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SUMMARY

One of the outstanding problems in complexity science and engineering is the
study of high-dimensional networked systems and of their susceptibility to tran-
sitions to undesired states as a result of changes in external drivers or in the struc-
tural properties. Because of the incredibly large number of parameters control-
ling the state of such complex systems and the heterogeneity of its
components, the study of their dynamics is extremely difficult. Here we propose
an analytical framework for collapsing complex N-dimensional networked sys-
tems into an S+1-dimensional manifold as a function of S effective control param-
eters with S << N. We test our approach on a variety of real-world complex prob-
lems showing how this new framework can approximate the system’s response to
changes and correctly identify the regions in the parameter space corresponding
to the system’s transitions. Our work offers an analytical method to evaluate
optimal strategies in the design or management of networked systems.

INTRODUCTION

The study of complex dynamical systems is rapidly attracting interest within the multidisciplinary nonlinear

science community, with cell biology, ecology, computer science, and meteorology being some of the

many areas of investigation (Hughes et al., 2018; Gauthier et al., 2015; Ceballos et al., 2015; Johnson

et al., 2017; Melbourne and Hastings, 2008; Oliver et al., 2015). Small perturbations due to management

error, failure in one of the system’s components, or environmental change (Woods, 2006; Walker et al.,

2004; Rieger et al., 2009) take place at many different scales both in space and in time, leading to a broad

range of impacts and even system collapse. To quantitatively investigate and understand these processes,

we often need to understand their long-term behavior through an analysis of their stationary state(s), if any.

The simplest kind of behavior is exhibited equilibrium points or fixed points. In general, a complex dynam-

ical system may have multiple attractors of different types, depending on the parameter values, the initial

conditions, and the structure of the interaction. In high-dimensional multivariate systems it is often impos-

sible to characterize the extent of the domain of attraction of its stable equilibria and how the boundaries of

such a domain change with different parameter values. Therefore, a crucial question in complexity science

and dynamical system theory is identifying the factors that would prevent the state of the system from

desired to undesired state shifts as a result of perturbations. Resilience is the ability of a system to adjust

to perturbations while retaining its basic functionality, given by a specific functioning stable state (Arnoldi

et al., 2016). Cell biology (Huang et al., 2005; Karlebach and Shamir, 2008), ecology (Allesina and Tang,

2012; Suweis et al., 2015b; Grilli et al., 2017), environmental science (Drever et al., 2006; Barlow et al.,

2016), epidemic spreading (Pastor-Satorras et al., 2015; Boguna et al., 2013), and research in food security

(Tu et al., 2019; Barthel and Isendahl, 2013; Suweis et al., 2015a) are just some of the many areas of research

that are active in the investigation of mechanisms underlying systemic resilience. The probability that these

systems will remain in a specific (e.g., functioning) state without shifting to alternative (undesired) attractors

depends on the non-linear properties of the system’s dynamics and on the intensity and type of perturba-

tions they are exposed to. In the case of multidimensional complex systems, it is not possible to charac-

terize the near equilibrium phase space as a function of the (many) parameters of the system.

Although great effort has been devoted to understanding the dynamical behavior and resilience of com-

plex systems using one-dimensional methods (Lyapunov, 1992) (see Transparent methods, section Classic

one-dimensional method to quantify resilience) and critical slowing down theory (Scheffer et al., 2009;
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Scheffer et al., 2012; Suweis and D’Odorico, 2014) (see Transparent methods, section Critical slowing

down), the study of the factors underlying the collapse of high-dimensional dynamical system remains

an outstanding problem. At present, although there are well-developed theoretical frameworks to inves-

tigate the dynamical behavior and resilience of low-dimensional systems with few interacting compo-

nents—especially in the traditional field of engineering control—significant challenges arise when these

methods are applied to high-dimensional dynamical systems consisting of a large number of components

that interact through a complex network. Recently, Gao et al.(Gao et al., 2016) developed a set of analytical

tools with which it is possible to identify the natural control and state parameters of a high-dimensional net-

worked system (where interactions are restricted on only positive) through mean-field approaches that

reduce high-dimensional dynamics into an ‘‘effective’’ one-dimensional process that serves as a manifold

for the average state of the system (see Transparent methods, section One-dimensional effective equa-

tion). In particular, the proposed framework allows for a systematic separation between the effects of sys-

tem’s dynamics and network’s topology. The analytical results from these authors’ analysis allow for the

identification of the network’s characteristics that can enhance or diminish the resilience of the stable states

of the system. Furthermore, Laurence et al.(Laurence et al., 2019) developed a polynomial approximation

to reduce complex networks based on spectral graph theory and showed that the proposed reduction of

Gao et al.(Gao et al., 2016) is a special case of the general scheme when applied to uncorrelated random

networks (see Transparent methods, section Dimension reduction based on spectral graph theory). This

method has been just applied, for example, to interacting spreading dynamics in complex networks

(Pan et al., 2020) and to predict the impact of network topology and dynamics on synchronization (Thibeault

et al., 2020).

Unfortunately, these frameworks (Gao et al., 2016; Laurence et al., 2019) can be applied only to the particular

case where the local dynamics at every node (hereafter termed ‘‘self-dynamics’’) as well as the pairwise dy-

namics (here called ‘‘coupling-dynamics’’) are expressed by functions that are not node specific but are the

same at all nodes. In fact, only in such a case, the one-dimensional effective equation (Laurence et al., 2019;

Gao et al., 2016; Tu et al., 2017) can be used to predict changes in resilience. Moreover, even when both

self and coupling-dynamics are expressed by the same function at all nodes, the proposed framework works

well only when the model parameters of the N-dimensional system are not too heterogeneous (e.g. have low

coefficient of variation (CV)) (Tu et al., 2017). Unfortunately, such conditions, which are seldom found in natural

and engineered complex systems, limit the real-world application of this framework. For example, in ecolog-

ical community dynamics each species has a different growth rate (Holling, 1973); in an epidemic spreading,

different groups typically have different infection or death susceptibilities (Pastor-Satorras et al., 2015); like-

wise, different chemical reactions commonly have different kinetics. Moreover, in some cases we may want

to model different network nodes with different functions (Harush and Barzel, 2017; Hens et al., 2019); for

example, some genes may be regulated by Michaelis-Menten type of interactions, whereas other can be

involved in both regulation and chemical binding coupling. Therefore, a more general framework to explore

the functioning or the collapse of networked systems with node-specific self-dynamics and coupling-dynamics

is needed to fill the gap existing between theory and real-world problems.

Here we develop a general analytical framework that can be used to reduce the dimensionality of the ‘‘order’’

parameter space as a function of a set of effective ‘‘control’’ parameters, defined as thoseparameters that drive

the functioning (associated to specific system states) and the resilience of any networked system, including

those with node-specific self-dynamics and coupling-dynamics. Specifically, our framework generalizes the

one-dimensional effective equations introduced by Gao and collaborators (Gao et al., 2016) in two respects:

(1) we can reduce the starting N-dimensional dynamics in an effective equations of one or more dimension,

depending on the desired degree of accuracy and heterogeneity of model parameters; (2) we can provide

a dimensionality reduction not only for the case where all nodes interact through the samemechanisms (func-

tional form) while having diverse parameters but also for non-homogeneous dynamics mechanisms whereby

the functional form of self-dynamics and coupling-dynamics differ across nodes.

As we will show, the proposed framework relies on the use Hadamard product approximation and Cheby-

shev’s polynomial decomposition to reduce non-linear functions into polynomial form. Analogous to the

classic method used for one-dimensional dynamics (Lyapunov, 1992; Laurence et al., 2019; Gao et al.,

2016), our approach allows us to investigate the possible occurrence of transitions (broadly defined)

from a functioning stable state to an undesired one where the networked system collapses or stops func-

tioning in the desired way. Therefore, we can predict collapse induced by changes in both the interaction
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network (e.g. its connectivity) as well as the self-dynamics and coupling-dynamics (e.g. growth rates) from

node to node. In summary, we show how the average dynamics of a high-dimensional networked system

can be captured by a low-dimensional manifold characterizing the role of interaction network, self-dy-

namics, and coupling-dynamics in the equilibrium states of the system and their dependence on the

system’s parameters. The analytical expression for this manifold allows us to predict transitions in the un-

derlying nonlinear dynamics as a function of few, key order parameters.

RESULTS

Dimensionality reduction and resilience

Consider a networked system consisting of N nodes whose states x= ðx1;.; xNÞT follow the dynamic

equation

dxi
dt

= FiðxiÞ+
XN
j

AijGi

�
xi; xj

�
(Equation 1)

where FiðxiÞ is the ‘‘local’’ dynamics at node i (or ‘‘self-dynamics’’) and Giðxi; xjÞ is the dynamics expressing

the coupling of node i with its neighbors j (or ‘‘coupling-dynamics’’), according to the adjacency matrix A˛
RN3N, representing the interaction network of the system, with Aij capturing the interaction i) j. Resilience

loss can be induced by changes in any of the parameters of the network A, of the self-dynamics FiðxiÞ, or of
the coupling-dynamics Giðxi ; xjÞ. Recently, Gao et al.(Gao et al., 2016) investigated the resilience of this

system in the particular case in which the functions F and G expressing the self-dynamics and coupling-dy-

namics are the same at all nodes, i.e.,ci;FiðxiÞ=FðxiÞ andci;Giðxi;xjÞ = Gðxi;xjÞ. Thus, these authors devel-

oped a method to explore the resilience of a node-uniform complex interacting system (i.e., Equation (1)

with F andG independent of i). To date, a framework to investigate the networked dynamics (1) with node-

specific self-dynamics and coupling-dynamics is still missing. To formulate a more general framework for

the analysis of the resilience for a networked system, we first define the mean field operator (Gao et al.,

2016) LðxÞ= 1
N

PN
j = 1s

out
j xj=

1
N

PN
j = 1s

out
j = Csout :xD

Csout D where sout = ðsout1 ;.; soutN Þ is the vector of the out-degree of ma-

trix A; then, we characterize the effective state of the networked system using the weighted average node

state xeff = LðxÞ. If the network’s degree correlation is low, we can assume that the Hadamard product

approximation holds (see Transparent methods, section Validation of the Hadamard product). Then,

applying Chebyshev expansion to approximate FiðxiÞ and Giðxi; xjÞ with polynomial functions of order m

and n, respectively, Equation (1) can be reduced to

Iðd1;.;dS ; xeff Þ = dxeff
dt

z
XS
s= 1

ds � xs�1
eff (Equation 2)

where S = maxðm;nÞ, ds =

8>><
>>:

Bs
eff +Aeff � Cs

eff ; s˛½1;minðm;nÞ�
Aeff C

s
eff ; s˛½m+ 1; n�;m<n

Bs
eff ; s˛½n+ 1;m�; n<m

; Aeff = LðsinÞ, Bs
eff = LðBsÞ, andCs

eff = LðCsÞ.

Bk = ðb1;k ;.;bN;kÞT is the column of the k-th term of the m-order Chebyshev polynomials (Boyd, 2001; Ma-

son and Handscomb, 2002) (see Transparent methods, section Self-dynamics and coupling-dynamics are

polynomials) approximating the self-dynamics FiðxiÞ, and Cl = ðc1;l ;.; cN;lÞT is the column of the l-th factor

of the n-order Chebyshev polynomials approximating the coupling-dynamics Giðxi; xjÞ (see Transparent

methods, section Reduce high-dimensional equations). Therefore, we map the dynamics of Equation (1)

into Equation (2) and study the resilience of the system, through the behavior of xeff at steady state and

its response to a perturbation of one ormore of these S parameters. In particular, the conditions for stability

of a state x�eff of the dynamics can thus be associated with a region expressed by the equation set:

8><
>:

I
�
d1;.;dS ; x

�
eff

�
= 0

dI

dxeff
<0

(Equation 3)

where the function I represents the system’s dynamics and d1;.;dS are their control parameters.

