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Abstract: Frailty is a clinical syndrome caused by home-
ostasis imbalance. It is characterized by marked vulner-
ability to endogenous or exogenous stressors, reduced
self-care ability, and increased mortality risk. This aging-
related syndrome is common in individuals older than
65 years and carries an increased risk for poor health out-
comes. These include falls, incident disability, incapacity,
and mortality. In addition, it can result in a poor prognosis
for other comorbidities. With the aging population, frailty
increases the burden of adverse health outcomes. Studies
on frailty are at their infancy. In addition, there is a lack of
thorough understanding of its pathogenesis. Several stu-
dies have suggested that frailty is caused by chronic
inflammation due to enhanced intestinal permeability fol-
lowing gut microbiota imbalance as well as pathogen-
related antibodies entering the circulation system. These
result in musculoskeletal system disorders and neuro-
degenerative diseases. However, this assumption has not
been validated in large cohort-based studies. Several stu-
dies have suggested that inflammation is not the only
cause of frailty. Hence, further studies are necessary to
extend our understanding of its pathogenesis. This review
summarizes the research findings in the field and expands on
the possible role of the gut microbiota in frailty syndrome.
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1 Frailty syndrome

Frailty syndrome is an aging-related syndrome and is
characterized bymorphological and physiological changes

in multiple organs and systems. This leads to homeostasis
imbalance and marked vulnerability to endogenous and/
or exogenous stressors [1,2]. At present, frailty is clinically
defined with frailty phenotype (FP) and frailty index (FI)
(Table 1).

Frailty syndrome has been highly associated with
age. A meta-analysis [3] based on 21 studies demon-
strated that the incidence rate of frailty syndrome ranges
between 4 and 59.1% and is positively correlated with
age. The incidence peak occurs in populations aged
85 years. Along with increased longevity and the higher
proportion of the elderly in the population, the number of
individuals with frailty syndrome keeps increasing [4].
Studies have demonstrated that frailty is closely related
to chronic diseases, such as cardiovascular diseases,
Alzheimer’s Disease (AD), and Parkinson’s Disease (PD)
[4–6]. The prevention and treatment of frailty may reduce
the risk of other chronic diseases and improve prognosis.
Hence, understanding the pathogenesis and prevention
of frailty may lower the burden of adverse health out-
comes in the elderly. It is an important public health
concern to understand the cause and pathogenesis of
frailty.

2 Gut microbiota

Higher organisms contain diversified microflora, which
includes, bacteria, archaebacteria, viruses, fungi, and
protozoa [7]. The intestinal tract of mammals is rich
in nutrition and has a constant temperature, making it
ideal for the survival of microorganisms. Microorganisms
reside in all mucosal surfaces of the host but are mainly
distributed in the gastrointestinal tract. Most microorgan-
isms are anaerobes outnumbering aerobe and facultative
anaerobes by 100 to 1,000 times [8]. A sequencing analysis
on the gut microbiota of a cohort of 386 Chinese indivi-
duals indicated that 95% of the gut microbiota were Firmi-
cutes, Bacteroidetes, Proteobacteria, and Actinobacteria,
of which, 90% fell into 15 genera, such as Bacteroidetes,
Clostridia, Clostridium leptum, and Eubacteria [9].
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There are approximately 1014 [10] bacterial cells in the
intestinal tract of an adult. This is 10 times as much as the
number of human cells [11]. Their combined genome (also
known as the microbiome) tops over 5 million genes, two
orders of magnitude higher than the genetic potentiality of
the host [7,12]. The consequent huge gene product library
(e.g., RNA and protein) exerts an influence on the physio-
logical activities of the host [13]. Studies have shown that
approximately 400,000 of the 4,026,600 messenger RNAs
in the human transcriptome are from gut microbiota [14].
This lays a material basis for the gut microbiota to parti-
cipate in regulating the physiological activities of the host:
(1) Gut microbiota can stimulate the metabolism of poly-
saccharides [14], synthesize essential vitamins, and regu-
late fat absorption and distribution [10]. (2) Themicrobiota
is essential for the development and differentiation of
intestinal epithelial cells of the host. In addition, they
can facilitate the maturation of gut-associated lymphoid
tissues (GALTs), tissue regeneration (especially intestinal
villi), and intestinal tract movement. (3) The microbiota
plays a prominent role in shaping the immune microenvir-
onment. This is done by promoting the development of
lymphatics and the differentiation of immunocytes and
regulating the generation of immunemediators [14]. In addi-
tion, they can stabilize the immune system of the host. (4)
Gutmicrobiota has also been shown to regulate tissue homeo-
stasis (e.g., induces cell proliferation and stem cell differ-
entiation) and bone mineral density (BMD) of the host [14]
and (5) the microbiota can affect the nervous system of the
host through three pathways of the gut–brain axis, i.e.,
immune system, neuroendocrine system, and vagus nerve.
This is important for modifying and controlling cognitive
activities such as anxiety, pain, and depression [15].

