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Quo vadis? Interferon-inducible GTPases go to their target membranes via the
LC3-conjugation system of autophagy
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ABSTRACT
Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has
been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-
inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing
vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the
pathogen gets exposed to the hostile cytoplasm. What has been obscure is how the immune system
detects and directs the GTPases to these pathogen shelters. Using a common protist parasite of mice,
Toxoplasma gondii, we found that the LC3 conjugation system of autophagy is necessary and sufficient for
targeting the interferon-inducible GTPases to membranes. We dubbed this process Targeting by
AutophaGy proteins (TAG). In canonical autophagy, the LC3 conjugation system is required to form
membrane-bound autophagosomes, which encircle and deliver cytosolic materials to lysosomes for
degradation. In TAG, however, the conjugation system is required to mark the membranes of pathogen-
containing vacuoles with ubiquitin-like LC3 homologs, which function as molecular beacons to recruit the
GTPases to their target membranes. Our data suggest that the LC3 conjugation system of autophagy
plays an essential role in detecting and marking pathogen-containing vacuoles for immune effector
targeting by the host immune system.
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Enemy in disguise: How are pathogen-
containing vacuoles targeted?

Many intracellular pathogens survive and replicate
within vacuole-like structures, which are usually made
by pathogens through reorganization of existing cellular
membrane structures.1 This so-called pathogen-
containing vacuole provides pathogens not only a shelter
from the host immune defense system but also a base to
exploit the host cells. Thus, for the fitness and survival of
the host, the operating base of pathogens has to be
detected and destroyed by the immune defense system.2

The immune system may have evolved to recognize these
abnormally reorganized membrane structures as patho-
gen-associated molecular patterns, yet it has been
obscure whether such pattern recognition receptor exists
against pathogen-containing vacuoles.2

What has been known are effector proteins used by the
host immune system to fight these vacuolar pathogens;
immunity related GTPases (IRGs) and guanylate-binding
proteins (GBPs) are interferon-inducible, dynamin-like
GTPases that destroy these pathogen shelters.3,4 Upon their

induction, preferentially by interferon-gamma (IFNG),
these effectors rapidly accumulate on the membranes of
pathogen-containing vacuoles. The targeted membranes are
subsequently vesiculated and eventually rupture, exposing
the resident pathogens to the host cytoplasm. The conse-
quences of such exposure include inhibition of the pathogen
replication, activation of cytosolic pathogen sensors, and
subsequent death of the pathogens and/or the host cells.5-7

In contrast to these outcomes, it has been poorly understood
how the IRGs and GBPs are directed to the membrane of
these vacuoles.8

To explain the targeting mechanism of the IRGs and
GBPs, a prevalent model in the field has been the “guard”
model (also similarly known as “missing-self” model).2,9,10

The gist of the “guard” model is a set of “guard” proteins
that mark and protect the host cell membranes from the
“executer” IFN-inducible GTPases. The IRG family is subdi-
vided into GMS IRGs and GKS IRGs, based on their
sequence in a conserved GTPase domain.11 Membrane-
bound GMS IRGs (e.g. IRGM1, IRGM2, and IRGM3/
IGTP) are considered the “guard” proteins and
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predominantly cytosolic GKS IRGs (e.g., IRGA6/IIGP1 and
IRGB6/TGTP1) function as the “executer” proteins: the
“guard”GMS IRGs act as guanosine nucleotide dissociation
inhibitor (GDI) of “executer” GKS IRG proteins, keeping
the GKS IRGs in their inactive GDP-bound form.9,11 In the
case of Toxoplasma gondii, the parasitophorus vacuole
membrane (PVM) of T. gondii is derived from the host
plasma membrane while T. gondii removes most (if not all)
of the membrane-associated host proteins.12 This suggests
that the PVM of T. gondii may not be protected with the
“guard” proteins and thus may be identified as a target
membrane for the “executer” proteins. The GKS IRGs can
translocate to the PVM by simple diffusion and can be acti-
vated to bind GTP in the absence of the “guard.” Subse-
quently, their GTP-dependent oligomerization may lead to
the vesiculation and consequent disruption of the parasito-
phorus vacuole of T. gondii.13-16 Further, the IRG system
has been shown to control the localization of GBPs onto the
PVM through ubiquitination, although the mechanism is
still not completely understood.17-19 Therefore, the “guard”
model predicted that any endomembrane structure without
the protective “guard” can be targeted spontaneously by
GKS IRGs and subsequently GBPs.2