Equation (3) allows us to take advantage of theoretical tools developed for one-dimensional systems (see

Transparent methods, section Classic one-dimensional method to quantify resilience). In fact, regardless of

the microscopic details of any perturbation acting on the system, the way such a perturbation impacts the
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state of the networked system is fully accounted for by the corresponding changes in the control param-

eters ðd1;d2;.;dSÞ of the effective dynamics. This implies that the rather complex and unpredictable be-

haviors of networked systems can be captured by a low-dimensional space given by Iðd1;.;ds; x
�
eff Þ that

serves as a manifold for the complex networked dynamics near their stationary state. The structure of

this manifold is uniquely determined by the polynomial of the effective equation.

In addition, in order to measure the projection distance from the point ðd1;.;dS ; x
�
eff Þ obtained from Equa-

tion (1) and the stationary solution of the low-dimensional resilience function xðd1;.;dSÞ obtained from

Equation (3), we define the following function, which allows us to estimate the error of the proposed

approximation errx = jxeff � xðd1;.;dSÞj. If this error distance is small, the point of numerical simulation

is near the surface of low-dimensional resilience function, which means that this framework works well.

Application to real-world examples

In many networked systems of practical importance, we can use the above theoretical approach to relate

high-dimensional network dynamics to low-dimensional phase spacemanifolds and investigate analytically

the system’s behavior as a function of its order parameters. We adopt a set of widely used dynamical

models along with experimental static networks and extensive numerical simulations to test the predictions

of our framework. In particular, we also investigate a case poorly studied in the literature, where coupling-

dynamics varies among different nodes.

Quantifying effectiveness of mitigation measures in epidemic dynamics

We first consider a system of N individuals with some of them infected by a virus or other transmissible dis-

ease that spreads through the system as individuals interact. In these dynamics, it is often important to un-

derstand the effectiveness of various measures (such as social distancing or quarantining) in limiting the

spread of the epidemic. We consider the dynamics of a commonly used susceptible-infected-susceptible

(SIS) model (Pastor-Satorras et al., 2015; Boguna et al., 2013), governed by the equation

dxi
dt

= � eixi +
XN
j

Aijð1� xiÞxj (Equation 4)

where 0%xi%1 denotes the probability that node i is in the infected state, ei is the recovery rate of node i,

and Aij represents the infection rate of node i as a result of the interaction with node j. The first term on the

right-hand side of Equation (4) accounts for the process of recovery, and the second term accounts for the

process of infection. We notice that in this case we account for the heterogeneity of the system because

each individual has its own recovery rate and interactions with other individuals according to the network,

A. Considering the case of parameter values (i.e., e and A) for which the steady state of the system is pos-

itive (i.e., x � ðt/NÞ>0 or ‘‘epidemic active phase’’), we can investigate how such a stationary state

changes as a result of mitigation measures such as drug development (and consequent increase in the re-

covery rates), quarantine of individuals (i.e., node removal), social distancing, or use of personal protection

to decrease the probability of infection (i.e., removal or weakening of interactions, respectively). Whatmea-

sures are the most effective in making the system collapse and undergo a transition to x � = 0? We now

apply our framework to address this question. The effective equation of the SIS model is
dxeff
dt =d2x

1
eff +d3x

2
eff where d2 = B2

eff +Aeff = � eeff +Aeff = Lð � eÞ+LðsinÞ, d3 = � Aeff = � LðsinÞ. It is
easy to see from this one-dimensional equation that the dynamics have two steady states: x�eff = � d2=

d3 and x�eff = 0. In other words, our framework predicts that the steady states of this high-dimensional Equa-

tion (4) are two surfaces, x�eff = � d2=d3 and x�eff = 0 in the space ðxeff ;d2;d3Þ, and their stability depends on

the order parameters d2 and d3.

We test these predictions by simulating the dynamics and exploring the effect of changes in the parameters

characterizing the self-dynamics and network interactions. As empirical network for the SIS model, we use the

real contact dataset from the 2009 ACM Hypertext conference where the SocioPatterns project deployed the

Live Social Semantics application (Isella et al., 2011; Rossi and Ahmed, 2015). This empirical network has 113

nodes and 2,196 edges. We express the recovery rates e= ðe1;.;eNÞT as random parameters drawn from a

uniform distribution between 0 and 2me where me is thus themean recovery rate and default value me = 30.We

set two initial conditions for xðt = 0Þ: a low contagion initial state whose elements are drawn from a uniform

distribution between 0 and 0.1, and a high contagion initial state whose elements are drawn from a uniform
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distribution between 0.9 and 1. The presented results are averaged over both low and high contagion initial

condition, as initial conditions do not play any role in this case (see Transparent methods).

Figures 1A–1D show the results for <x>=
PN

i = 1xi=N and xeff =
Csout :xD
Csout D obtained from numerical simulation of

Equation (4) as a function of the following changes in the model’s parameters: (1) we increase the average

recovery rate (me) to investigate the effect of increasingly effective treatment therapies; (2) we increase the

number of individuals in quarantine (by randomly removing an increasing fraction of network nodes); (3) we

intensify the effectiveness of social distancing measures (removing randomly an increasing fraction of

network edges); and (4) we intensify the effectiveness of personal protection equipment (decreasing the

contact network weights). We find that the results from the numerical simulations collapse onto the mani-

fold x�eff ðd2;d3Þ (Figure 1E) with relatively small error. To better appreciate the approximation errors, in Fig-

ures 1A–1D we also show the analytical solution x�eff ðd2;d3Þ. We highlight that d2ðeeff ;Aeff Þ and d3ðAeff Þ
depend on the specific realization (of matrix A and vector a) and thus the black continuous lines represent

the average <x�eff ðd2;d3Þ> (with colored area representing the three standard deviations) over the different

realizations. In addition, we compare the errors of our approximation with respect to those obtained by

Gao et al. (Gao et al., 2016), varying the heterogeneity of the networks parameters as measured by the co-

efficient of variation (CV). We find, as expected, that for small CV the two methods behave similarly,

whereas for intermediate and large CV, our approach gives a better approximation (Figure 1F).

We can thus see that small changes in d2 may lead to the collapse of the epidemic, i.e., a transition from

xeff>0 to xeff = 0. Specifically, if Aeff >eeff then d2>0 and xeff >0. Vice versa, if Aeff <eeff then d2< 0 and

A B C

D E

F

Figure 1. Results obtained from numerical simulation and theoretical predication as a function of changes on epidemic dynamics

The solution of the epidemic dynamics given by Equation (4) as a function of changes in (A) the mean me of vector e drawn from a uniform distribution (and

with fixed contact network A).

(B) The fraction of randomly removed nodes ranging between 0 and 0.8.

(C) The fraction of randomly removed edges ranging between 0 and 0.8.

(D) The links weight aij
0 = aij � ð1�rÞ with reduction parameter r ranging from 0 to 0.8 and where the vector e is drawn from a uniform distribution between

0 and 2me (andme = 30). In each panel, the solid black line is obtained by averaging the analytical prediction <x�eff ðd2;d3Þ> over 50 realizations of matrixA and

vector e through d2ðeeff ;Aeff Þ and d3ðAeff Þ. The dashed line represents the corresponding confidence level of three standard deviations.

(E) The density plot is given by the analytical form of xeff as a function of d2;d3, whereas colored points shown on the varied perturbations collapse onto the

manifold. For each perturbation type, the points size scales with the magnitude of the perturbation.

(F) Error comparison between our method and the previous method by Gao et al. (2016) as a function of the coefficient of variation, CV, of the vector, e, drawn

from lognormal distribution with the mean 50.
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xeff = 0. As the recovery rate me increases, d2 decreases, thereby leading to a decrease of xeff to zero. Simi-

larly, as mutual interactions are reduced (e.g., node or edge removal or reduction in the network’s weights),

Aeff decreases, leading to a decrease in d2;d3, thereby driving xeff toward the collapse. We highlight that

the presented results are independent of the system’s initial conditions and our framework works for

different distribution even with high heterogeneity (see Transparent method, section Heterogeneous net-

works). We note that, even in this simple example, where the system dynamics are already expressed in

polynomial form and therefore there is no need for the Chebyshev approximation, our framework goes

beyond the classic mean field approximation (Pastor-Satorras et al., 2015) or the one dimensional effective

equation previously proposed (Gao et al., 2016). In fact, here we are able to consider individual recovery

rates and heterogeneity in the weights of the contact network (Tu et al., 2019). As expected, in the limit

ei =me;ci and constant weights for all contacts, our results converge to those from previously studied

approximation methods.

Effect of perturbations on multidimensional generalized Lotka-Volterra dynamics

Another suitable application of our framework can be found in population dynamics for interacting ecolog-

ical species and the understanding of the interplay between species interaction networks and biodiversity

(Suweis et al., 2013, 2015b; Dakos and Bascompte, 2014; Cenci et al., 2017; Grilli et al., 2017). The gener-

alized Lotka-Volterra (GLV) dynamics are a set of first-order, non-linear, differential equations frequently

used to describe the population dynamics of interacting species in community ecology. Species interaction

network can be used to model competition, predator-prey, and mutualistic relationships among an arbi-

trary number of species. The GLV dynamics for species i are given by

dxi
dt

= aixi +
XN
j = 1

xiAijxj (Equation 5)

whereN is the number of species in the community, xiR0 is the population size of species i, ai is its intrinsic

growth rate, and Aij is the interaction between species i and j. The effective equation of the model is dxeff
dt =

d2x
1
eff +d3x

2
eff where d2 = aeff = LðaÞ, d3 = Aeff = LðsinÞ. Thus, the effective equation shows that for a given

set of parameters the dynamics have only one stable equilibrium, as confirmed by the global equilibrium

analysis of Equation (5) with the Lyapunov function (Serván et al., 2018). We use our framework to identify

the changes in the parameter space that are associated with a collapse from a state of species coexistence

(i.e., xeff >0), to the state where all species go extinct (xeff = 0).