The gut microbiota is influenced by the host and under
dynamic fluctuations. Studies on the gut microbiota in
children and adults suggest that the gut microbiota keeps
changing from birth to old age [16,17]. After 65 years of

age, the gut microbiota enters a degeneration period with
decreased bacterial diversity and is usually dominated by
Bacteroidetes [18]. Furthermore, changes in diet, lifestyle,
sanitary conditions, or antibiotic use of the host could also
affect the gut microbiome composition [14,19–21]. For
instance, Firmicutes/Bacteroidetes ratio has been gener-
ally accepted as an index for obesity [22]. Unlike the
genome of the host, the microbiome changes rapidly along
with changes in gut microbiome composition or a single
microbial gene. This leads to changes in the transcriptome,
proteome, and metabolic profiling [14], and influences the
host. Thus, alterations in the gut microbiota may exert a
profound impact on the health of the elderly [15,23].

3 Direct evidence of correlation
between gut microbiota and
frailty

An imbalance in gut microbiota may trigger a chronic
inflammatory status [22] and increase the risks of cardi-
ovascular diseases, Type II diabetes, and cancer [24–26].
As studies on frailty syndrome increase, researchers have
identified that gut microbiota imbalance in the elderly
may be associated with frailty [27]. Nevertheless, there
are only limited studies on the gut microbiota and frailty.
A small number of exploratory studies have revealed a
possible correlation [15,24].

3.1 Potential correlation between frailty and
intestinal microorganism diversity

It is reasonable to believe that there is a correlation
between frailty and intestinal microorganism diversity.

Table 1: Common frailty assessment models [4]

Frailty assessment models Type Contents Author

Frailty phenotype (FP) Criteria Criteria: weight loss, weakness, slowness,
low activity levels, poor endurance

Fried, 2001

≥3 met: frail
1–2 met: pro-frail
0 met: non-frail

Frailty index (FI) Index Calculating the proportion of abnormal items
to the total items (FI value)

Mitnitski, 2001

FI ≥ 25%: frail
8 < FI < 25%: pro-frail
FI ≤ 8%: non-frail
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The gut microbiota in the elderly is characterized by
reduced bacterial community diversity and an increase
in some microorganism species [5,28–31]. A small-scale
exploratory study compared the gut microbiotas of indi-
viduals with and without frailty. The study discovered
that Lactobacilli is decreased in frail people compared
with non-frail ones, and the same thing happens in
Faecalibacterium prausnitzii (with anti-inflammatory and
immunoregulation effects); while Enterobacteriaceae,
which could increase opportunistic infections [32], was
found to be higher in frail people. Another study per-
formed on 728 female twins suggested a negative correla-
tion between frailty and intestinal microorganism diversity
[29]. Eubacterium dolichum (related to a high-fat diet [33])
and Eggerthella lenta (a pathogen [34]) are the most abun-
dant gut microbiota in individuals with frailty. Like that of
the elderly, F. prausnitzii in the gut microbiota of indivi-
duals with frailty decreased [35].

