric prodrug micelles. More-
over, the positive charge endowed on the micelles by chitosan was used to attract negatively
charged HSV-tk gene encoding plasmid onto the polymeric prodrug micelles. The GCV-
embedded polymeric micelles formed polyplexes with HSV-tk plasmids were harnessed for
one-step GDEPT cancer therapy to parental HT29 colorectal cells, as illustrated in Figure 1.
Our results indicate that GCV–PCL–chitosan/HSV-tk nanovectors are potent carriers for
one-step GDEPT.

Molecules 2021, 26, x 2 of 16 
 

tk enzyme for the treatment of brain tumors [9,10], colorectal tumors [11,12], and 
head/neck tumors [13,14]. Published accounts have shown that HSV-tk/GCV exhibits not 
only cytotoxicity but also a bystander effect that augments the anticancer effectiveness 
[5,15,16]. That being said, significant therapeutic benefit has been limited by the delivery 
efficiency to tumor cells. The studies of GDEPT have been focused on using viral vectors 
to deliver activating genes to malignant cells [17,18]. However, viruses have the risk of 
rendering tumorigenicity and immunogenicity [19]. Safety concerns involved with viral 
vectors have triggered the development of nonviral vectors for cancer gene therapy. In 
particular, polymer micellar nanoparticle formulations have gained attention due to their 
widespread use as drug delivery vehicles [20–23]. 

In this study, we intend to develop a single polymeric micellar carrier that contains 
both prodrug GCV and its activating HSV-tk gene for establishing a one-step approach 
for GDEPT. The polymeric nanocarrier is composed of a hydrophobic inner core and a 
hydrophilic outer shell. Poly(ε-caprolactone) (PCL) having been widely used as the core-
forming hydrophobic segment of nanoparticles is selected as the model polymer. PCL is 
linear resorbable aliphatic polyester. It has been frequently explored as implantable carri-
ers for drug delivery systems due to the biocompatible nature of the degradation products 
[24]. Moreover, PCL is currently approved by the FDA for use in humans. PCL is com-
monly synthesized by ring-opening polymerization of ε-caprolactone using alcohol (R-
OH) as an initiator and stannous (II) octoate (Sn(Oct)2) as a catalyst [25,26]. Prodrug GCV 
possessing hydroxyl groups was employed as the initiator to synthesize GCV–PCL by 
ring-opening polymerization of ε-caprolactone [27]. The reported liphophilic GCV–PCL 
were further grafted with hydrophilic biodegradable chitosan which has been widely ac-
cepted as an efficient vector for nonviral gene delivery by forming complexes with DNA 
plasmids [28,29]. 

To evaluate the anticancer efficacy of the self-assembled polymeric micelles formed 
from the synthesized amphiphilic polymer, HT29/HSV-tk cells which expressed HSV-tk 
gene encoding plasmid were treated with synthesized polymeric prodrug micelles. More-
over, the positive charge endowed on the micelles by chitosan was used to attract nega-
tively charged HSV-tk gene encoding plasmid onto the polymeric prodrug micelles. The 
GCV-embedded polymeric micelles formed polyplexes with HSV-tk plasmids were har-
nessed for one-step GDEPT cancer therapy to parental HT29 colorectal cells, as illustrated 
in Figure 1. Our results indicate that GCV–PCL–chitosan/HSV-tk nanovectors are potent 
carriers for one-step GDEPT. 

 
Figure 1. Polymeric micelles of ganciclovir–poly(caprolactone) (GCV–PCL)-chitosan are fabricated 
due to the hydrophobicity of PCL and cationic hydrophilicity of chitosan. The GCV–PCL–chi-
tosan/HSV-tk complex is assembled through ionic interactions. For each tumor cell, the GCV–

Figure 1. Polymeric micelles of ganciclovir–poly(caprolactone) (GCV–PCL)-chitosan are fabri-
cated due to the hydrophobicity of PCL and cationic hydrophilicity of chitosan. The GCV–PCL–
chitosan/HSV-tk complex is assembled through ionic interactions. For each tumor cell, the GCV–
PCL–chitosan/HSV-tk complex is first ingested into the endosome and then transported into the
nucleus which allows HSV-tk gene to be expressed into prodrug activating enzyme which converts
prodrug GCV into an active toxic drug (i.e., GCV–TP) for tumor cell destruction.



Molecules 2021, 26, 1759 3 of 15

2. Results and Discussion
2.1. Synthesis and Characterization of Amphiphilic Prodrug Polymers

GCV–PCL was synthesized using ring-opening polymerization of ε-caprolactone via
the hydroxyl groups on GCV (Figure 2A). The proton nuclear magnetic resonance (NMR)
spectra of prodrug GCV and GCV–PCL are shown in Figure 3(i) and (ii), respectively.
Chemical shifts at δ = 2.27 (1-CH2), 1.62 (2-CH2), 1.37 (3-CH2), and 4.04 (4-CH2) ppm
correspond with the backbone chain of a polycaprolactone polymer. Peaks at δ = 3.63 (e,
f-CH2), 5.47 (d-CH2) and 7.76 (b-CH) are corresponding to the protons in prodrug GCV.
The synthesis of GCV–PCL is confirmed by the characteristic resonances revealed in the
obtained polycaprolactone incorporated with prodrug GCV.
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GCV–PCL was further grafted with chitosan as shown in Figure 2B–D. Proton NMR
analysis (see Figure 3iii) confirms the successful grafting of chitosan to GCV–PCL hy-
drophobic polymer. As shown in Figure 2D, chitosan grafted to GCV–PCL is made via
amide linkage. The peak at δ = 1.79 (l-NH2) from a singlet to a multiplet in Figure 3iii
confirms conjugation of chitosan to GCV–PCL. Moreover, the peaks from the protons on
C3–C6 of chitosan can be seen from δ = 3.28–3.85.