For instance, we consider the case of a community composedofN species comprisingNp plants andNa animals

such as insects serving as pollinators withN = Np +Na. x
p
i and xaj denote the abundances of the i-th plant spe-

cies and the j-th animal pollinator species, respectively, and x= fxp1 ; xp2 ;.; xpNp
; xaNp + 1;.; xaNg is a vector express-

ing the population size of each of the species in the community. Species-specific intrinsic growth rates are the

elements of the N-dimensional vector a. The species’ interaction matrix A is composed by four blocks, two of

which describe the direct competitive interactions among plants (Upp) and insects (Uaa), respectively and the

other two define the mutualistic interactions between insects and plants (Gpa) and vice-versa (Gap). Therefore,

the interaction matrix A has the following structure A =

�
Upp Gpa

Gap Uaa

�
. Following previous studies (Dakos and

Bascompte, 2014), for each plant and animal species we set competition coefficients b (in the Upp and Uaa

matrices) sampled from a uniform distribution with maximum �0.001 and mean � 1=np;a, where np;na are

the number of plant or animal species, respectively. In other words, the interaction matrix Aij exhibits a mixture

of positive and negative signs and also correlation among elements and where intraspecific competition coef-

ficient is set equal to �1. Gpa and Gap matrices describe how species are mutualistically interacting. We ex-

pressed the weights of this interaction matrix using a trade-off function that defines themutualistic dependence

between species j and i as a function of their degree: gij = gyij=ki , where g is drawn from a normal distribution

withmeanmg and standarddeviationsg = jmg =3j, ki is the degreeof species i, and yij = 1 if species i and j interact

and zero otherwise (Dakos and Bascompte, 2014). The adjacency matrix Y is taken directly from empirical

network of a hummingbird community in a highland temperate forest in central Mexico (Lara, 2006). We then

seta= ða1;.;aNÞT as a vector whose elements are drawn froma normal distributionwithmeanma and standard

deviation sa = jma =3j. We set ma = 1, mg = 0:4, and use two different initial conditions for xðt = 0Þ: a low initial

population (i.e., the elements of x are randomly drawn froma uniform distribution between 0 and 0.1) and a high

initial population (i.e., the elements of x are randomly drawn from a uniform between 0.9 and 1).
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We then perform numerical simulations to investigate how changes in the parameters of Equation (5) affect

species abundances fx1;x2;.;xNg. The panels A and B of Figure 2 show the numerical simulation of the full

N-dimensional GLV dynamics (where <x>=
PN

i = 1xi=N ) when (1) decreasing the growth rate of species (for

example, because of lack of resources or more unsuitable environmental conditions) and (2) decreasing the

strength of mutualistic interactions, mimicking the possible effect of climate change (Saavedra et al., 2013;

Morone et al., 2019). We find that the results from the numerical simulations collapse onto the manifold

x�eff ðd2;d3Þ (Figure 2C) with relatively small error. To highlight the approximation errors, in Figures 2A

and 2B we also show the analytical solution x�eff ðd2;d3Þ. We note again that d2ðaeff Þ and d3ðAeff Þ depend
on the specific realization (of matrix A and vector a) and thus the black continuous lines represent the

average <x�eff ðd2;d3Þ> (with colored area representing the three standard deviations) over the different re-

alizations. In panel C of Figure 2 the predictions based on our framework are presented in terms of the

effective state xeff . Numerical simulations of both the complete dynamics and the macroscopic equation

show that the system has only one stable state. In particular, we find that aeff = 0 is the critical value for

such a transition. On the other hand, a decrease in mg leads to a decrease in Aeff , which is associated

with the extinction of some of the species and a slow decrease of both <x> and xeff . Therefore, an increase

in both intrinsic growth rates (ma) and mutualistic strengths (mg) is beneficial for species coexistence

A B

C

D

Figure 2. Results obtained from numerical simulation and theoretical predication as a function of changes on

generalized Lotka-Volterra dynamics

The average population in the networked ecologic dynamics as a function of changes in (A) the mean ma of vector a drawn

from a normal distribution (and with fixed network A).

(B) The mean mg of matrix gij (and vector a drawn from a normal distribution with mean ma and standard deviation sa =

jma =3j where ma = 1). In each panel, the solid black line represents the average of the analytical prediction < x�eff ðd2;d3Þ>
over 50 realizations of the matrix A and vector a through d2ðaeff Þ and d3ðAeff Þ.The dashed line represents the confidence

level of three standard deviations.

(C) The density plot is given by the analytical form of xeff as a function of d2;d3, whereas colored points shown on the varied

perturbations collapse onto the manifold. For each perturbation type, the larger the points, the larger the perturbation.

(D) Error comparison between our method and the previous method by Gao et al. (Gao et al., 2016) as a function of the

mean of vector a, whose elements are drawn from normal distribution.
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(consistent with the collapse in mutualistic communities using critical slowing down methods (Dakos and

Bascompte, 2014)).

Finally, we also compare the errors obtained between our method and the one of Gao et al. (Gao et al.,

2016) as a function of ma. We find that the former performs similarly to the latter for ma<0, whereas for pos-

itive average growth rates ma>0 our approach outperforms the previous approach (Figure 2D). This result

confirms (Tu et al., 2017) that the multi-dimensional reduction may also work for an interaction matrix with a

mixture of positive and negative signs, thereby extending the scope of the previously proposed methods

(Gao et al., 2016; Laurence et al., 2019).

Sustainability and effect of globalization on the food trade dynamics

In all the previous cases, we have considered complex dynamics, but with only one stable state for each set

of parameters. We here apply our framework to a recently proposed case of bistable complex dynamics

aimed at studying the effect of globalization on the sustainability of the global food system (Tu et al.,

2019; Barthel and Isendahl, 2013; Suweis et al., 2015a). The proposed dynamics consider both local and im-

ported resources and account for the interconnectedness existing in the global coupled food trade-pro-

duction-consumption system, i.e.,

dxi
dt

= � aicixi +

 
aici
KR
i

+ ai

!
x2i �

ai

KR
i

x3i � d
�
soutA

�
i
xi + d

X
j

Aijxj (Equation 6)

where xi is the resource volume of node i, and ai;K
R
i ; ci are intrinsic growth parameter, carrying capacity and

Allee parameter of the generalized logistic growth function describing the net dynamics of local food pro-

duction and consumption; the matrix A is defined as Ai;j = Ci;jK
L
i , where KL

i is the demand of country i; Cj;i is

a zero-diagonal adjacency matrix with size N, with non-null coefficients representing the existence and

magnitude of a flux from node i to node j, and ðsoutA Þi is the out-degrees of node i of matrixA(Tu et al., 2019).

The study estimated that the impact of globalization on the sustainable use of food resource depends on

the structure of the food trade interaction network. In particular, Tu et al.(Tu et al., 2019) showed that if the

network has an inverse relationship between in- and out-degrees of all nodes, then the globalization has a

detrimental effect on sustainability. Here, we extend the previous work and analyze the sustainability ac-

counting also for the node-specific dynamics (instead of using constant averaged parameters (Tu et al.,

2019)). The effective equation of the model of resource dynamics is dxeff
dt =d2xeff +d3x

2
eff +d4x

3
eff where there

are three effective parameters d2 = � aeff ceff � dheff <0, d3 = aeff ceff
KR
eff

+aeff >0, and d4 = � aeff

KR
eff

<0 and where

xeff = LðxÞaeff = LðaÞ, ceff = LðcÞ, KR
eff = LðKRÞ, and heff = geff � beff , with beff =LðsinÞ and geff = LðsoutÞ

representing the effective import and export, respectively. We use the carrying capacities, food consump-

tion, and production rates and the food trade network of the year 2013 (Tu et al., 2019). In this case, there-

fore, all the parameters of the model are node specific and fitted from the empirical data.

The effective equation predicts the existence of a bistable solution, one with xeff = 0 and one with xeff > 0.

We now want to investigate the effect on globalization on the sustainability of the system (xeff > 0). To do

that, we investigate the effect of changes in food trade by increasing or decreasing the weight of the edges

of the food trade network. In particular, to model the changes in globalization patterns we randomly

multiply each weight by a factor rij , resulting in Aij/rijAij. The random variable rij is sampled from a uniform

distribution with mean fw . The result is that all weights are randomly modified, multiplied on average by a

fraction fw of their original value. To test the existence of bistable state, we use two different initial condi-

tions xðt = 0Þ = z � KR : low initial condition, where z is vector randomly drawn from a uniform distribution

between 0 and 0.1, and high initial condition, where z is a vector randomly drawn from a uniform distribu-

tion between 0.9 and 1.

Because aeff ;K
R
eff ; ceff do not vary with fw = 0:1; 0:4; 0:7; 1; 5; 10 (see Figure S14A), while heff is quite sensitive

to fw (see Figure S14B), we focus on how the order parameter d2 changes with the changes in themagnitude

of trade, while keeping d3;d4 fixed. Solid lines in Figure 3 show the bifurcation diagram obtained from the

effective equation described by Equation (3), whereas the points represent the xeff calculated simulating

the full dynamics given by Equation (6) and varying the intensity of trade by changing edge weights by a

fraction equal to 0.1, 0.4, 0.7, 1, 5, and 10, respectively. We note that in this case the initial conditions do

play a role, confirming the bistability predicted by our framework. When perturbation intensity is small
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so that its d2 is smaller than critical value dcrt
2 = � aeff ðceff +KR

eff
Þ

4KR
eff

= � 0:4188, bistability appears. On the other

hand, we confirm the results of Tu et al.(Tu et al., 2019). In fact, we can see that by setting d= 1� 10�19 so that

the present situation is at the edge of criticality between the sustainable and the unsustainable state,

reducing the effect of globalization decreases the risk of the system collapse.

Effect of gene knockout and transcription inhibition to gene regulatory dynamics

Wefinally consider a biological example associatedwith gene expression. Tomodel regulatory interactions be-

tween genes (Harush and Barzel, 2017; Hens et al., 2019), we consider the case where most of the genes are

regulated by Michaelis-Menten (MM) type of interactions, whereas the remaining genes are involved in chem-

ical binding (CB) interactions (or in both MM and CB couplings). The first subset of genes (for simplicity we

consider the nodes from 1 to ~N) thus follows the celebratedMichaelis-Menten dynamics (Alon, 2006; Karlebach

and Shamir, 2008) dxidt = � eixi +
PN

j Aij
xj

xj + 1, where xi represents the expression of gene i, whereas the first term

on the right-hand side captures the degradation process and the second term accounts for genetic activation

according to the Hill function (Karlebach and Shamir, 2008). The second subset of genes ( ~N+ 1%i%N) interacts

through CB with coupling function Giðxi;xjÞ = � xi � xj. Therefore, the corresponding high-dimensional equa-

tions for the gene expression with non-homogeneous dynamics mechanisms are

8>>>>><
>>>>>:

dxi
dt

= � eixi +
XN
j

Aij
xj

1+ xj
; 0%i% ~N

dxi
dt

= � eixi +
XN
j

Aij

�� xi � xj
�
; ~N+ 1%i%N

(Equation 7)

We then apply our dimensionality reduction to Equation (7). Because the coupling-dynamicsGiðxi; xjÞ= xj
xj + 1 are

not a polynomial, we use the MATLAB toolbox Chebfun (Trefethen, 2013; Driscoll et al., 2014) to calculate the

Chebyshev coefficients and then rescale it to the desired interval (depending on the desired accuracy, see

Transparent methods, sections Chebyshev approximation theory and Validation of the Chebyshev approxima-

tion). Thus, we obtain the Chebyshev’s polynomial approximation, ci;1 + ci;2xj + ci;3x
2
j + ci;4x

3
j + ci;5x

4
j , where the

Chebyshev coefficients are ci;1 = 0; ci;2 = 0:597; ci;3 = � 0:154; ci;4 = 0:0167; ci;5 = � 0:000645 when 0% i% ~N (see

Figure S3 A). The low-dimensional effective equation is dxeff
dt =d1x

0
eff +d2x

1
eff +d3x

2
eff +d4x

3
eff +d5x

4
eff where d1 =

Aeff C
1
eff , d2 = � eeff +Aeff C

2
eff , d3 = Aeff C

3
eff , d4 = Aeff C

4
eff , and d5 =Aeff C

5
eff where C1

eff = Lð½0; 0;.�Þ = 0,

C2
eff = Lð½0:597; .; 0:597; 0; .; 0�Þ, C3

eff = Lð½ � 0:154; .; � 0:154; � 1; .; � 1�Þ, C4
eff = Lð½0:0167; .;

0:0167;0;.;0�Þ, and C5
eff = Lð½ � 0:000645;.; � 0:000645;0;.;0�Þ.