Studies using larger cohorts are necessary to deter-
mine whether the gut microbiota is associated with frailty.
Additionally, it is necessary to perform high-quality clin-
ical trials on intervention treatment and assess the effects
of probiotics supplements and/or prebiotics on frailty syn-
drome. A randomized double-blind placebo-controlled
clinical trial investigated interventional treatments [36]:
60 volunteers received a 13-week treatment with probiotic
preparations (inulin and fructo-oligosaccharide). Subse-
quent frailty assessments demonstrated that frailty was
not improved. Nevertheless, compared to the placebo group,
individuals receiving probiotic treatment had significant
improvements in two indicators (i.e., fatigue and grip).

3.2 The gut microbiota and frailty may
influence each other

In addition to the potential correlation, the gut micro-
biota and frailty may influence each other. The micro-
biota may be possibly affected by drugs taken by patients
with frailty, especially proton pump inhibitors (PPIs),
which are prescription drugs administered to older indi-
viduals with frailty [37–39]. A large population-based
study on frailty demonstrated a decrease in symbiotic
bacteria abundance and bacterial diversity and increased
levels of pathogenic streptococci in the intestinal tract of
patients taking PPIs. These results were validated in a
study on fraternal twins taking PPIs [40]. These findings
are of clinical significance because it proves that the use
of PPIs and alterations in the gut microbiota were related
to Clostridium difficile infection (CDI). CDI may give rise to

a poor prognosis and frailty in elderly patients with mul-
tiple complications [41]. In addition, non-steroid anti-
inflammatory drugs (NSAIDs) that have been extensively
administered in the elderly may lead to alterations in the
gut microbiota [42].

4 Role of gut microbiota in the
pathogenesis of frailty

The above studies revealed a direct correlation between
the gut microbiota and frailty. Adverse outcomes brought
by aging may include alterations in the gut microbiota
[43,44] and an inflammatory reaction (immunosenes-
cence) [45], followed by frailty. Studies have asserted
that the gut microbiota may play a part in the pathogen-
esis of frailty through chronic inflammation [5]. However,
the relationship with regards to the alterations in the gut
microbiota, chronic inflammation, and frailty is not uni-
lateral but complicated and interrelated [46,47]. The
mutual influences among alterations in the gut micro-
biota, chronic inflammation, and frailty will be discussed
in the following sections.

4.1 Frailty syndrome and immune-related
disease in the context of aging

As mentioned above, frailty syndrome leads to homeos-
tasis imbalance and marked vulnerability to endogenous
and/or exogenous stressors [1,2]. For example, it is well
studied that frailty syndrome is always with a chronic
low-grade inflammation, which is a contributing factor
of immune related disease [48]. So, it is reasonable to
believe that the elder population with frailty syndrome
is highly like with immune-related diseases.

The clinical manifestations of frailty syndrome are
usually loss of muscle and bone tissue, which may par-
tially be explained by an impaired immune system as
studies by Cornish et al. who revealed that there is sub-
stantial “cross-talk” between muscle and bone and the
immune system [49].

Stavropoulou and Bezirtzoglou found that the elder
population with frailty is always the one facing immune-
related disease. Usually, fragile elder population is facing
problems like changes in hormonal, increase in the pro-
inflammatory cytokines release, abnormality of the telo-
mere, and these problems can cause the dysfunction of
the immune system [50].
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4.2 Gut microbiota, chronic inflammation,
musculoskeletal system disorders
(MSDs), and frailty

A possible cause may be aging-triggered alterations in
the gut microbiota which results in chronic inflammation.
Increased inflammatory factors could directly or indir-
ectly lead to typical symptoms of frailty like reduced
grip and muscle and bone loss [51,52].

Studies have demonstrated that changes in gut micro-
biome composition and intestinal permeability due to
aging may give rise to an inflammatory reaction. Studies
have revealed that aging is associated with decreased pro-
biotics (e.g., Enterococcus faecalis, Bacillus faecalis, and
Lactobacilli) and a lower Firmicutes/Bacteroidetes ratio,
despite the tremendous differences in the gut microbiota
of populations of different races and in different regions
and environments [53].