Moreover, the gel permeation chromatography (GPC) data shown in Table 1 confirmed
the formation of amphiphilic copolymer GCV–PCL–chitosan. GCV–PCL hydrophobic
polymer had an observed number-average molecular weight (Mn) of 11.5 kDa which
increased to 17.2 kDa after the addition of chitosan. This corresponds well with the
addition of chitosan which had an average molecular weight of 5 kDa. Furthermore, the
polydispersity index (PDI) of both GCV–PCL and GCV–PCL–chitosan polymer was low
at 1.13 and 1.18, respectively which indicates that the polymer chains are approaching
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a uniform chain length. The molecular weights of GCV–PCL and GCV–PCL–chitosan
were found via GPC calibrated by polystyrene standards. The molar ratio of GCV–PCL to
chitosan used for the synthesis was calculated to be 1:5.
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Table 1. Characterization of GCV–PCL–chitosan a.

Sample Mw (Da) Mn (Da) Polydispersity
(Mw/Mn)

GCV–PCL 12,996 11,454 1.13
GCV–PCL–chitosan 20,354 17,231 1.18

a Measured by GPC.

Figure 4 reveals the Fourier transform infrared (FTIR) spectra of GCV–PCL (A), chi-
tosan (B), and GCV–PCL–chitosan (C). OH stretching from 3604–3167 cm−1 as well as
peaks at 1634 cm−1 and 1295 cm−1 corresponds to N-H bending vibrations of primary and
secondary amine endowed by chitosan and GCV, respectively. The above-mentioned peaks
and the carbonyl absorption at 1721 cm−1 associated with PCL and a peak at 1044 cm−1

(C–O–C) shown in each spectrum are observed in GCV–PCL–chitosan. The FTIR results
are consistent with the outcomes from proton NMR and assure the successful synthesis of
GCV–PCL–chitosan.
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2.2. Characterization of GCV-Tagged Polymeric Micelles and Their Complexes with HSV-tk

Polymeric micelles of GCV–PCL–chitosan were fabricated by the solvent evaporation
method, using GCV–PCL as the hydrophobic core section and chitosan as the cationic
and hydrophilic corona section. Pyrene was utilized as a hydrophobic fluorescent probe
to determine the critical micelle concentration (CMC) of GCV–PCL–chitosan polymeric
micelles. Pyrene could partition into the hydrophobic core (i.e., GCV–PCL segment)
microdomains and alter the intensities of the first and third bands in the pyrene fluorescence
spectrum [30]. A low CMC is an indication that the micellar solution is stable at high
dilutions. For GCV–PCL–chitosan polymeric micelles, the shift of the first and third
bands was observed at I338/I329. The critical micelle concentration was calculated to be
1.12 × 10−2 mg/mL (Figure 5A). To determine the prodrug GCV loading percentage in
the formed GCV–PCL–chitosan polymeric micellar solution, the absorbance at 420 nm
(maximum peak of GCV) of GCV–PCL–chitosan polymeric micelles was measured at t = 0 h
and t = 72 h. The standard calibration curve of GCV absorbance (at 420 nm) versus GCV
concentration ranging from 0.002 to 1.0 mg/mL was employed to determine the amount of
GCV in the polymeric prodrug micelles. The percentage of prodrug GCV incorporated in
GCV–PCL–chitosan polymeric micelles was calculated to be 4.8%.
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As shown in Figure 5B, the morphology and size of GCV–PCL–chitosan polymeric
micelles were determined by TEM and dynamic light scattering (DLS) analysis. The average
size of polymeric micelles as determined by DLS was 93.4 nm with a zeta potential of
38.5 mV. This positive charge is attributed to chitosan employed as the hydrophilic portion
on the polymeric prodrug micelle carriers. TEM analysis, shown in the inset of Figure
5B, illustrates the spherical morphology of the polymeric micelles. The size distribution
GCV–PCL–chitosan polymeric micelles obtained from DLS analysis is consistent with the
one analyzed from the TEM images.

After the preparation of GCV–PCL–chitosan polymeric micelles, various amounts of
HSV-tk gene encoding plasmids (1.5, 2.0, 3.0, and 4.5 µg) were mixed with 1 mL of polymeric
micelle solution. Due to electrostatic interaction, the negatively charged plasmids were
able to form a complex with the positively charged chitosan employed as the hydrophilic
section in polymeric micelles. Size and charge measured by DLS and zeta potential were
listed in Table 2. The DNA plasmid was incubated for 30 min to form complexes with
GCV–PCL–chitosan polymeric micelles. The size of formed GCV–PCL–chitosan/HSV-tk
nanovectors was increased up to 128.4 nm with the addition of 4.5 µg of HSV-tk gene
encoding plasmids. Accordingly, the charge gradually decreased from 38.5 to 28.2 mV after
cationic polymeric micelles complexes with more (up to 4.5 µg) negatively charged HSV-tk
DNA plasmid.

Table 2. The size and charge of GCV–PCL–Chitosan/HSV-tk DNA nanovectors.