Figure 3. Results obtained from numerical simulation and theoretical predication as a function of changes on food

trade dynamics

Dimensionality reduction of the food-trade model given by Equation (6). To model the changes in globalization patterns

we randomly multiply each weight by a perturbation intensity factor rij , resulting in Aij/rijAij . The bifurcation diagram of

the equilibrium states of xeff as a function of effective parameter d2, calculated with fixed d3;d4 that are fit from empirical

data. The presented results are obtained from 50 realizations of the perturbation event.
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We also explore the case where both linear regulation through promoter genes and chemical binding in-

teractions present in a small subgroup of nodes ( ~N+ 1%i%N). In this case, the coupling-dynamics reads as,

i.e., Giðxi ;xjÞ = ð1 � xiÞ � xj, while the corresponding full high-dimensional equation becomes

8>>>>><
>>>>>:

dxi
dt

= � eixi +
XN
j

Aij
xj

1+ xj
;0%i% ~N

dxi
dt

= � eixi +
XN
j

Aijð1� xiÞxj; ~N+ 1%i%N

(Equation 8)

The low-dimensional effective equation is dxeff
dt =d1x

0
eff +d2x

1
eff +d3x

2
eff +d4x

3
eff +d5x

4
eff where d1 = Aeff C

1
eff , d2 =

� eeff +Aeff C
2
eff , d3 = Aeff C

3
eff , d4 = Aeff C

4
eff , and d5 =Aeff C

5
eff where C1

eff = Lð½0; 0;.�Þ = 0, C2
eff = Lð½0:597;

.;0:597;1;.;1�Þ,C3
eff = Lð½ � 0:154;.; � 0:154; � 1;.; � 1�Þ,C4

eff = Lð½0:0167;.;0:0167;0;.;0�Þ, andC5
eff =

Lð½ � 0:000645;.; � 0:000645;0;.;0�Þ.

For the regulatory model, we generate a constant scale-free network with scale parameter 3 and size N=

100 and assume that ~N= 80 in Equation (7) or (8). We set e= ðe1;.; eNÞT as a vector whose elements are

drawn from a uniform distribution between 0 and 2me, i.e., me is the average degradation rate. We set

me = 3 and use two different initial conditions for xðt = 0Þ: a low initial gene expression value drawn from

a uniform distribution between 0 and 0.1, and a high initial gene expression drawn from a uniform distribu-

tion between 0.9 and 1.

Although there are five parameters d1;d2;d3;d4;d5, there are only two effective parameters eeff ;Aeff . There-

fore, for visualization, we consider the three-dimensional space composed of eeff ;Aeff ;xeff . Figure 4 shows

the results when we vary the average degradation rate me of the fullN-dimensional mixed equation. We find

that our method can be applied to non-homogeneous dynamics mechanisms where different nodes are

driven by different self and coupling-dynamics (see also Transparent methods, section Non-homogeneous

dynamics mechanisms).

DISCUSSION

The dynamics of complex networked systems are often difficult to investigate in their complete parameter

space. The seminal work by Gao et al.(Gao et al., 2016) and successive ones (Laurence et al., 2019) provided

a mean-field representation of such dynamics that served as a one-dimensional manifold for the high-

dimensional networked dynamics. Such a framework, however, hinged on the assumption that all nodes

in the network are similar (low heterogeneity of the model parameters) and have the same self-dynamics

A B

Figure 4. Results obtained from numerical simulation and theoretical predication as a function of changes on

gene regulatory dynamics

Dimensionality reduction for non-homogeneous dynamics mechanisms of gene regulations given by (A) Equation (7) and

(B) Equation (8). Black and gray markers represent the numerical weighted average xeff and average <x> obtained from

the simulation of the full N-dimensional coupled dynamics, as a function of changes in the mean me of the vector e drawn

from a uniform distribution. The black lines indicate the analytical solution given by <x�eff ðeeff ;Aeff Þ>. We highlight that eeff
and Aeff depend on the specific realization (of matrix A and vector e) and thus we compute the average < x�eff ðeeff ;Aeff Þ>
(with colored green area representing the three standard deviations) over 50 different realizations.
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and coupling-dynamics, which limited the applicability of this framework. Our extension of their framework

lends itself to the study of the collapse or functioning of any networked systems, accounting also for the full

heterogeneity in node-specific self- and coupling-dynamics. In fact, under our assumptions, we can map

the high-dimensional equation onto a low-dimensional dynamic in only one (effective) state variable and

S effective parameters, and it works well in different theoretical models and heterogeneous networks

(see Transparent methods, section Extended validation, Non-homogeneous dynamics mechanisms and Ef-

fect of heterogeneity). We can then use these manifold dynamics to investigate the system’s response to

changes in the parameters and determine the steady states of the system and the possible existence of

transitions between functioning or sustainable stables, including possible critical transitions in the case

of bifurcating bistable dynamics. Our framework can address not only non-homogeneous dynamic param-

eters where all nodes interact through the same mechanisms (i.e., expressed by the same functional form,

though with different parameters) but also the case of non-homogeneous dynamics whereby the functional

form of self-dynamics FðxÞ and coupling-dynamicsGðx; yÞdiffer across the nodes. The numerical simulation

of real-world examples presented in the Results section demonstrates that our framework works well both

in the case of homogeneous and heterogeneous dynamics (see Transparent methods, section Heteroge-

neous networks).

In many cases, the analytical expressions of the self-dynamics FiðxiÞ and coupling-dynamics Giðxi; xjÞ of the
systems may be unknown. However, we note that our framework also works if these functions can be calcu-

lated from the empirical data, i.e., fxm;FiðxmÞg and fxm;ym;Giðxm;ymÞg, wherem˛f1;.; ng and n is the sam-

ple number. In fact, in this case we can still construct interpolating polynomials,
Pn

k = 1bkx
ðk�1Þ andPn=2

p;q= 1dp;qx
ðp�1Þyðq�1Þ, and use them as the self-dynamics and coupling-dynamics of node i. In fact, in

many real-world complex cases, we have times series of the empirical data for each of the system’s vari-

ables (e.g. species abundances), but we typically do not know the functional form of the self-dynamics

and coupling-dynamics that can simulate the underlying processes. In this case we may directly perform

a polynomial fitting on the data, thus constructing FiðxiÞ and Giðxi; xjÞ; then we can apply our framework

to predict the system’s behavior, a function of polynomial coefficients. Moreover, in high-dimensional

systems, the critical slowing down method is difficult to apply because it would require a large number

of numerical simulations to investigate how the equilibria of the system change by varying one parameter

at time while keeping the others fixed, making such an analysis is often a computationally prohibitive task,

especially for large networks and in the presence of nonlinear self-dynamics and coupling-dynamics (Sor-

nette, 2006; Scheffer et al., 2009, 2012). In contrast, our framework provides an analytical method that is

computationally feasible, thus further facilitating the study, design, or manage networked systems and

the identification of criteria to optimize their resilience under a given set of constraints.

All in all, our methodology provides (approximated) results for dimensionality reduction that are applicable

to a broader set of systems and dynamics and exploited in different contexts ranging from ecology to

epidemiology and the study of critical transitions.

Limitations of the study

Our method also presents some limitations that need to be carefully considered and tested. First of all, the

proposed framework is based on the mean-field approximation of Gao et al.(Gao et al., 2016) and thus

works well when the network connecting the system components has negligible degree correlation and

its weights are not too heterogeneous (Tu et al., 2017). Moreover, in the use of the Hadamard product

approximation, the parameters of the self- and couple dynamics should not be ‘‘too’’ heterogeneous;

otherwise, the approximation will fail (see Transparent methods, section Validation of the Hadamard prod-

uct). In other terms, the effective value of the Hadamard product of two vectors Lðx�yÞ should be close

enough to the product of effective values of the two vectors LðxÞLðyÞ, and this condition holds if x and y

both have a small coefficient of variation. Then, the order of the Chebyshev polynomial should be suffi-

ciently high to capture the complex behaviors of the dynamics (see Transparent methods, section Valida-

tion of the Chebyshev approximation). However, there are no a-priori criteria that can be used to determine

a suitable order of this polynomial expansion. In addition, our method is not applicable if the coupling-dy-

namics are Gijðxi ; xjÞ instead of Giðxi ;xjÞ. In fact, in the case of a networked system dxi
dt = FiðxiÞ+

PN
j AijGijðxi ;

xjÞ, if the degree correlations of the networkA are weak, then wemake the approximation
PN

j Ai;jGijðxi; xjÞz
sini LðGijðxi; xÞÞ and because LðGijðxi; xÞÞsGijðxi;LðxÞÞ, further application of our framework would not be

possible. Moreover, the fact that the low-dimensional effective system is stable does not guarantee that
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the high-dimensional networked system is also stable. If in the high-dimensional networked system an

equilibrium point is stable, the corresponding equilibrium will be stable also in the low-dimensional effec-

tive system, whereas the other way around is not necessarily true. For this reason, when we apply our frame-

work in the case of non-homogenous dynamics mechanisms inN-dimensional complex systems we need to

be very careful. In fact, in the latter case, it may be very difficult to find a configuration of the initial model

parameters in which the N-dimensional system is stable. However, applying the dimensionality reduction

when the N-dimensional system is unstable gives confounding results, as the effective dynamics may be

stable.
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Supplementary Figures 1 

 2 

Figure S1. An example of resilience function for a one-dimensional equation displaying a bifurcation. Related to Fig. 1. 3 

The green and red branches represent desired and undesired stable fixed points, respectively. The blue branch represents 4 

an unstable state. If   c
, there is only a single stable state (green curve); otherwise, there is a desired stable state 5 

(green curve) and another undesired state (red curve).  6 

 7 

8 

Figure S2. Testing the validation of the Hadamard product with different CVx (coefficient of variation of vector x ) and 9 

CVy (coefficient of variation of vector y ). Related to Fig. 1. (a) ER network with size 50 and connectivity 0.2; (b) BA 10 



2 
 

network with size 50 and parameter 10. The elements of vector x  are drawn from a normal distribution with mean 1 and 11 

standard deviation between 0 and 1, and the same is true of vector y . 12 

 13 

 14 

Figure S3. Testing the Chebyshev approximation with one-variable and two-variable Chebyshev polynomials. Related 15 

to Fig. 1. (a) Comparison between the tested function 
1

1 1+

x

x
 and its Chebyshev approximation with degree 5; (b) 16 

comparison between the tested function 
2

2 1+

x

x
 and its Chebyshev approximation with degree 5; (c) relative error between 17 

the tested function 
1 1

1 1 1+ +

x y

x y
 and its Chebyshev approximation with degree 5; (d) relative error between the tested 18 

function 
2 2

2 2 1+ +

x y

x y
 and its Chebyshev approximation with degree 5. 19 

 20 
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 21 

Figure S4. Results obtained from numerical simulation and theoretical predication as a function of changes on case d1, 22 

d2. Related to Fig. 1. Average state of the system as a function of changes in (a) the mean 1
B

  of vector 1B  ; (b) the mean 23 

1
C

 of  vector 1C ; (c) the mean 2
C

 of vector 2C ; (d) the rate of removal of network nodes; (e) the rate of removal of 24 

network edges;  (f) the rate of reduction of network weights. For each case, we run 50 simulations, and the large marker 25 

represents their average. (g) Effective state of the system in three-dimensional space composed of the state variable effx  26 

and effective parameters 1 2,d d . Each colored surface represents one stable state in the manifold. The points representing 27 

the steady states in the complete multidimensional model as a function of changes in the parameters of the dynamics 28 

collapse onto the manifold. (h) The projection of (g) by eliminating the dimension effx . 29 