Some beneficial microorganisms are vital to human
health because they can inhibit the expansion of patho-
genic bacterial communities, and generate mucus and
products of lipid metabolism, for example, short-chain
fatty acid (SCFA), bacterial polysaccharide (PSA), and
Serum Amyloid A (SAA), through fermenting starch and
dietary fiber to maintain a complete intestinal tract bar-
rier [54]. It has been reported that SCFA can act on
internal regulatory T cells (cTreg) through the G protein-
coupled receptor GPR43 to improve the number of cTregs
which is reduced by vancomycin, and up-regulate the
genes of Foxp3 and IL-10 in cTreg cells in sterile mouse,
so as to alleviate colitis [55]. Another research shows that
SCFA can increase the immunoglobulin A (IgA) level in rat
saliva, thus revealing a possible mechanism of how cellu-
lose enhances rats’ immunity [56].

Intestinal beneficial bacteria decrease with age, while
the relative abundance of other bacteria increases, including
symbiotic bacteria that are pathogenic and inflammatory
[57]. Such microorganisms are mainly facultative anaerobes
(e.g., Clostridia and Staphylococci). In addition, studies have
demonstrated that an increase in pathogenic bacteria is
associated with an increase in inflammatory cytokines
[58]. Enhanced intestinal permeability enables bacteria
and their products (including pathogen-associated mole-
cular pattern (PAMP), damage-associated molecular pat-
tern (DAMP), and microorganism-associated molecular
pattern (MAMP)) to enter the circulatory system. This con-
sequently results in a chronic pro-inflammatory status
[59]. This hypothesis is supported in animal models, how-
ever, no explicit evidence has been identified in the elderly
who have no obvious inflammatory disease [60].

An inflammatory reaction manifests with an increase
in inflammatory factors (e.g., IL-6, C-reactive protein,
tumor necrosis factor-α (TNF-α), and neopterin) [61]. Sev-
eral studies have demonstrated that high levels of inflam-
matory molecules in the blood have been correlated with
frailty [62]. Hence, chronic inflammation attributable to
alterations in the gut microbiota may be a key cause of
frailty.

Studies have demonstrated the direct correlation
between increased inflammatory factor levels and frailty
[45–47,51–54,57,58]. The direct correlation between frailty
and elevated IL-6 levels (a pro-inflammatory cytokine) was
demonstrated in a study that involved community-dwelling
elderly individuals [63]. The IL-6 level in the serum of indi-
viduals with frailty was higher compared to individuals
without frailty. This exploratory study enrolled 11 senior
citizens with frailty and 19 without frailty. This finding
was validated subsequently in a large-scale study in elderly
individuals under different nursing conditions, as well as in
cell culture andmousemodel-based studies. This suggested
a direct correlation between chronic inflammation and
immune activation, characterized by elevated IL-6 levels
and frailty syndrome [64]. Additional inflammatory mole-
cules (e.g., C-reactive protein and TNF-α) were also demon-
strated to be related to frailty syndrome [65]. In addition,
increased neopterin level (a marker of immune activation),
independent of IL-6 levels, were confirmed to be associated
with frailty in a cohort of community-dwelling elderly indi-
viduals [66]. These indicated that immune activation may
induce frailty relative to chronic inflammation [67]. An
increase in total white blood cell counts (TWCC) (higher
than typical ranges) is often regarded as part of the
complete blood counts for routine measurement in clinical
practice. This is a laboratory index secondary to systemic
inflammation induced by acute bacterial infections. Several
studies have demonstrated a direct correlation between
increased TWCC (even within the normal range) and frailty.
Specific subsets, including neutrophils and monocytes,
have been confirmed to be associated with frailty [68]. In
addition, an increase in other cell subsets, such as differ-
entiated CD8+/CD28− T cells and CCR5+ T cells, has also
been associated with frailty [69–71].