Intriguingly, several groups found that Atg5, an essential
autophagy gene, is required to target these GKS IRGs and
GBPs to the membranes of vacuoles containing pathogens
like Chlamydia trachomatis and T. gondii.10,15,20,21 Without
Atg5, GKS IRGs and GBPs are induced normally by IFNG,
but they form aggregates in the cytoplasm rather than tar-
geting pathogen-containing vacuoles.22 Since the major
function of autophagy is to deliver cytoplasmic materials to
lysosomes for degradation23 and the cytoplasmic aggregates
of GKS IRGs in Atg5 knockout cells were composed of
GTP-bound active forms,20,24 it was proposed that the deg-
radative autophagy pathway might be required to maintain
a functional pool of the IFN-inducible GTPases by remov-
ing falsely aggregated GTPases.20

Targeting by AutophaGy proteins (TAG): LC3
homologs mark membranes to be targeted

Using a well-established murine model of protist T. gondii
infection, we examined the role of the autophagy pathway
in proper targeting of IFN-inducible GTPases to the mem-
branes of pathogen-containing vacuoles. Contrary to the
expected, lysosomal degradation through autophagy did not
affect targeting of GKS IRGs and GBPs to the PVM of T.
gondii and subsequent control of T. gondii replication by
IFNG.25 Pharmacological induction or inhibition of the
autophagy pathway also did not play any role in the target-
ing process. Further, genetic ablation of other essential auto-
phagy genes (e.g., Ulk1, Ulk2, Atg14) had no effect on
targeting of IFN-inducible GTPases. These data clearly

demonstrated that the targeting process is independent of
the degradative autophagy pathway but dependent on
Atg5.25

Atg5 is an essential gene for the formation of double-
membrane-bound autophagosomes, which sequester and
transport cytosolic materials to lysosomes.26 Autophago-
some formation requires the conjugation of ubiquitin-like
microtubule-associated-protein-1-light-chain-3 (LC3) and
its homologs to phosphatidylethanolamine (PE) on mem-
branes, which is essential for the extension of themembrane
and the completion of the globular autophagosome. For the
conjugation of LC3 homologs, ATG5 forms a protein com-
plex with ATG12 and ATG16L1, and they function as an
E3-like ligase complex with an E1-like activating enzyme,
ATG7, and an E2-like conjugating enzyme, ATG3.23,27 We
found that not only ATG5 but the entire LC3 conjugation
system (ATG7, ATG3, and ATG12–ATG5-ATG16L1 com-
plex) of autophagy is necessary to target LC3, GKS IRGs
and GBPs to the PVM of T. gondii and subsequent control
of T. gondii infection in vitro and in vivo by IFNG,25 which
is consistent with recent findings from other groups.21,28

Collectively, we found that the targeting process of GKS
IRGs and GBPs is governed by a non-canonical and non-
degradative function of the LC3 conjugation system of
autophagy.25

Since the only known function of the entire LC3 conjuga-
tion system is indeed to conjugate LC3 homologs to amem-
brane,29 we further examined whether the conjugation of
LC3 homologs is required for the targeting process. Multiple
LC3 homologs exist in mammalian systems, and they act in
different stages of autophagosome formation.30 The LC3
subfamily (LC3A and LC3B inmice) functions in elongation
of the autophagosomal membrane and the GABARAP sub-
family (GABARAP, GABARAPL1, and GABARAPL2)
works in a later stage of autophagosome completion.31

Recent studies further established the difference between
these 2 subfamilies with respect to their interaction part-
ners.32-35 In spite of these distinct autophagic functions of
LC3 homologs, we found that all LC3 homologs play an
essential but overlapping function for targeting of the GKS
IRGs and GBPs to the PVM and subsequent control of T.
gondii infection by IFNG.36 That is, either LC3 or
GABARAP subfamily alone was sufficient for proper target-
ing of GKS IRGs and GBPs, and only in the absence of both
subfamilies the targeting process was disrupted. Our data
suggest that both subfamilies of LC3 homologs function
analogously in recruiting the IFN-inducible GTPases to the
PVM of T. gondii.36 The 2 subfamilies share a ubiquitin-like
core domain but possess dissimilar N-termini, which are
known to be essential for their distinct autophagic func-
tions.30 Thus, their overlapping function in TAG suggest
that the shared ubiquitin-like domain may play a crucial
role in the targeting process, while the difference at the N-
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termini may be removed by a potential post-translational
modification during the process.