 30 



4 
 

 31 

Figure S5. Results obtained from numerical simulation and theoretical predication as a function of changes on case d1, 32 

d3. Related to Fig. 1. Average state of the system as a function of  changes in (a) the mean 1
B

 of vector 1B ; (b) the mean 33 

1
C

 of vector 1C ; (c) the mean 3
C

 of vector 
3C ; (d) the rate of removal of network nodes; (e) the rate of removal of 34 

network edges;  (f) the rate of reduction of network weights. (g) Effective state of the system in three-dimensional space 35 

composed of the state variable effx  and the effective parameters 
1 3,d d . Each colored surface represents one stable state 36 

in the manifold. The points representing the steady states in the complete multidimensional model as a function of changes 37 

in the parameters of the dynamics collapse onto the manifold. (h) The projection of (g) by eliminating the dimension effx . 38 

 39 



5 
 

 40 

Figure S6. Results obtained from numerical simulation and theoretical predication as a function of changes on case d2, 41 

d3. Related to Fig. 1. Average state of the system as a function of changes in (a) the mean 2
B

 of vector 2B ; (b) the mean 42 

2
C

 of  vector 
2C ; (c) the mean 3

C
 of vector 

3C ; (d) the rate of removal of network nodes; (e) the rate of removal of 43 

network edges;  (f) the rate of reduction of network weights. For each case, we run 50 simulations, and the large marker 44 

represents their average. (g) Effective state of the system in three-dimensional space composed of the state variable effx  45 

and the effective parameters 
2 3,d d . Each colored surface represents one stable state in the manifold. The points 46 

representing the steady states in the complete multidimensional model as a function of changes in the parameters of the 47 

dynamics collapse onto the manifold. (h) The projection of (g) by eliminating the dimension effx . 48 

 49 
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 50 

Figure S7. Results obtained from numerical simulation and theoretical predication as a function of changes on case d1, 51 

d2, d3. Related to Fig. 1. Average state of the system as a function of changes in (a) the mean 1
B

 of vector 1B ; (b) the 52 

mean 2
B

 of vector 2B ; (c) the mean 1
C

 of  vector 1C ; (d) the mean 2
C

of vector 
2C ; (e) the mean 3

C
 of vector 

3C ; 53 

(f) the rate of removal of network nodes; (g) the rate of removal of network edges;  (h) the rate of reduction of network 54 

weights. For each case, we run 50 simulations, and the large marker represents their average. (i) Projection of the effective 55 

function by eliminating the dimension effx . The three dimensions are the effective parameters 
1 2 3, ,d d d .  56 

 57 
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 58 

Figure S8. Illustration of the general resilience framework to identify the bi-stability region and critical boundary. 59 

Related to Fig. 1. (a) Three-dimensional effective bifurcation diagram with state variable effx  and effective parameters 60 

3 4,d d . Each colored surface represents one region of the stable state. (b-d) Each colored surface is shown in a single three-61 

dimensional space. (e-g) The projection of (b-d) by eliminating the dimension effx . (h) The intersection of the regions shown 62 

in (e) and (f). (i) The intersection of the regions shown in (e) and (g). (j) The intersection of the regions shown in (f) and (g). 63 

(k) The union of the regions shown in (h-j). Black represents the critical boundary, and gray represents the bi-stability region, 64 

which has more than one stable state. 65 

 66 
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 67 

Figure S9. Changes in stable states shown in Fig. S8. Related to Fig. 1.  As a result of changes in (a) the mean 3
B

 of 68 

vector 3B ; (b) the mean 3
C

 of vector 3C ; (c) the mean 4
C

 of vector 4C ; (d) the rate of removal of network nodes; (e) 69 

the rate of removal of network edges;  (f) the rate of reduction of network weights. For each case, we run 50 simulations, 70 

and the large marker represents their average with different initial conditions. (g) Effective state of the system in three-71 

dimensional space composed of the state variable effx  and parameters 
3 4,d d . Each colored surface represents one stable 72 

state in the manifold. The points representing the steady states in the complete multidimensional model as a function of 73 

changes in the parameters of the dynamics collapse onto the manifold. (h) The projection of (g) by eliminating the 74 

dimension effx . The gray region represents the bi-stable region, and the black curve represents the critical boundary. 75 

 76 
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 77 

Figure S10. Results obtained from numerical simulation and theoretical predication as a function of changes on non-78 

homogeneous dynamics. Related to Fig. 1. Average state of the system as a function of changes in (a) the mean 1
B

  of 79 

vector 1B  ; (b) the mean 2
B

  of vector 2B ; (c) the mean 1
C

 of  vector 1C ; (d) the mean 2
C

 of vector 2C ; (e) the rate 80 

of removal of network nodes; (f) the rate of removal of network edges;  (g) the rate of reduction of network weights. For 81 

each case, we run 50 simulations and the error bar represents its mean and one standard deviation. (h) Effective state of 82 

the system in three-dimensional space composed of the state variable effx  and effective parameters 1 2,d d . Each colored 83 

surface represents one stable state in the manifold. The points representing the steady states in the complete 84 

multidimensional model as a function of changes in the parameters of the dynamics collapse onto the manifold. (i) The 85 

projection of (h) by eliminating the dimension effx . The enlargement of marker points represents the increase of 86 

corresponding perturbation.  87 

 88 
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 89 

Figure S11. Comparison of error distance of SIS model with vector e  from a pareto and lognormal distribution with 90 

fixed mean and varying the CV. Related to Fig. 1. Their mean is in (a) 30 =e  and in (b) 70 =e .  91 

 92 

 93 

Figure S12. Results obtained from numerical simulation and theoretical predication as a function of changes on 94 

epidemic dynamics with strong heterogeneity. Related to Fig. 1. The solution of the epidemic dynamics as a function of 95 

changes in (a) CV of lognormal distribution of edge weight ranging from 1 to 8 (and topology is generated by ER network 96 

with connectivity 0.4); (b) CV of degree distribution in which scale parameter   of degree distribution ( ) ~ −P k k  ranging 97 

from 4 to 10. The vector ( )1, ,= 
T

Ne ee  are constant 30. In each panel, the solid black line is obtained by averaging the 98 

analytical prediction 
*

2 3( , ) effx d d  over 50 realizations of matrix A  and vector e  through 2 ( , )eff effd e A  and 3( )effd A . 99 

The dashed line represents the corresponding confidence level of three standard deviations. 100 

 101 
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 102 

Figure S13. Error distance 1( , , )= − x eff Serr x x d d for the epidemic dynamics. Related to Fig. 1. The network A  is 103 

given by the empirical data(Isella et al., 2011, Rossi and Ahmed, 2015), while the recovery rates ( )1, ,= 
T

Ne ee  are 104 

random parameters drawn from: a)  uniform distribution (in blue) between 0 and 2e , where e  ranges from 30 to 70 105 

with interval of 10; b) Pareto type II distribution  ( ) 1 ,






−
− 

= +  
 

x
P x x

k
 with low heterogeneity (in magenta), with 106 

k  ranging from 270 to 630 with interval 90, fixed shape parameter 10 = , and location parameter 0 =  to guarantee 107 

the same change of mean as uniform distribution.  c) Pareto distribution with high heterogeneity (in brown) with k  108 

ranging from 33 to 77 with interval 11, fixed shape parameter 2.1 = , and location parameter 0 = ; d) after different 109 

types of perturbations (see color legend) and recovery rates ( )1, ,= 
T

Ne ee  distributed uniformly between 0 and 2e  110 

where e  = 30. 111 

 112 

 113 

Figure S14. Parameters changes as a result of reduction in edge weights. Related to Fig. 3. Changes in (a) , , R

eff eff effK c  114 

and (b) eff  as a function of the trade weight reduction factor, 0.1,0.4,0.7,1,5,10=wf .  115 
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Transparent Methods 116 

1. Previous work and relation of resilience of complex systems  117 

1.1. Classic one-dimensional method to quantify resilience  118 

 We start by presenting the traditional mathematical method (Lyapunov, 1992) to evaluate the resilience in a one-119 

dimensional system driven by the nonlinear dynamic equation  120 

 ( , )=
dx

f x
dt

  (1) 121 

where ( , )f x  represents the system’s dynamics and   is the control parameter to capture the variable conditions. If 122 

for a stable fixed point *x  of Eq. (1), the following conditions hold: 123 

 
*

*( , ) 0

| 0




=

 =

 

= 
 x x

f x

f

x

  (2) 124 

then, the solution of these conditions is called the stability domain for *x . 125 

 *( )x .  (3) 126 

Eq. (2) guarantees that the system is in its steady state and that it is linearly stable around the steady state; i.e., for small 127 

perturbations, the system will return to the unperturbed equilibrium point *x . In this case, Eq. (3) represents the possible 128 

stable states *x  of the system as a function of the control parameter  . 129 

 The shape of the *( )x  is given by Eq. (3) and is uniquely determined by the functional form of ( , )f x . If this 130 

function exhibits a fold-type bifurcation (Fig. S1), then either one of three equilibria may exist, depending on the value of 131 

the control parameter  . The colored lines in the  − x  plane represent the equilibrium solutions, i.e., the values *( )x  132 

such that *( , ) 0 =f x . The black arrows indicate the direction in which the system moves if it is not in equilibrium. It 133 

can be seen from these arrows that all curves represent stable equilibria except for the blue middle curve (unstable state). 134 

If the system is the lower stable state (Fig. S1, red line) as   is increases, no major change is observed in the state of the 135 

system until   reaches a critical value, c
. Although no big changes occur in the stable states, its resilience decreases 136 

because smaller and smaller perturbations are needed to determine the shift to the stability domain of the other attractor 137 

(green line). At the critical point c
 of Eq. (3) the system of Eq. (1) undergoes a transition to the other stable state. This is 138 

known as a critical transition and is a well-studied phenomenon in the complex system literature (Stanley, 1999, Sornette, 139 

2006, Dorogovtsev et al., 2008, Scheffer et al., 2012, Suweis and D'Odorico, 2014). 140 
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 Therefore, in the one-dimensional equation (1), a complete analytical treatment of the resilience of the system is 141 

possible (Lyapunov, 1992). We can identify the critical value of the control parameter   and study the effect of external 142 

perturbations on the system. Recently, a number of studies have investigated how to anticipate or avoid critical transitions 143 

in the system. The classic one-dimensional method (Lyapunov, 1992) presented above assumes that the system dynamics 144 

can be approximated by a one-dimensional equation, Eq. (1), where   represents the endogenous effects on the system. 145 

Although this method is conceptually powerful, it has very limited applicability to “real-world” problems, as it is unable to 146 

account for the resilience of complex high-dimensional systems. 147 

 148 

1.2. Critical slowing down 149 

 One of the most commonly used leading indicators of critical transitions is provided by the phenomenon of critical 150 

slowing down (CSD). In dynamical systems, the phenomenon of CSD is indeed a good indicator that the system is 151 

approaching a critical threshold (Wissel, 1984). For example, in Fig. S1, if the system approaches the fold bifurcation point 152 

c
, the dominant eigenvalue characterizing the rates of change of x  around the equilibrium becomes zero, and 153 

consequently, the recovery rates decrease smoothly to zero (Van Nes and Scheffer, 2007, Scheffer et al., 2009, Scheffer 154 

et al., 2012). CSD tends to lead to an increase in the value of AR1 (Ives, 1995) (lag-1 autocorrelation) and the variance 155 

(Carpenter and Brock, 2006) of the fluctuations in a stochastically forced system approaching a bifurcation for a critical 156 

value of the control parameter. 157 

 For simplicity, let us consider the one-dimensional system given by Eq. (1) for discrete time steps, and let us call 158 

*x  its equilibrium at stationarity. If we assume the system is perturbed around *x  and we quantify the deviation of the 159 

state variable x  from the equilibrium at time step n  as 
*= −n ny x x , then we can describe the dynamic of 

ny  by 160 

linearizing the dynamic around *x , i.e. 
1 + = +n n ny y y . Then, after a period t , we have that 1



