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Abstract: Rhamnose-associated molecules are attracting attention because they are present in bacteria
but not mammals, making them potentially useful as antibacterial agents. Additionally, they are
also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways
of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic
pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha),
uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are
firstly reviewed, together with the functions and crystal structures of those associated enzymes.
Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-
1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-
Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis.
Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora
spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed.
In these studies, however, the functions of rhamnosyltransferases were verified by employing gene
knockout and radiolabeled substrates, which were almost impossible to obtain and characterize
the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in
disease treatments is briefly described.

Keywords: rhamnose; deoxythymidinediphosphate-L-rhamnose; guanosine diphosphate rhamnose;
uridine diphosphate-rhamnose; rhamnosyltransferase; rhamnose biosynthesis

1. Introduction

Glycans are important components of various glycoconjugates, such as glycopro-
teins, glycolipids, and proteoglycans, and play pivotal roles in many biological processes,
including intracellular trafficking, cell adhesion and development, cancer progression,
host–pathogen interactions, and immune responses [1]. For a detailed structure–activity
relationship analysis of functional glycans, it is necessary to obtain molecules in structurally
homogeneous forms, which is not easy to achieve via the isolation of natural products from
biological sources. Therefore, the total synthesis of polysaccharides and their oligomeric
analogs has become a hot research topic. Rhamnose (Rha)-containing compounds (RCCs)
are especially interesting due to their potential applications, including antibacterial vac-
cines and killing tumors [2,3]. Additionally, Rha is a common component of various
bacterial polysaccharides, such as lipopolysaccharides (LPSs) [4], extracellular polysac-
charides (EPSs) [5], capsular polysaccharides (CPSs) [6], and cell wall polysaccharides [7].
In addition to bacteria, Rha is also found in viruses [8], fungi [9], plants [10], and lower
animals [11]. Interestingly, Rha has not been found in humans or other mammals. In recent
years, more evidence has emerged about its essential roles in many pathogenic bacteria,
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making it a potentially attractive therapeutic target. Furthermore, RCCs are also candidates
for vaccines, antitumor drugs, and antibacterial drugs [3,12]. Thus, there is a keen desire to
obtain and characterize RCCs. However, due to the complexity of the target molecules and
the difficulty in constructing certain glycosidic linkages, such as β-linked Rha, via chemical
glycosylation, enzymatic synthesis is particularly attractive [13]. For the enzymatic synthe-
sis of RCCs or their conjugates, rhamnosyl donors are the key substrates [14,15], which are
utilized by rhamnosyltransferases (Rha-Ts) and attached to sugar acceptors [16]. Therefore,
the catalysis of Rha-Ts and the preparation of Rha donors and acceptors in vitro are hot
topics [13,17,18]. In this paper, the biosynthetic pathways of Rha donors are reviewed,
and the development of Rha-Ts and their medical perspectives are also explored. Such
knowledge expands our understandings of the biosynthetic pathways of RCCs and could
facilitate their enzymatic synthesis.

2. Biosynthetic Pathways of Donors of RCCs

Three sugar nucleotides, including deoxythymidinediphosphate-L-rhamnose (dTDP-
Rha), guanosine diphosphate rhamnose (GDP-Rha), and uridine diphosphate-rhamnose
(UDP-Rha), can serve as Rha donors in reactions catalyzed by Rha-Ts. dTDP-Rha and GDP-
Rha are present in bacteria and fungi, whereas UDP-Rha is only found in plants. There
are probably other Rha donors involving in Rha biosynthetic pathways in Mycoplasma [19].
The biosynthetic pathways of these three Rha donors and structural, mechanistic, and
biochemical aspects of the key enzymes involved are reviewed below.

2.1. Biosynthetic Pathways of dTDP-Rha

The dTDP-Rha is one of the most important sugar precursors. Four enzymes, glucose-1-
phosphate thymidylyltransferase (RmlA), dTDP-D-glucose 4,6-dehydratase (RmlB), dTDP-
4-keto-6-deoxy-D-glucose3,5-epimerase (RmlC), and dTDP-4-keto-L-Rha reductase (RmlD),
are responsible for the formation of dTDP-Rha (Figure 1) [20]. The rmlA, rmlB, rmlC,
and rmlD genes are usually located in biosynthetic gene clusters of polysaccharides in
conserved gene orders with few exceptions [20]. Below, we discuss what is known about the
steps involved in the biosynthesis of dTDP-Rha, as well as the functions, physicochemical
properties, and crystal structures of RmlA, RmlB, RmlC, and RmlD [21].
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ported that RmlA could recognize all eight natural NTPs as substrates despite its reduced 
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Figure 1. The biosynthetic pathway of dTDP-Rha from Glc-1-P in bacteria [22,23].