Amount of DNA (µg) Size ± SD (nm) Zeta Potential ± SD (mV)

0 93.4 ± 2.5 38.5 ± 2.7
1.5 92.4 ± 0.9 37.9 ± 5.3
2.0 92.4 ± 1.2 37.5 ± 1.8
3.0 92.8 ± 0.7 30.1 ± 3.1
4.5 128.4 ± 1.5 28.2 ± 0.9

SD = standard deviation.

2.3. Release of GCV from Polymeric Micelles

Esterase with the enzyme activity of 1.5 units/mL was used to mimic the cellular
environment [31]. As illustrated in Figure 6A, it took 48 h without esterase for GCV to
reach a maximum release of 77%. In contrast, the release of GCV with esterase was much
faster and reaching a maximum release of 81% within 30 h (Figure 6B). Moreover, it took
up to 2 h before a substantial difference in the release rate was observed. This is because of
the time required for esterase diffusing into the hydrophobic core of polymeric micelles for
the cleavage of an ester bond between GCV and PCL.
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The release profile of GCV from GCV–PCL–chitosan polymeric micelles was fitted with
the Langmuir model and power-law model. As illustrated in Figure 6A,B, the power-law
model was not a good fit for the release of GCV from polymeric micelles. The exponent n
of the power-law model was equal to 0.18 and 0.29 for polymeric micelles with and without
esterase, respectively. The mechanism of drug release was not solely by diffusion [32]. The
release of GCV without esterase occurred by hydrolysis of the ester bond between GCV
and PCL. The release rate was increased by the addition of esterase to polymeric micelles
due to enhanced hydrolysis of the ester bond attributed to esterase. Since GCV release
happened by reactive diffusion, the Langmuir model was therefore chosen for fitting the
experimental data. As shown in Figure 6A,B, the release of GCV from polymeric prodrug
micelles with and without esterase using the Langmuir model fits the experimental data
better. Moreover, the dissociation constant for the release of GCV from polymeric prodrug
micelles, was calculated to be 1.18 and 2.79 with and without esterase, respectively.

2.4. Characterization of HT29/HSV-tk Cells

To investigate the efficacy of GCV for GDEPT, HT29 colorectal cancer cells were
transfected with HSV-tk gene encoding plasmid complexed with MPEG–PCL–chitosan
polymeric micelles. As shown in Figure 7, the growth kinetics of HSV-tk gene transfected
HT29 (i.e., HT29/HSV-tk) cells is similar to the one obtained for parental HT29 cells. This
indicates that the antibody selection of a stably transfected cell line was not altered in the
growth profile.

A Western blot analysis was conducted to detect and verify the expression of HSV-tk in
HT29 cells transfected with HSV-tk gene using MPEG–PCL–chitosan polymeric micelles. To
demonstrate the robust expression of HSV-tk in the cell line, total proteins were extracted
and analyzed for HSV-tk expression via Western blot. As shown in Figure 8, a strong
band corresponding to HSV-tk (~50 kD) is observed in protein extracts from transfected
HT29/HSV-tk cells (lane 1), whereas the untransfected parental HT29 cells as negative
control display no HSV-tk expression (lane 2). The expression of β-actin used as internal
control detected at ~43 kD reveals a similar level for the protein extracted from transfected
HT29/HSV-tk cells and untransfected parental HT29 cells. These results confirmed that
MPEG–PCL–chitosan/HSV-tk nanovectors could efficiently induce high levels of HSV-tk
expression in HT29 cells. It is expectable that GCV–PCL–chitosan/HSV-tk nanocomplexes
could produce significant expression of HSV-tk enzyme, thereby resulting in the death of
transfected HT29 cells via converting prodrug GCV into toxic GCV–TP in the presence of
exogenously expressed HSV-tk enzyme.
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Figure 8. Western blot analysis of HT29/HSV-tk cells performed to detect and verify expression of
HSV-tk in transfected HT29 cells. β-actin was used as a housekeeping gene.

2.5. Cytotoxicity Studies

To explore the interaction between polymeric micelles and HT29 cells, the cellular
uptake of GCV–PCL–chitosan polymeric micelles loaded with hydrophobic Nile Red
fluorescent dye was used. As shown in Figure 9, endocytic uptake of polymeric micelles
was evidenced by the red fluorescence of Nile Red incorporated in the hydrophobic core
domain of the polymeric micellar nanoparticles dispersed in the cytosol. This observation
is consistent with the reported endocytosis mechanism for polymeric micelles [33–36].
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The stable transfected HT29/HSV-tk cells and parental HT29 cells were treated with
GCV-incorporated polymeric micelles. Cytotoxicity of GCV–PCL–chitosan polymeric
micelles with concentrations of ranged from 0.025 to 0.25 mg/mL for 24, 48 and 72 h respec-
tively was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
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(MTT) assay. Since parental HT29 cells do not have any endogenous HSV-tk enzyme to
convert GCV into its toxic form (i.e., GCV–TP), cell viability was not affected (Figure 10A).
In contrast, HT29/HSV-tk cells which had upregulated HSV-tk gene expression revealed
a 35% increase in cell death at a dosage of 250 µg/mL post 72 h treatment (Figure 10B).
These outcomes confirmed that prodrug GCV could be converted into GCV–TP by HSV-tk
enzyme expressed in HT29 cells for a two-step GDEPT.
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To study the feasibility of a one-step GDEPT approach, HSV-tk gene encoding plasmids
(1.5 µg) were complexed onto GCV–PCL–chitosan polymeric micelles via electrostatic
interaction. The expression of HSV-tk gene and ensuing cell toxicity was examined for
three and five days. As demonstrated in Figure 11, the level of HSV-tk enzyme expressed in
HT29 cells after three days could lead to ~20% cell death. An additional two days resulted
in no significant increase in cell toxicity. The internalization of GCV–PCL–chitosan/HSV-
tk nanovectors in endosome/lysosome vesicles led to the release of GCV prodrug (due
to the cleavage of ester bond) and nanovectors. The latter one then further transported
into the nucleus and resulted in the expression of GCV-activating HSV-tk enzyme that
eventually converted GCV into toxic GCV–TP for malignant cell destruction (see Figure 1
for illustration). On the contrary, when the HSV-tk gene encoding plasmid was complexed
onto control polymeric micelles (MPEG–PCL–chitosan), cell toxicity was not detected. This
is because the MPEG-incorporated polymeric micelles could not be converted into toxic
form by HSV-tk enzyme like their counterparts (i.e., GCV-incorporated polymeric micelles)
did to HT29 cells.