+ = t

n ny e y , i.e., the 161 

return to equilibrium is exponential with a certain recovery speed  . If we add Gaussian noise mimicking continuous 162 

perturbation of the stationary solution, then the previous equation becomes 1

 

+ = +t

n n ny e y , where 
n

 is a random 163 

number chosen from a standard normal distribution and   is the standard deviation. If   and t  are independent of 164 

ny , this model is a first-order autoregressive process 1  + = +n n ny y  where 
 = te  is the autocorrelation. The 165 

expectation and standard deviation of the classic first-order autoregressive process 1  + = + +n n ny c y  are 166 

1( ) ( ) ( ) ( )
1

    


+ = + +  = + +  =
−

n n n

c
E y E c E y E c O  and 

2
2 2

1 1 2
( ) ( )

1





+ += − =

−
n nVar y E y . When 167 

the system approaches the critical point, the speed of the return to equilibrium decreases (  approaches zero), the 168 

autocorrelation   tends toward one and the variance tends toward infinity. 169 
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 In sum, in the dynamics of a system approaching a bifurcation, CSD leads to (i) slower recovery from perturbations, 170 

(ii) increased autocorrelation and (iii) increased variance. All these indicators can be used to detect early warning signs of 171 

critical transitions (Scheffer et al., 2009). 172 

 The CSD method could in theory inform us about the fact that a high-dimensional complex system is approaching 173 

the critical point, it also has many limitations, such as the difficult-to-control sensitivity of the system parameters and the 174 

high (exponentially increasing) computational costs of investigating the critical transition for several combinations of the 175 

system parameters. Additionally, it does not provide testable predictions of the system's response to different 176 

perturbations, and it does not give insights that allow for the design or optimization of the resilience of high-dimensional 177 

systems. 178 

 179 

1.3. One-dimensional effective equation 180 

 Gao et al.(Gao et al., 2016) developed a method that can predict and explore the resilience of network-based 181 

dynamical systems and provided a new way to understand the resilience of complex natural and human-made systems. 182 

These authors consider a class of equations describing the dynamics of several types of high-dimensional systems with 183 

pairwise interactions:  184 

 
1

( ) ( , )
=

= +
N

i
i ij i j

j

dx
F x A G x x

dt
  (4) 185 

where ( )1,...,= Nx xx  is the set of activities of the components/nodes of N  and the functions ( )iF x  and ( , )i jG x x  186 

represent the self-dynamics and coupling dynamics and these functions are the same at all nodes. Finally, the weight 187 

matrix ijA  specifies the interactions between nodes. 188 

 Analogous to the classic one-dimensional method, a transition from a desired to an undesired stable state 189 

captures the loss of resilience in a high-dimensional networked system. The key difference is that Eq. (4) is not controlled 190 

by only one parameter (e.g.,   in Eq. (1)); rather, it depends on the matrix ijA , which is composed of 
2N  parameters. 191 

Therefore, resilience loss can be induced by changes in any of the 
2N  parameters. For instance, the extinction of species 192 

in an ecological system may correspond to the removal of one or several nodes (Gao et al., 2016). Therefore, the resilience 193 

function of a networked system is a high-dimensional manifold over the parameter space characterizing the system. This 194 

framework requires the dynamics to be the same at all nodes; i.e., the self-dynamics and coupling dynamics of all nodes 195 

are the same. Therefore, many processes such as the generalized Lotka-Volterra dynamics that are frequently used to 196 

describe ecologic systems, cannot be investigated with this framework. In fact, it is rare that the self-dynamics and 197 

coupling dynamics of different nodes are the same. 198 

  199 
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1.4. Dimension reduction based on spectral graph theory 200 

Recently, Laurence et al.(Laurence et al., 2019) considered the same class of equations as Gao et al.(Gao et al., 201 

2016) and developed a polynomial approximation to reduce complex networks using the spectral graph theory. The 202 

activity of the reduced systems is used as an indicator of the global activity of large networks and the dominant 203 

eigenvectors of the adjacency matrix are central to the global states’ evolution. Let’s consider Eq. (4); the procedure to 204 

apply this one-dimensional reduction is as follows: (i) compute the dominant eigenvalue   and the corresponding 205 

eigenvector v  of the transposed of the adjacency matrix A ; (ii) define the normalized eigenvector / ( )= T
a v 1 v  and 206 

obtain the structural parameter 
1




=
T

T

a Ka

a a
 where K  is a diagonal matrix with diagonal elements 

1=

=
N

ii ij

j

K A ; (iii) 207 

the one-dimensional equation is ( ) ( , ) = +
eff

eff eff eff

dx
F x G x x

dt
 where = T

effx a x . This method can adopt more 208 

eigenvalues and be extended to modular, heterogeneous, and bipartite networks, etc. analytically. Pan et al.(Pan et al., 209 

2020) developed a theory for interacting spreading dynamics on complex networks. Thibeault et al.(Thibeault et al., 2020) 210 

proposed a Dynamics Approximate Reduction Technique that maps high-dimensional dynamics to low-dimensional 211 

dynamics to predict the impact of network topology and dynamics on synchronization. 212 

Analogous to Gao et al.(Gao et al., 2016), Laurence et al.(Laurence et al., 2019) tackle the same problem of 213 

reducing high-dimensional networked systems (with the same self-dynamics and coupling-dynamics  at all nodes) to one-214 

dimensional effective system. Further, they show that the proposed reduction of Gao et al.(Gao et al., 2016) is a special 215 

case of the general scheme when applied to uncorrelated random networks. Finally, this approach has the same limitation 216 

as Gao et al.’s framework because it does not allow the self-dynamics and coupling dynamics to change from node to 217 

node, thereby impeding the application to a variety of “real-world” cases. 218 

 219 

2. Framework of dimensional reduction  220 

2.1. Reduce high-dimensional equations  221 

 As given by Eq. 1 of main text, the dynamics of each node depend on the node itself (given by the “self-dynamics” 222 

( )i iF x ) and on the interaction with its nearest neighbors (given by the interaction network and coupling dynamics 223 

1

( , )
=


N

ij i i j

j

A G x x ). Therefore, the dynamics of the average nearest-neighbor nodes represent an important contribution 224 

to the overall system’s dynamics. To quantify this contribution, we define an operator 225 

1 1

1 1 .
( ) /

= =

 
= =

 
 

outN N
out out

j j j out
j j

s x s
N N

s x
x

s
, where 1( , , )= out out out

Ns ss  is the vector of the out-degree of the interaction 226 

network A (Gao et al., 2016). The operator  is feasible for a linear time-invariant (LTI) function; i.e., the following 227 

equation holds:  228 
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 ( ) ( ) ( )+ = +a b a bx y x y   (5) 229 

where x  and y  are vectors and a  and b  are constants. If vectors x  and y  are weakly correlated, we can obtain 230 

 ( ) ( ) ( ) x y x y   (6) 231 

where   is the Hadamard product such that ( )1 1, , =
T

N Nx y x yx y  (see Transparent Methods, section Validation of 232 

the Hadamard product). 233 

 If the degree correlation of network A  is weak (the neighborhood of node i  is similar to the neighborhoods of 234 

all other nodes), then 
, ( , ) ( ( , ))

N
in

i j i i j i i i

j

A G x x s G x x . Furthermore, if ( , )i i jG x x  is linear in jx  or the standard 235 

deviation in the elements of the vector x  is small, then ( ( , )) ( , ( )) ( , ) =i i i i i i effG x G x G x xx x , where ( )=effx x . 236 

Therefore, Eq. (1) in the main text can be written as ( ) ( , ) + ini
i i i i i eff

dx
F x s G x x

dt
, and its vector notation is  237 

 ( ) ( , )= + in

eff

d
x

dt

x
F x s G x   (7) 238 

where the vector function ( )1 1( ) ( ), , ( )= 
T

N NF x F xF x  and ( )1 1( , ) ( , ), , ( , )= 
T

eff eff N N effx G x x G x xG x .  239 

 If each ( )i iF x  is a linear combination of m  subfunctions, i.e., ,1 1 ,2 2 ,( ) ( ) ( ) ( )= + + +i i i i i i i m m iF x b f x b f x b f x , 240 

then according to Eq. (5), 

1 1 1,1 1 1 1, 1

,1 1 ,

( ) ( ) ( )

( ( ))

( ) ( ) ( )

    
    

= = ++    
     
     

m m

N N N N N m m N

F x b f x b f x

F x b f x b f x

F x . According to Eq. (6),  241 

 

1

1

1

1

( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ) ( ( ))

=  + + 

 + +

m

m

m

m

B f B f

B f B f

F x x x

x x
, 242 

where ( )1, ,, ,= 
Tk

k N kB b b  is the k -th column of matrix B . Because the node dynamics are uniform,  243 

 

1

1

1

1

1

( ( )) ( ) ( ( )) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( )
=

 ++

 ++

=

m

m

m

eff m eff

m
k

k eff

k

B f B f

B f x B f x

B f x

F x x x

.  244 

 Similarly, if each ( , )i i jG x x  is a linear combination of n  subfunctions, i.e., 245 

,1 1 ,( , ) ( , ) ( , )= + +i i j i i j i n n i jG x x c g x x c g x x , then 246 
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1

1

1

( ( , )) ( ) ( , ) ( ) ( , )

( ) ( , )
=

 ++

=

n

eff eff eff n eff eff

n
l

l eff eff

l

x C g x x C g x x

C g x x

G x

, 247 

where ( )1, ,, ,= 
Tl

l N lC c c  is the l -th column of matrix C . 248 

 We apply the operator  to both sides of Eq. (7), in vector notation, and obtain 249 

 

1 1

( )
( ( ) ( , ( )))

( ( )) ( ) ( ( , ( )))

( ) ( ) ( ) ( ) ( , )
= =

= + 

 +

 + 

in

in

m n
k in l

k eff l eff eff

k l

d

dt

B f x C g x x

x
F x s G x x

F x s G x x

s

. 250 

 Finally, we obtain the effective equation  251 

 
1 1

( ) ( , )
= =

 + 
m n

eff k l

eff k eff eff eff l eff eff

k l

dx
B f x A C g x x

dt
, (8) 252 

where ( )= in

effA s , ( )=k k

effB B , and ( )=l l

effC C .  253 

 254 

2.2. Self-dynamics and coupling-dynamics are polynomials 255 

 If ( )i iF x  is not a linear combination of m  subfunctions or if ( )i iF x  varies from node to node (i.e., it is different 256 

for different nodes i ), we can use Chebyshev polynomials to approximate it (see Transparent Methods, sections 257 

Chebyshev approximation theory and Validation of the Chebyshev approximation), minimizing the error between ( )i iF x  258 

and 
( 1)

,

1

−

=


m

k

i k

k

b x  . Therefore, ( 1)

,

1

( ) −

=

=
m

k

i eff i k eff

k

F x b x . Similarly, we can substitute ( , )i i jG x x  for 
/2

( 1) ( 1)

,

, 1

− −

=


n

p q

p q i j

p q

d x x . 259 

Therefore, ( 1)

,

1

( , ) −

=

=
n

l

i eff eff i l eff

l

G x x c x , where ,i lc  collects all terms ,p qd  such that 1= + −l p q . Therefore, the final 260 

effective equation is  261 

 ( 1) ( 1)

1 1

− −

= =

 + 
m n

eff k k l l

eff eff eff eff eff

k l

dx
B x A C x

dt
  (9) 262 

 Eq. (9) has 2+ +m n  variables: , , ,k l

eff eff eff effA x B C , where 1, , ; 1, ,=  = k m l n . To further decrease the 263 

number of variables, Eq. (9) can be written as 264 
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( 1) ( 1)

1 1

( 1) ( 1)