RmlA is a nucleotidyltransferase that catalyzes the first reaction to form dTDP-
glucose (dTDP-Glc) by transferring a deoxythymidine triphosphate (dTTP) to glucose-
1-phosphate (Glc-1-P) via a single sequential displacement mechanism [24]. Based on the
reverse reaction, RmlA is also known to be a pyrophosphorylase [24]. RmlA has attracted
more attention because it displays unusual promiscuity toward both sugar-1-phosphates
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and nucleotide triphosphate substrates, which could be harnessed in glycorandomiza-
tion [25,26]. The inherent sugar-1-phosphate and/or nucleotide triphosphate (NTP) promis-
cuity of RmlA was further expanded by mutation studies. For example, L89T [27], E162D,
Y177F [27], T201A, and W224H [28] mutants increased its sugar-1-phosphate tolerance
and conversion [27], whereas Q24S [29] and Q83D/S [30] mutants altered the preference
for the NTP of wildtype RmlA (also called the inherent NTP purine/pyrimidine bias).
RmlA and its variants can utilize 57 sugar-1-phosphates ranging from all epimers [26],
substituted compounds (amino [30], N-acetyl [31], methyl [32], azido [32], thiol [32], and
alkyl [33]), deoxy sugars of D-glucose [32], two anomers of L-fucose [34], to pentofuranosyl-
1-phosphate [34]. In addition to sugar-1-phosphate substrates, Moretti et al. reported that
RmlA could recognize all eight natural NTPs as substrates despite its reduced activity to-
ward purine NTPs [35]. Furthermore, Cps2L (a RmlA homolog) can act on deoxythymidine
5-tetraphosphate (p4dT) and Glc-1-P to form dTDP-Glc and triphosphate (PPPi) [32]. To
date, 154 (d) nucleotide diphosphate (NDP)-sugars have been produced by RmlA and its
variants (Figure 2 and Supplementary information Table S1) [36–42].
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dTDP-Rha [43], and dTDP-Rha is both a competitive and a noncompetitive inhibitor [43]. 
Although the mechanism of noncompetitive inhibition of RmlA by dTDP-Rha proposed 
by Mmot et al. remains unclear and needs to be further studied [43], the mechanism of 
competitive inhibition is well understood [44], which involved: (1) dTDP-Rha occupies 
the same site as dTDP-Glc; E161 of RmlA interacts with O2′ and O3′ of Rha through a 
bidentate hydrogen, similar to the dTDP-Glc complex (Figure 3D); (2) The two phosphates 
of dTDP-Rha move into the active site and form strong salt bridges with R194, which is 
absent in the dTDP-Glc complex; (3) A hydrogen bond between ribose O3 of dTDP-Rha 
and the side chain of D110 is likely replaced by the α-phosphate, resulting in the decom-
position of dTDP-Rha. Thus, it was concluded that targeting these sites could provide a 
potential basis for inhibitor design. In addition, the R15 loop probably affects catalytic 
activity because it is different in the active site of the dTDP-Rha complex [44]. Crystal 
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The activity of RmlA is inhibited by dTDP-Glc, inorganic pyrophosphate (PPi) and
dTDP-Rha [43], and dTDP-Rha is both a competitive and a noncompetitive inhibitor [43].
Although the mechanism of noncompetitive inhibition of RmlA by dTDP-Rha proposed
by Mmot et al. remains unclear and needs to be further studied [43], the mechanism of
competitive inhibition is well understood [44], which involved: (1) dTDP-Rha occupies
the same site as dTDP-Glc; E161 of RmlA interacts with O2′ and O3′ of Rha through a
bidentate hydrogen, similar to the dTDP-Glc complex (Figure 3D); (2) The two phosphates
of dTDP-Rha move into the active site and form strong salt bridges with R194, which is
absent in the dTDP-Glc complex; (3) A hydrogen bond between ribose O3 of dTDP-Rha and
the side chain of D110 is likely replaced by the α-phosphate, resulting in the decomposition
of dTDP-Rha. Thus, it was concluded that targeting these sites could provide a potential
basis for inhibitor design. In addition, the R15 loop probably affects catalytic activity
because it is different in the active site of the dTDP-Rha complex [44]. Crystal structures of
RmlA from Pseudomonas aeruginosa [44], Escherichia coli [45], and Salmonella typhimurium [45]
showed that RmlA is a homotetramer (Figure 3A).
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Figure 3. Stereo views of RmlA (Protein Data Bank (PDB) entry 4HO3) (A), dTTP (PDB entry 4HO3)
(B), Glc-1-P (PDB entry 1G23) (C), and dTDP-Rha (PDB entry 1G3L) (D) bound to RmlA. Hydrogen
bonds are shown as red lines. Helices, sheets, and loops of RmlA are colored blue, purple, and
beige, respectively. C, N, O, and P elements of ligands are shown in green, blue, red, and brown,
respectively. RmlA is shown in cartoon representation, and ligands are shown as sticks [22].