A crucial question was whether the LC3 conjugation sys-
tem is not only necessary but also sufficient for targeting the
GKS IRGs and GBPs to a membrane. That is, can the LC3
conjugation system define the targeting site of GKS IRGs
and GBPs? Since the E3-like ATG12–ATG5-ATG16L1
complex specifies the conjugation site of LC3 homologs,29

to examine this possibility, we relocated the ATG12–ATG5-
ATG16L1 complex to plasma membrane or mitochondria
outermembrane, using theKRAS-CAAXmotif and amodi-
fied anchor-away system, respectively.29,37 In these settings,
the IFN-inducible GTPases relocated to the plasma mem-
brane and mitochondria outer membrane, where the LC3
and the conjugation system relocated.36 These data clearly
showed that the LC3 conjugation system indeed can specify
the target membrane of the GKS IRGs and GBPs and fur-
ther suggest that LC3 homologs on the PVM of T. gondii
are the factors that recruit the IFN-inducible GTPases spe-
cifically to the target membrane.

How do LC3 homologs recruit the IFN-inducible
GTPases to the target membrane?

Since LC3 localizes on the outer (cytosolic side) membrane
of cellular autophagosome,38 in theory LC3-decorated auto-
phagosomes would be targeted and disrupted by the GKS
IRGs and GBPs upon their induction by IFN, if LC3 on the
membrane is the only necessary signal to recruit them. In
fact, IRGs have been shown to interact with autophagy pro-
teins and to be involved in canonical degradative auto-
phagy.39-42 In these reports, however, IRGs stimulate
autophagy rather than interfere, and furthermore we have
not observed any significant effect of IFNG on canonical
degradative autophagy.43 Although we cannot exclude the
possibility that the special nature of the autophagosome
(e.g. double-membrane) prevents it from being disrupted by
GKS IRGs and GBPs upon their targeting, similar to the
lysosome,44 our data suggest that the IFN-inducible
GTPases do not target and affect the autophagosomes deco-
rated with LC3.

One relevant observation to these outstanding
questions is that T. gondii infection differentially
affected the recruitment of the GKS IRGs and GBPs
to the membrane where LC3 localized.36 In the
absence of T. gondii infection, induction of GKS IRGs
and GBPs by IFNG was not sufficient to send them
noticeably to the mitochondria outer membrane
marked with LC3 via the anchor-away system. In
contrast, upon T. gondii infection of the IFNG-treated
cells, both GTPases were substantially recruited to the
LC3-marked mitochondria membrane.36 Intriguingly,
the recruitment of GKS IRGs to the plasma

membrane marked with LC3 via the KRAS-CAAX
system was not dependent on T. gondii infection.36 In
this regard, it is interesting to note that there is no
known GMS IRGs on the plasma membrane45

whereas IRGM1 localizes on mitochondria.46 Thus, T.
gondii infection may affect the recruitment of, at
least, GKS IRGs to the LC3-marked membranes by
altering the localization of GMS IRGs. Further, we
also observed that stably expressed IFN-inducible
GTPase did not go to the PVM of T. gondii unless
the infected cells were activated with IFNG (unpub-
lished). It is also noteworthy that the localization of
LC3 homologs on the PVM of T. gondii was not
dependent on IFNG signal but was substantially
enhanced upon IFNG treatment,36 indicating a poten-
tial role of IFNG in modifying the function of the
LC3 conjugation system and/or the LC3 homologs on
the membrane. Taken together, these data suggest
that cellular events induced by IFNG and T. gondii
infection may substantially modify the interaction
between LC3 homologs and the IFN-inducible
GTPases.

Both IFNG treatment and T. gondii infection can induce
substantial changes of gene expressions and signaling path-
ways in target cells.47-49 Further, LC3 homologs can be post-
translationally modified in various ways.50-53 Therefore, it is
tempting to speculate a ‘triple-check’model of IFN, LC3, and
infection to explain how LC3 homologs recruit the IFN-
inducible GTPases to the target membrane: we hypothesize
that IFN enables LC3 homologs on a membrane to function
as ‘guanine nucleotide exchange factor (GEF)’ for the local
activation of the IFN-inducible GTPases andT. gondii infec-
tion causes the LC3 homolog-marked membranes to be free
of GMS IRGs that function as ‘GDI’ for the inactivation of
the GTPases.9 Such ‘IFN-activation’ of LC3 homologs may
work as direct post-translational modifications of the LC3
homologs or through targeting of additional factors (e.g.,
ubiquitin18,19) that can work with the LC3 homologs. As a
necessary corollary, the GKS IRGs and GBPs would be acti-
vated andmultimerize on amembrane with GEF, ‘IFN-acti-
vated’ LC3 homologs, and without GDI, GMS IRGs.