As previously mentioned, the direct correlation between
frailty and inflammatory molecules has been demonstrated.
Higher expression levels of inflammatory molecules activate
the inflammatory pathway, and it is a molecular mechanism
of chronic inflammation in individuals with frailty [72]. How
does chronic inflammation play a role in the pathogenesis of
frailty? It was discovered that several inflammatory mole-
cules (e.g. IL-6) may directly induce frailty or reduce key
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assessment indicators (e.g., muscle mass, strength, and
exercise performance) [73,74]. A study on 3,075 elderly indi-
viduals demonstrated that high levels of IL-6 were linked
to reduced muscle mass and strength. The relationship
between the IL-6 level and grip has been the most consis-
tent. The increase in IL-6 level by each standard deviation
(SD) results in a decrease in grip by 1.1–2.4 kg [61]. Studies
have demonstrated that higher levels of inflammatory mole-
cules were negatively related to hemoglobin levels and
levels of insulin-like growth factor-1 (IGF-1), albumin, micro-
nutrients, and vitamins [63,75,76]. IGF1, in particular, is
an indispensable growth factor for muscle regeneration
and muscle structural integrity and protects the body from
unstable carotid atheromatous plaques [77,78]. In vitro
studies showed that IL-1, IL-6, and TNF-α could inhibit
IGF1-mediated anabolism. In addition, IL-6 reduces the
generation of IGF1 and IGF-binding protein 3 (IGFBP-3)
[79]. An observational study suggested that high levels
of IL-6 and low levels of IGF1 could exert a synergistic
effect to decrease muscle strength and effectively predict
progressive disabilities and death [80,81]. Furthermore,
inflammation interferes with long-chain peptide synthesis
which is indispensable for muscle energy and protein ana-
bolism [82].

Chronic inflammation directly or indirectly plays a
key role in the pathogenesis of frailty (as shown in
Figure 1). Chronic inflammation causes typical symptoms
of frailty, such as reduced grip and muscle mass by dama-
ging the musculoskeletal system. In addition, other factors
besides chronic inflammation may play a vital role in the
pathogenesis of frailty. Some studies found no correlation
between elevated IL-6 levels and frailty [83,84], while
other studies found that administration of statins that
had an anti-inflammatory effect did not alleviate frailty
[85]. Given this, the pathogenesis of frailty is extremely
complicated. Chronic inflammation is probably one of
the causes. Furthermore, the gut microbiota may influence
the host through anabolic resistance [86] and reduced
bioavailability of nutrients [87]. Additional studies are
necessary to identify causal factors for frailty.

5 Gutmicrobiota, neuroinflammation,
neurodegenerative diseases, and
frailty

Another possible cause of frailty may be related to gut
microbiota. The mechanism may be through the gut–
brain axis, which affects the nervous system to induce

neurodegenerative diseases. This affects cognitive func-
tion to trigger or deteriorate frailty-related symptoms,
including difficulty in moving and incapacity [37,88,89].
Such cognitive impairment-related frailty is known as
“cognitive frailty” [90,91].

The concept of the gut–brain axis has been fully
demonstrated and widely accepted. A study by Muller
et al. [92] further verified this concept by discovering
the direct modulation of gut-extrinsic sympathetic neu-
rons by the gut microbiota. It is reported that the deple-
tion of rat microbiota can induce an increase in the
expression level of cFos, a neuronal transcription factor.
The implantation of SCFA-producing bacteria rescues the
increase of cFos expression, which further verifies that
gut microbiota can directly regulate the development of
these sympathetic neurons.

A large cohort study suggested a significant correla-
tion between bacterial diversity and cognitive function
[93]. This study sequenced fecal samples from 1,551 sub-
jects and analyzed diversity to correlate with multiple
cognitive functions, which included verbal fluency and
response time. The authors observed a correlation between
higher language diversity and shorter response time and
higher bacterial diversity. There are only a limited number
of studies on how gut microbiota imbalance impairs cog-
nitive function and ultimately lead to frailty. However,
several animal models and some studies on humans sug-
gested a correlation between the gut microbiota and cog-
nition [94–97].