1 1

( * ) ,

( * ) ,

− −

= = +

− −

= = +


+ + 


 
 + + 


 

 

m n
k k k l l

eff eff eff eff eff eff eff

k l meff

n m
l l l k k

eff eff eff eff eff eff

l k n

B A C x A C x n m
dx

dt
B A C x B x n m

 265 

 Finally, we obtain  266 

 1

1

1

( , , , ) * −

=

 = 
S

eff s

S eff s eff

s

dx
I d d x d x

dt
  (10) 267 

where max( , )=S m n  and 

* , [1,min( , )]

, [ 1, ],

, [ 1, ],

 + 


=  + 


 + 

s s

eff eff eff

s

s eff eff

s

eff

B A C s m n

d A C s m n m n

B s n m n m

. This reduction maps the equation of the high-268 

dimensional networked system, Eq. 1 of main text, into a low-dimensional effective equation with max( , )n m  parameters 269 

and the state variable effx .  270 

 271 

3. Chebyshev approximation theory 272 

 Based on approximation theory, mathematically, Chebyshev polynomials provide an efficient way to approximate 273 

a smooth nonperiodic function (Boyd, 2001, Mason and Handscomb, 2002). Specifically, Chebyshev polynomials, named 274 

after Pafnuty Chebyshev (Chebyshev, 1853), are a sequence of orthogonal polynomials that are related to de Moivre's 275 

formula and can be defined recursively. Chebyshev polynomials are important in approximation theory because the roots 276 

of the Chebyshev polynomials of the first kind, which are also called Chebyshev nodes, are used as nodes in polynomial 277 

interpolation. The resulting interpolation polynomial minimizes the problem of Runge's phenomenon and provides an 278 

approximation that is close to the polynomial that best approximates a continuous function under the maximum norm. 279 

 Chebyshev polynomials of the first kind can be defined as the unique polynomials satisfying (cos ) cos( ) =nT n , 280 

and their recurrence relation is 0 1 1 1( ) 1, ( ) , ( ) 2 ( ) ( )+ −= = = −n n nT x T x x T x xT x T x . They are polynomials with the largest 281 

possible leading coefficient, subject to the condition that the interval is [ 1,1]− , and they satisfy the orthogonality relation 282 

1
2 1/2

1
( ) ( )(1 ) 0−

−
− = m nT x T x x dx , where n m . Because the set of Chebyshev polynomials form an orthonormal basis, a 283 

function in the same space on 1 1−  x  can be expressed via the expansion 
0

( ) ( )


=

= n n

n

f x a T x , where na  is called the 284 

Chebyshev coefficient, and this sum is called a Chebyshev series. As long as the function f  is continuous and at least 285 

somewhat smooth (Lipschitz continuity is sufficient), it has a unique expansion of this form that converges absolutely and 286 
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uniformly, the coefficients of which are given by the integral 
1

21

( ) ( )2

1 −
=

−


n
n

f x T x
a dx

x
; for 0=n , the constant changes 287 

from 2 /  to 1/ . Although the standard method of approximating a function is to form the polynomial obtained by 288 

truncating its Chebyshev expansion, 
0

( ) ( )
=

=
N

N n n

n

f x a T x , it is rarely worth computing the best (minimax) approximation 289 

(Pachón and Trefethen, 2009). Instead, for practical computations, it is simpler to construct the approximations via 290 

Chebyshev interpolants, which can also be regarded as finite series in Chebyshev polynomials for some coefficients nc , 291 

0

( ) ( )
=

=
N

N n n

n

p x c T x . This approximation is not optimal, but these coefficients are nearly optimal and much easier to 292 

compute than those of the Chebyshev expansion. Each coefficient nc  will converge to ka  as →N , neglecting the 293 

effects of rounding errors, which are very small in relative terms (Battles and Trefethen, 2004). When the given function 294 

has two variables ( , )f x y , the formalism is similar to that above for one variable. By using iterative Gaussian elimination 295 

with complete pivoting to construct low rank approximations, the function is approximated to essentially machine 296 

precision (Townsend and Trefethen, 2013). 297 

 Here, we use the MATLAB toolbox Chebfun (Trefethen, 2013, Driscoll et al., 2014) to calculate the Chebyshev 298 

coefficients na . The implementation of Chebfun is based on the mathematical fact that smooth functions can be 299 

represented very efficiently by polynomial interpolation. In particular, it provides a simple environment in which to 300 

demonstrate the approximants. For the self-dynamics ( )i iF x , we can construct a one-variable Chebyshev polynomial with 301 

the function ‘chebfun’ in the toolbox. For the coupling dynamics ( , )i i jG x x , we can construct a two-variable Chebyshev 302 

polynomial with the function ‘chebfun2’ in the toolbox. Additionally, if the interval of the given function is [ , ]a bx x  instead 303 

of the default [ 1,1]− , Chebfun will first calculate the Chebyshev coefficients and then rescale the Chebyshev polynomials 304 

by replacing x with 
2

( )
2

+
−

−

a b

b a

x x
x

x x
 automatically. 305 

 306 

4. Testing the model approximation 307 

 The core of our framework lies in the derivation presented above, which allows us to reduce the high-dimensional 308 

networked system to a low-dimensional effective system. In addition to the mean-field approximation and the negligible 309 

degree correlation, the derivation is based on two additional conditions: (i) The Hadamard product is valid for a pair of 310 

vectors; i.e., ( ) ( ) ( ) x y x y . (ii) The Chebyshev approximation can be made. 311 

 312 
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4.1. Validation of the Hadamard product 313 

 If both vectors x  and y  are not uniform, the  operator of their Hadamard product approximates the product 314 

of their  operator. When they are constant vectors, this approximation becomes exact. As heterogeneity increases, the 315 

error will increase. 316 

 To further examine this condition, we explicitly test the approximation. Assume that the elements of the x  vector 317 

are drawn from a distribution with mean  x
 and standard deviation  x  and that the y  vector is generated in a similar 318 

way . We calculate ( )x y  and ( ) ( )x y , respectively. Finally, we compare their relative error 
( ) ( ) ( )

( )

 −



x y x y

x y
. 319 

Fig. S2 shows the result with different coefficients of variation of x  and y . Although vectors x  and y  are heterogeneous, 320 

the relative error is small. Therefore, this approximation holds. 321 

 322 

4.2. Validation of the Chebyshev approximation 323 

 If either the self-dynamics ( )i iF x  is not a linear combination of m  subfunctions or the form of ( )i iF x  is different 324 

for different i , we use the Chebyshev polynomial to approximate it. The resulting interpolation polynomial minimizes the 325 

problem of Runge's phenomenon and provides an approximation that is close to the polynomial that best approximates 326 

a continuous function under the maximum norm. Fig. S3 shows some simple examples of this approximation. 327 

 328 

5. Extended validation 329 

 In the above sections, we showed analytically that by mapping a given high-dimensional networked system to an 330 

1+S -dimensional space, one obtains a low-dimensional effective equation 1( , , , ) S effI d d x . In the Results section of 331 

the main text, we showed some real-world cases to reveal the advantages of our framework. To further validate this 332 

technique, we conduct a set of extensive numerical tests on elementary effective equations.  333 

 334 

5.1. Case of d1, d2 335 

 We assume the self-dynamics ,1( ) =i i iF x b  and coupling dynamics ,1 ,2( , ) = +i i j i i iG x x c c x . The high-dimensional 336 

equation is ,1 , ,1 ,2( )= + +
N

i
i i j i i i

j

dx
b A c c x

dt
, and its low-dimensional effective equation is 0 1

1 2= +
eff

eff eff

dx
d x d x

dt
 where 337 

( )=effx x , 
1 1

1 = +eff eff effd B A C  and 
2

2 = eff effd A C . 338 
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 For testing and validation, we set the network size 50=N ; ( )1

1,1 ,1, ,= 
T

NB b b  is a vector whose elements are 339 

drawn from a normal distribution with mean 1
B

 and standard deviation 1 1 / 3 =
B B

, ( )1

1,1 ,1, ,= 
T

NC c c  is a vector 340 

whose elements are drawn from a normal distribution with mean 1
C

 and standard deviation 1 1 / 3 =
C C

, 341 

( )2

1,2 ,2, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 2
C

 and standard 342 

deviation 2 2 / 3 =
C C

, and A  is a complete network whose weights are drawn from a normal distribution with mean 343 

A  and standard deviation / 3 =A A . We set 1 15 =
B

, 1 1 = −
C

, 2 2.5 = −
C

, and 0.2 =A , and we set two of 344 

initial conditions: a low initial condition ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution 345 

between 0 and 0.1, and a high initial condition ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution 346 

between 0.9 and 1. Fig. S4 shows the results of changing each of the following parameters one at a time: 1
B

, 1
C

, 2
C

, 347 

the network nodes, the network edges and the network weights. 348 

 349 

5.2. Case of d1 and d3 350 

 We assume the self-dynamics ,1( ) =i i iF x b  and coupling dynamics ,1 ,3( , ) = +i i j i i i jG x x c c x x . The high-351 

dimensional equation is ,1 , ,1 ,3( )= + +
N

i
i i j i i i j

j

dx
b A c c x x

dt
, and its low-dimensional effective equation is 352 

0 2

1 3= +
eff

eff eff

dx
d x d x

dt
 where ( )=effx x , 

1 1

1 = +eff eff effd B A C  and 
3

3 = eff effd A C . 353 

 For testing and validation, we set the network size 50=N ; ( )1

1,1 ,1, ,= 
T

NB b b  is a vector whose elements are 354 

drawn from a normal distribution with mean 1
B

 and standard deviation 1 1 / 3 =
B B

, ( )1

1,1 ,1, ,= 
T

NC c c  is a vector 355 

whose elements are drawn from a normal distribution with mean 1
C

 and standard deviation 1 1 / 3 =
C C

, 356 

( )3

1,3 ,3, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 3
C

 and standard 357 

deviation 3 3 / 3 =
C C

, and A  is a complete network whose weights are drawn from a normal distribution with A  358 

and standard deviation / 3 =A A . We set 1 5 = −
B

, 1 3 =
C

, 3 4 = −
C

, and 0.2 =A , and we set two initial 359 

conditions: a low initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0 and 360 

0.1, and a high initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0.9 and 1. 361 
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Fig. S5 shows the results of changing one of the following parameters one at a time: 1
B

, 1
C

, 3
C

, the network nodes, 362 

the network edges and the network weights. 363 

 364 

5.3. Case of d2 and d3 365 

 We assume the self-dynamics ,2( ) =i i i iF x b x  and coupling dynamics ,2 ,3( , ) = +i i j i i i i jG x x c x c x x . The high-366 

dimensional equation is ,2 , ,2 ,3( )= + +
N

i
i i i j i i i i j

j

dx
b x A c x c x x

dt
, and its low-dimensional effective equation is 367 

1 2

2 3= +
eff

eff eff

dx
d x d x

dt
 where ( )=effx x , 

2 2

2 = +eff eff effd B A C  and 
3

3 = eff effd A C . 368 

 For testing and validation, we set the network size 50=N ; ( )2

1,2 ,2, ,= 
T

NB b b  is a vector whose elements are 369 

drawn from a normal distribution with mean 2
B

 and standard deviation 2 2 / 3 =
B B

, ( )2

1,2 ,2, ,= 
T

NC c c  is a vector 370 

whose elements are drawn from a normal distribution with mean 2
C

 and standard deviation 2 2 / 3 =
C C

, 371 

( )3

1,3 ,3, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 3
C

 and standard 372 

deviation 3 3 / 3 =
C C

, and A  is a complete network whose weights are drawn from a normal distribution with A  373 

and standard deviation / 3 =A A . We set 2 30 = −
B

, 2 5 =
C

, 3 4 = −
C

, and 0.2 =A , and we set two initial 374 

conditions: a low initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0 and 375 