This model predicts that expression of GKS IRGs or
GBPs,44 especially their activated forms,54 over a control
capacity of GMS IRGs may simply override such ‘triple-
check’ restriction. Likewise, this ‘triple-check’ model can
also explain a previous finding on the recruitment of GKS
IRGs and GBPs to lipid droplet (LD) in the absence of T.
gondii infection.44,54 In wild type cells, LDs are marked with
IRGM1, IRGM3 and some LC3.54 However, in the absence
of Irgm1 and Irgm3, LC3 accumulates substantially on LDs
and the GKS IRGs andGBPs are targeted to the LDs.54 Since
GMS IRGs are not on the LDs, ‘IFN-activated’ LC3 on the
LDmight be sufficient to recruit the GKS IRGs and GBPs in
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the absence of T. gondii infection, just like the LC3-marked
plasmamembrane.36

For the case of autophagosomes, we speculate that an
IFN-mediated change of LC3 may not occur due to the
potential inaccessibility of LC3 upon its occupation by other
autophagic process related proteins38 or due to some other
special nature of the autophagosome.55 In this regard, it is
noteworthy that the LC3 on autophagosomes is partially
removed by the deconjugating enzyme ATG4 via some
incompletely understood mechanism,56,57 suggesting a lim-
ited accessibility of the LC3 on autophagosome for modifi-
cation. Since the membrane of autophagosomes is derived
from various sources of endomembranes,58 autophagoso-
mal membranes are likely to be associated with GMS
IRGs.44 Further, both mouse IRGM1 and its human homo-
log IRGM interact with many key autophagy proteins, and
at least partial localization of them on autophagosomes
were reported.41,59,60 Thus, autophagosomes may be heavily
associated with GMS IRGs to the extent which T. gondii
infection may not considerably alter GMS localization. Fur-
ther studies will illuminate the functional mechanism of the
TAG process, including this ‘triple-check’ model of IFN,
LC3, and infection.

Does the E3-like ATG12–ATG5-ATG16L1 complex
detect pathogen-containing vacuoles?

If the LC3 homologs can specify where the GKS IRGs and
GBPs go and the E3-like ATG12–ATG5-ATG16L1 complex
determines where the LC3 homologs are conjugated to, then
what brings the ATG12–ATG5-ATG16L1 complex to the
membrane of pathogen-containing vacuoles? In fact, we
were able to detect the complex on the PVM of T. gondii in
as early as 2 minutes-post-infection of T. gondii,36 which is
similar kinetics to the initiation of canonical autophagy.61

Such swift recruitment suggests that detection of T. gondii
invasion occurs quickly without transcriptional or transla-
tional change in the infected cells. In theory, the ATG12–
ATG5-ATG16L1 complex may go to the target membrane,
directly by recognizing the abnormally reorganized mem-
brane structure of T. gondii PV or indirectly by another
upstream sensor that recognizes the structure as a patho-
gen-associatedmolecular pattern.

ATG5 can bind membranes without ATG12 and
ATG16L1.62 Recent data from the yeast ATG12–ATG5-
ATG16 complex further showed that the direct membrane
binding activity of ATG5 is inhibited byATG12 conjugation
and the inhibition is relieved upon its binding to ATG16.63

Thus, the ATG12–ATG5-ATG16 complex can directly
bind to membranes through ATG5, yet the complex doesn’t
significantly associate with membranes in vivo without pro-
autophagic stimulus.64 These data suggest that the direct
membrane binding activity of ATG5 in the complex is

further restricted by currently unknown factors. Thus, we
speculate that the absence of an unknown inhibitory signal
on the PVM of T. gondii, at least transiently, may lead to the
recruitment of the ATG12–ATG5-ATG16L1 complex to
the membrane via ATG5, as proposed in the “guard”model
or “missing-self”model.2,9,10