Patients with Parkinson’s Disease (PD) suffer from
shaking, stiffness, and difficulty in walking, balance,
and coordination [98]. The primary pathogenesis lies in
the unusual folding and aggregation of the protein α-
synuclein, which forms protein clumps (i.e., Lewy bodies
and Lewy neuritis) and affects the nervous system. Neuro-
inflammation induces gut–brain axis damage and is
considered as a possible cause of abnormal folding of
α-synuclein [99]. A study performed on 19 PD patients
demonstrated that neuroinflammation may be triggered
by chronic inflammation in the colonic mucosa [100].
Compared to healthy individuals, PD patients had higher
mRNA expression levels of pro-inflammatory cytokines
(e.g., TNF-α, IFN-γ, IL-6, and IL-1β) and neurogliocyte acti-
vationmarkers in colonic biopsies. It was observed that the
levels of pro-inflammatory cytokines and the duration of the
disease were negatively correlated. Another retrospective
study indicated that vagotomy reduced the risk of PD.
This suggested an interaction between the intestinal tract
and the central nervous system [101]. Furthermore, it was
observed that abnormally folded α-synuclein appears in the
nerve plexuses of intestinal submucosa and myenteron
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before it aggregates in the brain. Hence, abnormal pro-
teins may migrate to the brain from the intestinal tract in a
“prion-like” form [102]. This assumption is supported by
the cephalo-caudal gradient of the distribution of α-synu-
clein in the enteric nervous system (ENS) of PD patients
during the early stages [103]. Hence, this could be the
reason why PD patients suffer from gastrointestinal symp-
toms like constipation and dysporia several years before
dyskinesia [104].

A PDmousemodel (overexpressing α-synuclein) further
revealed an important correlation between neuroinflamma-
tion and the gut microbiota. The comparison between germ-
free and normal mice in this model indicated that the gut
microbiota was indispensable to trigger dyskinesia, neuro-
gliocyte activation (neuroinflammation), and aggregation
of α-synuclein [105]. Additionally, the transfer of gut
microbiota from PD mice (overexpressing α-synuclein)
into germ-free mice resulted in sports injury, while trans-
ferring gut microbiota from healthy mice did not.

Human studies have demonstrated the correlation
between the gut microbiota and PD. A study assessed
the gut microbiome composition of 72 PD patients: [106]
Compared to healthy subjects, Prevotellaceae in the feces
of PD patients were significantly lower, while the relative
abundance of Enterobacteriaceae increased. This was posi-
tively correlated with the severity of postural instability and
gait disturbance (PIGD) of patients. The authors speculated
that Prevotellaceae could significantly increase the synth-
esis of thiamine and folic acid to generate mucoprotein.
Hence, a decrease in Prevotellaceae may contribute to
reduced vitamin content and enhanced intestinal perme-
ability observed in PD patients.

Alzheimer’s Disease (AD) is the most common type of
dementia. The disease process is associated with amyloid

plaques and neurofibrillary tangles in the brain [107]. The
correlation between the intestinal tract and AD was first
demonstrated in a mouse model. Compared to conven-
tionally fed mice with a complete gut microbiota, germ-
free mice had memory dysfunction (a typical symptom of
AD) [108]. Moreover, the administration of endotoxin
could increase β-amyloid protein levels in the hippo-
campus of mice and induce cognitive defects [109]. An
interventional study demonstrated that higher numbers
of Actinomycetes and Bacteroidetes [110] decreased neu-
rogliocyte activation markers and enhanced brain-derived
neurotrophic factor (BDNF) in the gut microbiota of older
rats treated with VSL#3 (a probiotic mixture of eight Gram-
positive bacterial strains).

Animal models have suggested the potential relation-
ship between AD and gut microbiota [102–104], however,
this relationship has only been supported by a limited
number of research studies on humans with AD. Micro-
biota in the feces of AD patients was first analyzed in a
study conducted in 2017 [111]. In this study, compared to the
control group and patients negative for amyloid protein,
patients who were positive for amyloid proteins had more
pro-inflammatory cytokines (e.g., IL-6, CXCL2, NLRP3, and
IL-1α) and lower levels of IL-10, an anti-inflammatory cyto-
kine. In terms of the gut microbiota, the level of Eubac-
terium rectale in patients who were positive for amyloid
protein was lower, while the levels of Escherichia and Shi-
gella that cause infections were increased. In addition, it is
found that pro-inflammatory cytokines (e.g., IL-1α, NLRP3,
and CXCL2) were positively correlated with the abundance
of Escherichia and Shigella, and negatively correlated with
Bacillus stearothermophilus level in the rectum.