Molecules 2021, 26, 1759 10 of 15

Molecules 2021, 26, x 10 of 16 
 

To study the feasibility of a one-step GDEPT approach, HSV-tk gene encoding plas-
mids (1.5 µg) were complexed onto GCV–PCL–chitosan polymeric micelles via electro-
static interaction. The expression of HSV-tk gene and ensuing cell toxicity was examined 
for three and five days. As demonstrated in Figure 11, the level of HSV-tk enzyme ex-
pressed in HT29 cells after three days could lead to ~20% cell death. An additional two 
days resulted in no significant increase in cell toxicity. The internalization of GCV–PCL–
chitosan/HSV-tk nanovectors in endosome/lysosome vesicles led to the release of GCV 
prodrug (due to the cleavage of ester bond) and nanovectors. The latter one then further 
transported into the nucleus and resulted in the expression of GCV-activating HSV-tk en-
zyme that eventually converted GCV into toxic GCV–TP for malignant cell destruction 
(see Figure 1 for illustration). On the contrary, when the HSV-tk gene encoding plasmid 
was complexed onto control polymeric micelles (MPEG–PCL–chitosan), cell toxicity was 
not detected. This is because the MPEG-incorporated polymeric micelles could not be con-
verted into toxic form by HSV-tk enzyme like their counterparts (i.e., GCV-incorporated 
polymeric micelles) did to HT29 cells. 

 
Figure 11. HT29 cell viability after challenged with GCV–PCL–chitosan/HSV-tk nanovectors and 
MPEG–PCL–chitosan/HSV-tk nanovectors, respectively for 3 (  ) and 5 (  ) days (mean 
± SD, n = 3). 

HT29 cells were further incubated with three different concentrations (25, 75, and 250 
µg/mL) of GCV–PCL–chitosan/HSV-tk nanovectors complexed with various amounts 
(1.5, 2.0, 3.0, and 4.5 µg) of HSV-tk gene encoding plasmid. As indicated in Figure 12, 
increasing the amount of plasmid, more GCV was converted to its cytotoxic form (i.e., 
GCV–TP) resulting in more cell death. Cell viability decreased to ~52% with polymeric 
prodrug micelle concentration of 250 µg·mL−1 and 4.5 µg HSV-tk gene encoding plasmid. 
It seems that 4.5 µg of plasmids is the upper limit for complexation with polymeric pro-
drug micelles. Since the maximum cytotoxicity of GCV–PCL–chitosan/HSV-tk nanovec-
tors obtained was not significantly high (about 50%), the gene transfection efficiency of 
GCV–PCL–chitosan/HSV-tk nanovectors probably was not very high (i.e., only a sub-pop-
ulation was transfected). This could be due to the low endosomal escape of the nanovec-
tors. It is speculated that anticancer effectiveness could be enhanced by changing chitosan 
to polyethylenimine (PEI) which could improve endosomal escape [37–39]. It should be 
noted that the hydrophobic core of polymeric prodrug micelles was not loaded with any 
other anticancer drugs. It is foreseeable that, with the encapsulation of hydrophobic chem-
otherapy drug (e.g., SN-38) into GCV-incorporated polymeric micelles, HT29 cells will 
have more death than the ones shown in Figure 12 due to the combination effect of both 
GCV and chemotherapy drug on HT29 cells expressing HSV-tk enzyme [40]. 

Figure 11. HT29 cell viability after challenged with GCV–PCL–chitosan/HSV-tk nanovectors and

MPEG–PCL–chitosan/HSV-tk nanovectors, respectively for 3 (

Molecules 2021, 26, x 10 of 16 
 

To study the feasibility of a one-step GDEPT approach, HSV-tk gene encoding plas-
mids (1.5 µg) were complexed onto GCV–PCL–chitosan polymeric micelles via electro-
static interaction. The expression of HSV-tk gene and ensuing cell toxicity was examined 
for three and five days. As demonstrated in Figure 11, the level of HSV-tk enzyme ex-
pressed in HT29 cells after three days could lead to ~20% cell death. An additional two 
days resulted in no significant increase in cell toxicity. The internalization of GCV–PCL–
chitosan/HSV-tk nanovectors in endosome/lysosome vesicles led to the release of GCV 
prodrug (due to the cleavage of ester bond) and nanovectors. The latter one then further 
transported into the nucleus and resulted in the expression of GCV-activating HSV-tk en-
zyme that eventually converted GCV into toxic GCV–TP for malignant cell destruction 
(see Figure 1 for illustration). On the contrary, when the HSV-tk gene encoding plasmid 
was complexed onto control polymeric micelles (MPEG–PCL–chitosan), cell toxicity was 
not detected. This is because the MPEG-incorporated polymeric micelles could not be con-
verted into toxic form by HSV-tk enzyme like their counterparts (i.e., GCV-incorporated 
polymeric micelles) did to HT29 cells. 