0.1, and a high initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0.9 and 1. 376 

Fig. S6 shows the results of changing one of the following parameters one at a time: 2
B

, 2
C

, 3
C

, the network nodes, 377 

the network edges and the network weights. 378 

 379 

5.4. Case of d1, d2, and d3 380 

 We assume the self-dynamics ,1 ,2( ) = +i i i i iF x b b x  and coupling dynamics ,1 ,2 ,3( , ) = + +i i j i i i i i jG x x c c x c x x . The 381 

high-dimensional equation is ,1 ,2 , ,1 ,2 ,3( )= + + + +
N

i
i i i i j i i i i i j

j

dx
b b x A c c x c x x

dt
, and its low-dimensional effective equation 382 

is 0 1 2

1 2 3= + +
eff

eff eff eff

dx
d x d x d x

dt
 where ( )=effx x , 

1 1

1 = +eff eff effd B A C , 
2 2

2 = +eff eff effd B A C  and 
3

3 = eff effd A C . 383 
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 For testing and validation, we set the network size 50=N ; ( )1

1,1 ,1, ,= 
T

NB b b  is a vector whose elements are 384 

drawn from a normal distribution with mean 1
B

 and standard deviation 1 1 / 3 =
B B

, ( )2

1,2 ,2, ,= 
T

NB b b  is a vector 385 

whose elements are drawn from a normal distribution with mean 2
B

 and standard deviation 2 2 / 3 =
B B

, 386 

( )1

1,1 ,1, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 1
C

 and standard 387 

deviation 1 1 / 3 =
C C

, ( )2

1,2 ,2, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with 388 

mean 2
C

 and standard deviation 2 2 / 3 =
C C

, ( )3

1,3 ,3, ,= 
T

NC c c  is a vector whose elements are drawn from a 389 

normal distribution with mean 3
C

 and standard deviation 3 3 / 3 =
C C

, and A  is a complete network whose weights 390 

are drawn from a normal distribution with A  and standard deviation / 3 =A A . We set 1 12 =
B

, 2 5 = −
B

,391 

1 0.25 =
C

, 2 0.5 =
C

, 3 1.5 = −
C

, and 0.2 =A , and we set two initial conditions: a low initial value 392 

( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0 and 0.1, and a high initial value 393 

( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution between 0.9 and 1. Fig. S7 shows the results 394 

of changing one of  the following parameters one at a time: 1
B

, 2
B

, 1
C

, 2
C

, 3
C

, the network nodes, the network 395 

edges and the network weights. 396 

 397 

5.5. Case of d1, d2, d3 and d4 398 

 We assume that the self-dynamics are 
0 1 2

,1 ,2 ,3( ) = + +i i i i i i i iF x b x b x b x  and the coupling dynamics are 399 

2

,3 ,4( , ) = +i i j i i j i i jG x x c x x c x x . Therefore, the high-dimensional equation is 400 

( )0 1 2 2

,1 ,2 ,3 ,3 ,4= + + + +
N

i
i i i i i i ij i i j i i j

j

dx
b x b x b x A c x x c x x

dt
. To conveniently represent resilience visually, we set 401 

,1 ,2, 1, 1 = − =i ii b b  directly. In this way we can investigate the equilibrium states in a three-dimensional space. The high-402 

dimensional equation becomes 2 2

,3 , ,3 ,41 ( )= − + + + +
N

i
i i i i j i i j i i j

j

dx
x b x A c x x c x x

dt
, and its low-dimensional effective 403 

equation is 0 1 2 3

1 2 3 4= + + +
eff

eff eff eff eff

dx
d x d x d x d x

dt
 where ( )=effx x , 

1 1

1 ( ) 1= = = −effd B B , 
2 2

2 ( ) 1= = =effd B B , 404 

3 3 3 3

3 ( ) ( ) ( )= + = + in

eff eff effd B A C B Cs  and 
4 4

4 ( ) ( )= = in

eff effd A C Cs . 405 
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 The predicted bifurcating resilience function is shown in Fig. S8, which has a transition from a resilient state with 406 

a single stable fixed point to a state with only limited resilience because of the presence of two stable fixed points. The 407 

critical boundary is fully determined by the polynomial 
2 3

3 41− + + +eff eff effx d x d x  with the two effective parameters 
3 4,d d  408 

on the macroscopic level, which depend on the elements of the interaction network A  and the parameters of vectors 409 

3 3 4, ,B C C  on the microscopic level. 410 

 For testing and validation, we set the network size 50=N ; ( )3

1,3 ,3, ,= 
T

NB b b  is a vector whose elements are 411 

drawn from a normal distribution with mean 3
B

 and standard deviation 3 3 / 3 =
B B

, ( )3

1,3 ,3, ,= 
T

NC c c  is a vector 412 

whose elements are drawn from a normal distribution with mean 3
C

 and standard deviation 3 3 / 3 =
C C

, 413 

( )4

1,4 ,4, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 4
C

 and standard 414 

deviation 4 4 / 3 =
C C

, and A  is a complete network whose weights are drawn from a normal distribution with mean 415 

A
 and standard deviation / 3 =A A . We set 3 10 = −

B
, 3 5 =

C
, 4 8 = −

C
, and 0.2 =A

, and we set two types 416 

of initial conditions: a low initial condition ( )1, ,= 
T

NX x x  whose elements are drawn from a uniform distribution 417 

between 0 and 0.1 and a high initial condition ( )1, ,= 
T

NX x x  whose elements are drawn from a uniform distribution 418 

between 0.9 and 1. 419 

 Fig. S9 a-f show the results of perturbing one of the following parameters at a time: 3
B

, 3
C

, 4
C

, the network 420 

nodes, the network edges and the network weights. The low-dimensional effective equation predicts that the behavior 421 

observed in Fig. S9 a-f is, in fact, captured by a single effective function composed of three surfaces in a three-dimensional 422 

space 3 4, , effd d x  (Fig. S9 g). Hence, we replot all the data of Fig. S9 a-f in this low-dimensional space, and we find that, as 423 

predicted, all data points collapse into the effective surfaces. 424 

 425 

6. Non-homogeneous dynamics mechanisms 426 

Our framework can be applied not only to non-homogeneous dynamic parameters where all nodes interact 427 

through the same mechanisms, especially when the parameter heterogeneity is large, but also to non-homogeneous 428 

dynamics mechanisms where the functional form of self-dynamics and coupling-dynamics differ across the nodes. Except 429 

for the example on gene expression shown in the main text, we here show a new illustrative example. 430 

For testing and validation of non-homogeneous dynamics mechanisms, we assume the self-dynamics ,1( ) =i i iF x b  431 

if i  is odd and ,2( ) =i i i iF x b x  if i  is even, coupling dynamics ,2( , ) =i i j i iG x x c x  if i  is odd and ,1( , ) =i i j iG x x c  if i  is even. 432 
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The high-dimensional equation is ,1 , ,2= +
N

i
i i j i i

j

dx
b A c x

dt
 if i  is odd and ,2 , ,1= +

N
i

i i i j i

j

dx
b x A c

dt
 if i  is even. Therefore, 433 

both self-dynamics and coupling dynamics are non-homogeneous. Its low-dimensional effective equation is 434 

1 2= +
eff

eff

dx
d d x

dt
 where ( )=effx x , 

2 2

2 = +eff eff effd B A C  and 
3

3 = eff effd A C . 435 

 We set the network size 50=N ; ( )1

1,1 ,1, ,= 
T

NB b b  is a vector whose elements are drawn from a normal 436 

distribution with mean 1
B

 and standard deviation 1 1 / 3 =
B B

, ( )2

1,2 ,2, ,= 
T

NB b b  is a vector whose elements are 437 

drawn from a normal distribution with mean 2
B

 and standard deviation 2 2 / 3 =
B B

, ( )1

1,1 ,1, ,= 
T

NC c c  is a vector 438 

whose elements are drawn from a normal distribution with mean 1
C

 and standard deviation 1 1 / 3 =
C C

, 439 

( )2

1,2 ,2, ,= 
T

NC c c  is a vector whose elements are drawn from a normal distribution with mean 2
C

 and standard 440 

deviation 2 2 / 3 =
C C

, and A  is a complete network whose weights are drawn from a normal distribution with mean 441 

A  and standard deviation / 3 =A A . We set 1 30 =
B

, 
2

25 = −B , 1 2 = −
C

, 3 2.5 = −
C

, and 0.2 =A , and two 442 

of initial conditions: a low initial condition ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution 443 

between 0 and 0.1, and a high initial condition ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform distribution 444 

between 0.9 and 1. Fig. S10 shows the results of changing each of the following parameters one at a time: 1
B

, 2
B

, 1
C

, 445 

2
C

, the network nodes, the network edges and the network weights. 446 

 447 

7. Effect of heterogeneity 448 

7.1. Heterogeneity of self-dynamics 449 

Our framework works for varied self-dynamics, especially for non-homogenous dynamics parameter even if its 450 

parameter distribution is heterogeneous. To prove this point, we present an analysis of the error distance distribution as 451 

displayed by the box whisker boxes, in the case of SIS dynamics with parameters 1 2, , , Ne e e  drawn from a Pareto or 452 

Log-normal distributions with different degree of heterogeneity. As it can be shown (see Fig. S11), although the extreme 453 

statistical values increase for increasing coefficient of variations of the distributions, the average error is quite stable 454 

across different CV. The error distance also depends the location of the average value of e  , i.e. when 30 =e , 0=effx  455 

(we are in the depleted state), while when 70 =e , 0effx  (we are in the sustainable state). We note that of course in 456 

the latter case, the variability is larger, and the effect of increasing CV is stronger, leading to larger errors. 457 
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 458 

7.2 Heterogeneity of network A 459 

 Our framework also works for high-dimensional networked system with heterogeneous network. For testing and 460 

validation, we adopt the SIS case from main text where network A  is generated by random network model to test: (a) 461 

heterogeneity of edge weight. We generate one ER network with connectivity 0.4 and each edge weight is drawn from a 462 

lognormal distribution with mean 1 and CV from 1 to 8. (b) heterogeneity of network topology. We use Price graph model 463 

to generate random network whose degree distribution is ( ) ~ −P k k  where   from 4 to 10 (Their corresponding CV of 464 

degree distribution are 0.57735, 0.353553, 0.258199, 0.204124, 0.169031, 0.144338, 0.125988). We set network size 465 

200=N  and elements of vector ( )1, ,= 
T

Ne ee  are constant 30 (for better uncovering the effect of heterogeneity of 466 

network) and two initial conditions: a low initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform 467 

distribution between 0 and 0.1, and a high initial value ( )1, ,= 
T

NX x x , whose elements are drawn from a uniform 468 

distribution between 0.9 and 1. We find that the error between analytical solutions and numerical solutions increases as 469 

increasing network heterogeneity, including the heterogeneous of edge weight and heterogeneous of networks topology 470 

(see Fig. S12). 471 

 472 

7.3 Heterogeneity of perturbations 473 

Last, we show an additional example to show to what extent the error of our approximation may be acceptable, 474 

i.e. its performance is sufficiently good; we also show when our framework may not be valid if the dynamics are “too” 475 

heterogeneous, i.e. error may increase with increasing heterogeneity. In Fig. S13, we can see that the error distance 476 

depends both on the interaction network and on properties of the self-dynamics and the coupling-dynamics. In other 477 

words, it is not possible to disentangle the contribution of the network structure and of the dynamics to the error function. 478 

 479 

  480 
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