Alternatively, but not exclusively, the complex may be
recruited to the PVM of T. gondii via an interaction part-
ner of ATG16L1 on the membrane. In canonical auto-
phagy, the ATG12–ATG5-ATG16L1 complex is
recruited to the site of autophagosome initiation via
WIPI2b (WD repeat domain, phosphoinositide interact-
ing 2b). WIPI2b can bind to phosphatidylinositol 3-phos-
phate (PtdIns3P) at the initiation site and bring the
complex to the site via its interaction with the coiled-coil
domain of ATG16L1.65 The coiled-coil domain of
ATG16L1 is essential for autophagosome formation in
vivo, through oligomerization of ATG16L1 and interac-
tion with upstream autophagy genes.64-67 Intriguingly,
the coiled-coil domain of ATG16L1 is also required for
the IFNG-mediated control of T. gondii infection,36

although we did not observe any significant role of
PtdIns3P in the control of T. gondii by IFNG.25 These
data may suggest that targeting process require the olig-
omerization of ATG16L1, but the coiled-coil domain of
ATG16L1 may be required to bring the ATG12–ATG5-
ATG16L1 complex through its interaction with a poten-
tial sensor on the PVM of T. gondii. In this regard, it is
worth noting that the PVM of T. gondii was rapidly
marked with GFP fused to the pleckstrin homology
domain of AKT, which recognizes a membrane contain-
ing PtdIns(3,4,5)P3 or PtdIns(3,4)P2.

49 Taken together,
the ATG12–ATG5-ATG16L1 complex may be recruited
to the PVM of T. gondii via another protein that can
bind both the phosphorylated derivatives of phosphati-
dylinositol on the PVM and ATG16L1, in a similar
fashion to the initiation of canonical autophagosome
formation.

A current working model for the TAG-mediated
control of T. gondii infection

We found that the LC3 conjugation system of autophagy
marks the membrane of pathogen-containing vacuole to
be targeted and disrupted by the IFN-inducible GTPases.
Importantly, IFN is not required for the LC3 conjugation
system to mark the membrane;36 that is, with or without
the activation of cells with IFN, pathogen-containing
vacuoles get marked with the LC3 homologs. However,
we also observed substantially enhanced localization of
LC3 homologs on the PVM of T. gondii upon IFNG
treatment.36 Only upon activation of cells with IFN, the
GKS IRGs and GBPs are induced and then targeted to
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the LC3-marked membranes for their effector function.
Based on our data, we propose the following working
model for the TAG-mediated control of T. gondii infec-
tion (Fig. 1): 1) upon invasion and formation of the PV
of T. gondii, the ATG12–ATG5-ATG16L1 complex is
recruited to the PVM, 2) the complex conjugates the
LC3 homologs on the PVM of T. gondii and dissociates,
3) the conjugated LC3 homologs on the PVM are ‘IFN-
activated’ and recruit induced GKS IRGs and GBPs upon
the activation of cells with IFNG, 4) GKS IRGs and GBPs
on the PVM get activated in the absence of GMS IRGs
and disrupt the membrane by vesiculation, and 5) T.
gondii exposed to cytoplasm upon the PV disintegration
is killed and further activates the immune system. There
are many remaining questions to be answered in order
to understand the TAG of IFN-inducible GTPases. How
the ATG12–ATG5-ATG16L1 complex is involved in

sensing the invasion of vacuolar pathogens and how the
LC3 homologs bring the GKS IRGs and GBPs specifically
to the target membrane will be the next key questions to
be tackled.

The host immune system has evolved a defense strat-
egy to sense and attack abnormally reorganized endo-
membrane structures as pathogen-associated molecular
patterns. Understanding this immune defense strategy of
the host and potential evasion strategies of pathogens
would allow us to develop more effective therapeutics
against the diseases caused by vacuolar pathogens.

Abbreviations

ATG autophagy related
GABARAP GABA type A receptor-associated protein
GBP guanylate binding protein

Figure 1. A current working model for the TAG-mediated control of T. gondii infection. Upon invasion and formation of the PV of T. gon-
dii, the ATG12–ATG5-ATG16L1 complex is recruited to the PVM. The complex conjugates the LC3 homologs on the PVM of T. gondii, and
the conjugated LC3 homologs on the PVM are activated by IFNG (e.g. post-translational modification of the LC3 homologs or through
targeting of additional factors [e.g., ubiquitin18,19] that can work with the LC3 homologs) and then recruit the GKS IRGs (for simplicity,
just indicated as IRG in the figure) and GBPs upon their induction by IFNG. GKS IRGs and GBPs on the PVM disrupt the membrane by
vesiculation, and T. gondii exposed to cytoplasm upon the PV disintegration gets killed and further activates the immune system.
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IFN interferon
IGTP interferon gamma induced GTPase
IIGP1 interferon inducible GTPase 1
IRG immunity-related GTPase
LC3 microtubule associated protein 1

light chain 3
PE phosphatidylethanolamine
PVM parasitophorous vacuole membrane
TAG targeting by autophagy proteins
TGTP1 T cell specific GTPase 1
ULK uncoordinated 51-like kinase
WIPI2b WD repeat domain, phosphoinositide

interacting 2b.
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