 
Figure 11. HT29 cell viability after challenged with GCV–PCL–chitosan/HSV-tk nanovectors and 
MPEG–PCL–chitosan/HSV-tk nanovectors, respectively for 3 (  ) and 5 (  ) days (mean 
± SD, n = 3). 

HT29 cells were further incubated with three different concentrations (25, 75, and 250 
µg/mL) of GCV–PCL–chitosan/HSV-tk nanovectors complexed with various amounts 
(1.5, 2.0, 3.0, and 4.5 µg) of HSV-tk gene encoding plasmid. As indicated in Figure 12, 
increasing the amount of plasmid, more GCV was converted to its cytotoxic form (i.e., 
GCV–TP) resulting in more cell death. Cell viability decreased to ~52% with polymeric 
prodrug micelle concentration of 250 µg·mL−1 and 4.5 µg HSV-tk gene encoding plasmid. 
It seems that 4.5 µg of plasmids is the upper limit for complexation with polymeric pro-
drug micelles. Since the maximum cytotoxicity of GCV–PCL–chitosan/HSV-tk nanovec-
tors obtained was not significantly high (about 50%), the gene transfection efficiency of 
GCV–PCL–chitosan/HSV-tk nanovectors probably was not very high (i.e., only a sub-pop-
ulation was transfected). This could be due to the low endosomal escape of the nanovec-
tors. It is speculated that anticancer effectiveness could be enhanced by changing chitosan 
to polyethylenimine (PEI) which could improve endosomal escape [37–39]. It should be 
noted that the hydrophobic core of polymeric prodrug micelles was not loaded with any 
other anticancer drugs. It is foreseeable that, with the encapsulation of hydrophobic chem-
otherapy drug (e.g., SN-38) into GCV-incorporated polymeric micelles, HT29 cells will 
have more death than the ones shown in Figure 12 due to the combination effect of both 
GCV and chemotherapy drug on HT29 cells expressing HSV-tk enzyme [40]. 

) and 5 (

Molecules 2021, 26, x 10 of 16 
 

To study the feasibility of a one-step GDEPT approach, HSV-tk gene encoding plas-
mids (1.5 µg) were complexed onto GCV–PCL–chitosan polymeric micelles via electro-
static interaction. The expression of HSV-tk gene and ensuing cell toxicity was examined 
for three and five days. As demonstrated in Figure 11, the level of HSV-tk enzyme ex-
pressed in HT29 cells after three days could lead to ~20% cell death. An additional two 
days resulted in no significant increase in cell toxicity. The internalization of GCV–PCL–
chitosan/HSV-tk nanovectors in endosome/lysosome vesicles led to the release of GCV 
prodrug (due to the cleavage of ester bond) and nanovectors. The latter one then further 
transported into the nucleus and resulted in the expression of GCV-activating HSV-tk en-
zyme that eventually converted GCV into toxic GCV–TP for malignant cell destruction 
(see Figure 1 for illustration). On the contrary, when the HSV-tk gene encoding plasmid 
was complexed onto control polymeric micelles (MPEG–PCL–chitosan), cell toxicity was 
not detected. This is because the MPEG-incorporated polymeric micelles could not be con-
verted into toxic form by HSV-tk enzyme like their counterparts (i.e., GCV-incorporated 
polymeric micelles) did to HT29 cells. 

 
Figure 11. HT29 cell viability after challenged with GCV–PCL–chitosan/HSV-tk nanovectors and 
MPEG–PCL–chitosan/HSV-tk nanovectors, respectively for 3 (  ) and 5 (  ) days (mean 
± SD, n = 3). 

HT29 cells were further incubated with three different concentrations (25, 75, and 250 
µg/mL) of GCV–PCL–chitosan/HSV-tk nanovectors complexed with various amounts 
(1.5, 2.0, 3.0, and 4.5 µg) of HSV-tk gene encoding plasmid. As indicated in Figure 12, 
increasing the amount of plasmid, more GCV was converted to its cytotoxic form (i.e., 
GCV–TP) resulting in more cell death. Cell viability decreased to ~52% with polymeric 
prodrug micelle concentration of 250 µg·mL−1 and 4.5 µg HSV-tk gene encoding plasmid. 
It seems that 4.5 µg of plasmids is the upper limit for complexation with polymeric pro-
drug micelles. Since the maximum cytotoxicity of GCV–PCL–chitosan/HSV-tk nanovec-
tors obtained was not significantly high (about 50%), the gene transfection efficiency of 
GCV–PCL–chitosan/HSV-tk nanovectors probably was not very high (i.e., only a sub-pop-
ulation was transfected). This could be due to the low endosomal escape of the nanovec-
tors. It is speculated that anticancer effectiveness could be enhanced by changing chitosan 
to polyethylenimine (PEI) which could improve endosomal escape [37–39]. It should be 
noted that the hydrophobic core of polymeric prodrug micelles was not loaded with any 
other anticancer drugs. It is foreseeable that, with the encapsulation of hydrophobic chem-
otherapy drug (e.g., SN-38) into GCV-incorporated polymeric micelles, HT29 cells will 
have more death than the ones shown in Figure 12 due to the combination effect of both 
GCV and chemotherapy drug on HT29 cells expressing HSV-tk enzyme [40]. 