Animal models and some human studies have demon-
strated the relationship between chronic inflammatory

Figure 1: Current understanding of the pathogenesis of frailty syndrome.
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status triggered by gut microbiota and the marked upre-
gulation of immune factors and neuroinflammation
characterized by neurogliocyte activation. Hence, some
investigators speculated that the upregulation of inflam-
matory factors, due to gut microbiota imbalance, leads to
neuroinflammation through the gut–brain axis. Subsequently,
neuroinflammation takes part in the onset/progression
of PD and AD [5] (as shown in Figure 2). Dyskinesia
and cognitive disorders brought about by PD and AD
will cause/deteriorate symptoms of frailty, which include
slower movement and reduced physical activity, lower the
self-care ability and increase the risk of death [37]. Never-
theless, the assumption has not been fully demonstrated
in human studies. How neuroinflammation participates in
the pathogenesis of PD and AD remains to be deciphered.

Apart from the impact on central nervous system, the
enteric neurons are under the regulation of the gut flora as
well. Take the association between IL-33 and enteric neurons
for an example. Malik et al. [112] observed a higher level of
pro-inflammatory microbiota in mice lacking IL-33, which
indicated a direct association between IL-33 level and gut
microbiome. On the other hand, the IL-33 level is associated
with the release of 5-HT. IL-33, as an alarmin cytokine, could
be sensed by Enterochromaffin (EC) cells [113], resulting in
the release of serotonin (5-HT) [114], a neurotransmitter that
activates enteric neurons and promotes gut motility, which
is essentially compromised in frail people [115]. Therefore, it
is reasonable to relate gut microbiota-related IL-33 increase
with 5-HT decrease-related frailty symptoms.

6 Discussion and conclusion

As the population ages, frailty syndrome will bring a
huge medical burden to society. Previous studies have
suggested that gut microbiota imbalance may be a cause
of frailty. Animal models and a few human studies
have demonstrated that individuals with frailty tend to
have increased levels of inflammatory factors (e.g. IL-6,
C-reactive protein, and TNF-α) and a chronic inflammatory
status. Inflammatory factors have been demonstrated
to directly or indirectly reduce key indicators of frailty,
such as muscle mass and grip. In addition, gut microbiota
imbalance has been demonstrated to be associated with
the higher expression of inflammatory factors. Studies
have suggested that gut microbiota imbalance leads to
enhanced intestinal permeability. This in turn triggers
the entry of pathogen-related antibodies like PAMP and
DAMP to the circulatory system to subsequently trigger
an inflammatory reaction. As a result, investigators believe
that the chronic inflammatory status due to gut microbiota
imbalance could directly or indirectly give rise to the
typical symptoms of frailty (by causing cardiovascular dis-
eases or damaging the musculoskeletal system). In addi-
tion, higher levels of inflammatory factors due to gut
microbiota may further influence the nervous system of
the host via the gut–brain axis to induce neuroinflamma-
tion (neurogliocyte activation) leading to neurodegenera-
tive diseases, i.e., dyskinesia and/or cognitive disorders in
patients with frailty (as shown in Figure 1).

Figure 2: Possible pathogenic mechanism of PD and AD due to gut microbiota imbalance [5].
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However, the above assumptions have not been vali-
dated in large cohort-based studies. The relationship of
gut microbiota imbalance, chronic inflammation, and
frailty is not unilateral but complicated and interrelated.
Several studies have suggested that chronic inflamma-
tion due to gut microbiota imbalance may not be the
only cause of frailty. It is worth noting that individuals
with frailty are on long-termmedication due to preexisting
chronic diseases (complications). It has been demon-
strated that medications could alter gut microbiome com-
position. Hence, future studies are necessary to determine
whether gut microbiota is a cause of frailty or a result of
long-term medication in people with frailty. In addition,
factors that may affect the gut microbiota, such as lifestyle,
diet, and other health complications, need to be consid-
ered comprehensively. Lastly, studies on the pathogenesis
of frailty should emphasize the prevention and treatment
of frailty to improve the health and ease the medical
burden of the elderly.
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TWCC total white blood cell counts
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