) days (mean ± SD,
n = 3).

HT29 cells were further incubated with three different concentrations (25, 75, and
250 µg/mL) of GCV–PCL–chitosan/HSV-tk nanovectors complexed with various amounts
(1.5, 2.0, 3.0, and 4.5 µg) of HSV-tk gene encoding plasmid. As indicated in Figure 12,
increasing the amount of plasmid, more GCV was converted to its cytotoxic form (i.e.,
GCV–TP) resulting in more cell death. Cell viability decreased to ~52% with polymeric
prodrug micelle concentration of 250 µg·mL−1 and 4.5 µg HSV-tk gene encoding plasmid.
It seems that 4.5 µg of plasmids is the upper limit for complexation with polymeric prodrug
micelles. Since the maximum cytotoxicity of GCV–PCL–chitosan/HSV-tk nanovectors
obtained was not significantly high (about 50%), the gene transfection efficiency of GCV–
PCL–chitosan/HSV-tk nanovectors probably was not very high (i.e., only a sub-population
was transfected). This could be due to the low endosomal escape of the nanovectors.
It is speculated that anticancer effectiveness could be enhanced by changing chitosan
to polyethylenimine (PEI) which could improve endosomal escape [37–39]. It should
be noted that the hydrophobic core of polymeric prodrug micelles was not loaded with
any other anticancer drugs. It is foreseeable that, with the encapsulation of hydrophobic
chemotherapy drug (e.g., SN-38) into GCV-incorporated polymeric micelles, HT29 cells
will have more death than the ones shown in Figure 12 due to the combination effect of
both GCV and chemotherapy drug on HT29 cells expressing HSV-tk enzyme [40].
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3. Materials and Methods
3.1. Materials

HT29 cells was purchased from ATCC (Manassas, VA, USA. Dulbecco’s modified
Eagles’ medium (DMEM) was purchased from Corning Cellgro (Manassas, VA, USA). Fetal
bovine serum (FBS), mouse IgG1 horseradish peroxidase (HRP)-conjugated antibody, and
MTT cell proliferation/viability assay kits were all purchased from R&D Systems (Min-
neapolis, MN). CDCl3 with 1% tetramethylsilane (TMS), Sn(Oct)2, pyridine, ε-caprolactone,
magnesium sulfate, sodium chloride, succinic anhydride, hydrochloric acid (HCl), dimethyl
sulfoxide (DMSO), deuterated dimethyl sulfoxide (DMSO-d6), dichloromethane (DCM),
N-hydroxysuccinimide (NHS), N,N’-dicyclohexyl carbodiimide (DCC), methanol, tetrahy-
drofuran (THF), acetone, 2-propanol, diethyl ether, toluene, hexane, methoxy poly(ethylene
glycol) (MPEG, MW = 350), chitosan oligosaccharide lactate (MW = 5000), pyrene, penicillin-
streptomycin, G418 disulfate, esterase from porcine liver, Nile Red, and 4′,6-diamidino-
2-phenylindole (DAPI) were all purchased from Sigma-Aldrich (St. Louis, MO, USA).
GCV was purchased from TCI (Tokyo, Japan). RIPA lysis buffer, Halt™ protease inhibitor,
phosphate-buffered saline (PBS), enhanced chemiluminescence (ECL) substrate, Tris buffer
saline (TBS), Tween-20, and mouse TK1 monoclonal antibody (clone 3B3 E11) were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA). Bovine serum albumin (BSA),
laemmli sample buffer, and 2-mercaptoethanol were obtained from Bio-Rad (Hercules, CA,
USA). Polyvinylidene difluoride (PVDF) membrane was purchased from Pall Life Science
(Port Washington, NY, USA). Mouse β-actin monoclonal antibody (sc-47778) and mouse
IgGK binding protein-HRP monoclonal antibody (sc-516102) were purchased from Santa
Cruz Biotechnology (Dallas, TX, USA).

3.2. Synthesis of GCV-Incorporated and MPEG-Incorporated Amphiphilic Polymers

The synthesis of GCV–PCL–chitosan and MPEG350–PCL–chitosan amphiphilic poly-
mers in this study was previously reported [27]. In brief, 50 mg of GCV was mixed with
2.25 mL of ε-caprolactone (ε-CL) for 5 min at room temperature, followed by the addition
of Sn(Oct)2 (0.5 wt% of ε-CL). The system was nitrogen-purged and immersed in an oil
bath at 140 ◦C for 24 h. The final product was then vacuum dried by rotary evaporation at
40 ◦C. 0.5 mmol of GCV–PCL and 1 mmol of succinic anhydride were dissolved in toluene,
followed by the addition of 1 mmol pyridine. The mixture was allowed to react at 70 ◦C for
48 h under nitrogen purging. The carboxylated GCV–PCL was recovered by precipitation
in cold hexane and then vacuum dried by rotary evaporation at 40 ◦C. Then, 0.54 mmol of
GCV–PCL–COOH and 2.7 mmol of NHS were weighed and added to 15 mL DCM, and
then 2.7 mmol of DCC was added. The mixture was allowed to react at room tempera-
ture for 24 h under nitrogen purging. The solvent was removed by rotary evaporation at
40 ◦C to obtain GCV–PCL–NHS. A chitosan solution was prepared by dissolving 20 mg
chitosan oligosaccharide lactate in 25 mL deionized water. 10 mg of GCV–PCL–NHS was
then dissolved in 5 mL acetone and slowly added to this chitosan solution. The mixture
was reacted for 24 h under nitrogen purging. The reaction mixture was vacuum dried to
remove acetone and then lyophilized. The amphiphilic polymer was finally dissolved in
DCM and dialyzed (Molecular weight cutoff = 6–8 kD, Spectra/Por, New Brunswick, NJ,
USA) against pure DCM to remove unreacted chitosan. GCV–PCL–chitosan was recovered
by rotary evaporation at 40 ◦C. In control polymeric micelles, MPEG350–PCL was the
hydrophobic core segment and chitosan was the hydrophilic segment. The reason for
selecting MPEG350 as the initiator for control studies was due to the fact that MPEG350 has
a molecular weight close to GCV’s (MW = 255.23 g/mol).

3.3. Characterization of GCV–PCL and GCV–PCL–Chitosan

Proton NMR spectra were obtained from a 400 MHz instrument (Varian Unity/Inova,
Sparta, NJ, USA). Fourier transform infrared (FTIR) spectra were obtained from a FTIR-4200
spectrometer (Jasco, Tokyo, Japan) by loading a small amount of polymer-dissolved THF
onto a silicon wafer and forming a film after THF evaporation. Gel permeation chromatog-
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raphy (GPC) analyses were performed on a Waters 1525 binary high performance liquid
chromatography (HPLC) pump equipped with a Waters 2414 refractive index detector (Mil-
ford, MA, USA). Waters styragel HR 3 (MW = 500–30,000) and HR 4E (MW = 50–100,000)
columns were equipped. Molecular weight calibration was performed with polystyrene
standards that covered a MW range of 400–4.3 × 104. GPC analyses were performed in
THF at a flow rate of 1 mL·min−1 with an injected volume of 50 µL.

3.4. Preparation of Polymeric Prodrug Micelles

GCV–PCL–chitosan micelles and control MPEG–PCL–chitosan micelles were formed
similarly. Briefly, 10 mg of GCV-tagged amphiphilic polymer (or MPEG-tagged amphiphilic
polymer) was dissolved in 2 mL acetone. The solution was then added dropwise to 10 mL
deionized water under sonication. Acetone was removed by rotary evaporation and the
solution was collected and filtered through a 0.45 µm filter.

3.5. Determination of Critical Micelle Concentration

The critical micelle concentration (CMC) was estimated by using fluorescent pyrene [41].
Briefly, 1 mg·mL−1 of polymeric prodrug micelle was formed and diluted with various
amounts of deionized water to obtain micellar concentrations ranging from 5 × 10−7 to
1 mg/mL. Pyrene in acetone was then added to the above micelle solutions to reach a final
concentration of 6.0 × 10−7 mg/mL. The solutions were then equilibrated at room tem-
perature for 8 h. Fluorescent spectra were determined by a microplate reader (SpectraMax
M2e, Molecular Devices, Sunnyvale, CA, USA) with an excitation wavelength of 334 nm.

3.6. Size and Morphology of Polymeric Prodrug Micelles

The hydrodynamic size of polymeric micelles was detected by a DLS instrument
(Zetasizer Nano ZS, Malvern Instruments, Westborough, MA, USA). The zeta potential of
the polymeric micelles was determined with a zeta potential analyzer (Zetasizer Nano ZS).
TEM image of polymeric micelles was analyzed by a JEM-4000FX (JEOL, Tokyo, Japan) at
80 kV. The TEM samples were prepared by adding 10 µL of polymeric micellar solution
(1 mg/mL) onto a Formvar grid for 5 min. The samples were negatively stained with 10 µL
of 2 wt% phosphotungstic acid solution.

3.7. Drug Release Kinetics

1 mg·mL−1 of polymeric prodrug micelles were prepared in phosphate-buffered
saline (PBS) (1 M, pH 7.4) at 25 ◦C. 2 mL of the micelle solution was placed in a dialysis
tube (Float-A-Lyzer, Spectra/Por, New Brunswick, NJ, USA) with an MWCO of 3.5–5 kD.
The dialysis bag was then immersed in 50 mL of PBS at 37 ◦C with and without esterase
(3 units/2 mL). 5 µL of the sample was removed and replaced with fresh PBS at various
time points to analyze the amount of GCV released by a microplate reader (SpectraMax
M2e, Molecular Devices, Sunnyvale, CA, USA) at 254 nm. All experiments were carried
out in triplicate.

3.8. Establishing HSV-tk-Expressed HT29 Cells

The recombinant pcDNA3-HSV-tk plasmid, generously provided by Dr. Kang Fang
(National Taiwan Normal University, Taipei, Taiwan), was constructed by ligating the
HSV-tk gene into pcDNA3 mammalian vector (Invitrogen, Carlsbad, CA, USA) with
cytomegalovirus promotor [42]. The pcDNA3-HSV-tk plasmid was transformed into DH5α
competent cells and the plasmids were purified using the Qiagen Maxiprep kit (Valencia,
CA, USA). The purity and concentration of isolated plasmid DNA were determined by
measuring absorption at 260 and 280 nm using UV spectrophotometry. To construct HSV-tk
expressed cells, human colorectal HT29 cells (HTB-38; ATCC, Manassas, VA, USA) were
inoculated at a cell density of 6× 105 cells cm−2, and incubated with 2.5 µL HSV-tk plasmid
DNA and 5 µL MPEG–PCL–chitosan polymeric micelles. After 48 h, cells were trypsinized
and suspended in a fresh medium containing 400 µg·mL−1 of antibiotic G418 disulfate.
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Cells were selected for several weeks to obtain a stable HSV-tk expressing an HT29 cell
line (termed HT29/HSV-tk). The cell growth curves of HT29 and HT29/HSV-tk were
determined over 9-day cultivation by counting cell numbers using a hemocytometer.

3.9. Detection of HSV-tk Protein Expression

To determine the level and size of HSV-tk in HT29 cells that were transfected, a Western
blot analysis was performed using a monoclonal antibody against HSV-tk. Both HT29/HSV-
tk and parental HT29 cells were harvested by trypsinization and washed with 1× PBS.
To extract the proteins, cell pellets were resuspended in RIPA lysis buffer supplemented
with 1× Halt protease inhibitor and sonicated on ice. Soluble proteins were isolated by
centrifugation at 13,000× g at 4 ◦C for 20 min. Subsequently, proteins were mixed with an
equal volume of Laemmli sample buffer supplemented with 5% (v/v) of 2-mercaptoethanol
before heating to 95 ◦C for 5 min. The mixture was loaded onto 12% sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) that performed at 200 V for
45 min and electroblotted onto PVDF membrane using a Trans-Blot SD semi-dry transfer
cell (Bio-Rad, Hercules, CA, USA) for 1 h at 20 V. Membrane was blocked for 1 h at room
temperature with 5% BSA in TBS-T (1 × TBS buffer with 0.1% Tween-20) under gently
shaking condition. Then, the membrane was incubated with mouse TK1 monoclonal anti-
body (1:500 dilution) in blocking buffer with gentle shaking overnight at 4 ◦C. Afterward,
the membrane was washed three times with TBS-T for 5 min each at room temperature
before incubating with mouse IgG1 horseradish peroxidase (HRP)-conjugated antibody
(1:1000 dilution) for 2 h at room temperature. Following three times washing with TBS-T,
the protein was characterized by detecting horseradish peroxidase activity using enhanced
chemiluminescence (ECL) substrate via chemiluminescence imager (PXi, Syngene, Freder-
ick, MD, USA). The β-actin cellular protein expression was detected from the same soluble
proteins generated from HT29/HSV-tk and parental HT29 cells as internal loading control
by using a mouse β-actin monoclonal antibody as a primary antibody (1:500 dilution) and
mouse IgGK binding protein-HRP antibody as a secondary antibody (1:1000 dilution).

3.10. Development of GCV–PCL–Chitosan/HSV-tk Nanovectors

For one-step delivery of gene and prodrug to cells, GCV–PCL–chitosan/HSV-tk
nanovectors (i.e., GCV–PCL–chitosan micelles complexed with HSV-tk gene plasmid) were
made. GCV–PCL–chitosan micelles with various concentrations (25, 75, and 250 µg/mL)
were prepared. To 1 mL aliquots of micelle solution, various amounts (1.5, 2.0, 3.0, and
4.5 µg) of HSV-tk gene encoding plasmid was added to form GCV–PCL–chitosan/HSV-tk
nanovectors. The solution was vortexed briefly and then allowed to incubate at room
temperature for 30 min prior to DLS and zeta potential analysis.

3.11. Cytotoxicity Studies

HT29 colorectal cells were inoculated in 24-well plates containing 0.5 mL Dulbecco’s
modified Eagle medium (DMEM), supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin, and then cultured at a 37 ◦C incubator balanced with 5%
CO2 for overnight. For the endocytic uptake study, the cells were treated with GCV–
PCL–chitosan polymeric micelles loaded with hydrophobic Nile Red. After 6 h culture,
the medium was disposed and the cells were stained with DAPI and observed under a
fluorescent microscope. For the two-step GEDPT approach, parental HT29 cells and HSV-
tk gene transfected HT29 cells (HT29/HSV-tk) were treated with various concentrations
(0.025, 0.075, and 0.25 mg/mL) of GCV–PCL–chitosan polymeric prodrug micelle solution.
For the one-step GDEPT approach, HT29 parental cells were treated with GCV–PCL–
chitosan/HSV-tk nanovectors. After 72 h incubation, cell viability was examined by the
MTT assay. 200 µL of sterile MTT solution (4 mg/mL) was loaded into the culture wells
for 4 h. After removing the medium, 300 µL of dimethyl sulfoxide was added to dissolve
insoluble purple formazan crystals deposited in mitochondria. The absorbance at 590 nm
was obtained with a microplate reader (SpectraMax M2e, Molecular Devices, Sunnyvale,
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CA, USA) and results were recorded as viability percentage, calculated against the control
group without micellar treatment.

4. Conclusions

To expand the range of tumors susceptible to cytotoxic drugs converted from enzyme-
catalyzed prodrug, gene-directed enzyme prodrug therapy (GDEPT) has been developed.
However, the delivery of prodrug and gene was operated via a two-step process. Our study
demonstrates that cationic ganciclovir-embedded polycaprolactone-chitosan polymeric
micelles formed polyplexes with negatively charged HSV-tk plasmids could consolidate
the two-step GDEPT into a one-step process. Our results indicate that GCV–PCL–chitosan
polymeric prodrug micelles/HSV-tk nanovectors could eliminate up to 50% of HT-29
colorectal cancer cells.
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