The active center of RmlA lies in a deep pocket formed by core and sugar-binding
domains [45]. G11, Q80, and G85 form hydrogen bonds with the thymine: N3 and O4 of
thymine engage in hydrogen bonds with Q80; O4 of thymine also forms hydrogen bonds
with the N atom of G85; O2 of the thymine base engages in hydrogen bonds with G11
(Figure 3B) [45]. Neither methyl group of the pyrimidine ring nor the 2-OH of ribose
interacts with RmlA, which explains why RmlA can accept UTP and dTTP as substrates.

The 3-hydroxyl group of ribose contacts Q24 (Figure 3B) [45], and glucose residue
interacts with RmlA via hydrogen bonds. Specifically, O2 and O3 of glucose form hydrogen
bonds with E161; O2, O3, and O4 of glucose form hydrogen bonds with G146 and L172; O6
of glucose forms hydrogen bonds with N111 (Figure 3C). In addition, Q26, G11, S13, and
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two water molecules bind magnesium. Therefore, the crystal structures of RmlA helped to
reveal the reaction mechanism and provide a basis for active site engineering of RmlA [35].

The second step in the dTDP-Rha biosynthetic pathway is the dehydration of dTDP-
Glc to form dTDP-4-keto-6-deoxy-D-glucose (dT4k6dG), which is catalyzed by RmlB.
Four steps have been proposed during the reaction: (1) NAD+ extracts a hydride from C4
of the glucose ring; (2) Glu135 removes a C5 proton; (3) elimination of a water molecule
between C5 and C6 generates 4-keto-5,6-glucosene as an intermediate; and (4) a hydride
is transferred from NADH to C6 of the glucose ring [46]. The substrate tolerance of
RmlB is more limited compared with that of RmlA, probably because it catalyzes the
committal step in the dTDP-Rha biosynthetic pathway [47]. The crystal structure of RmlB
from Salmonella enterica serovar Typhimurium showed that it functions as a homodimer
(Figure 4A). RmlB has two domains: a larger N-terminal domain consisting of seven
β-strands and ten α-helices to bind the nucleotide cofactor NAD+; and a smaller C-terminal
domain composed of four β-strands and six α-helices to bind dTDP-Glc [46]. The two
domains create a deep cavity in the enzyme to form the active site (Figure 4A) [46]. The key
residues interacting with NAD+ include (1) a hydrogen bond (Asp62) and a hydrophobic
crevice consisting of Ile21, Ala57, Ile59, Val77, Ala81, and Leu107 binding to the adenine
portion of NAD+, and (2) Asp37, Tyr161, and Lys171 forming hydrogen bonds with the
ribose sugar (Figure 4B) [46]. In addition, Thr133, Asp134, Glu135, Asn196, Arg231, and
Asn266 make contacts with dTDP-Glc (Figure 4C) [46]. Specifically, Thr133, Glu135, and
Asp134 bind to the 4, 6-hydroxyl groups of the glucose ring (Figure 4C), while Asn196 and
Arg231 interact with the phosphoryl oxygen atom (Figure 4C), and Asn266 hydrogen binds
to the 3-hydroxyl group of the ribose sugar (Figure 4D) [46]. Notably, Asn266 may also
control the selectivity for the deoxy-nucleotide sugar substrate in the binding site [46].
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to stack against Tyr224 (D). Hydrogen bonds are shown as red lines. Helices, sheets, and loops of
RmlB are colored blue, purple, and beige, respectively. C, N, O, and P elements of ligands are green,
blue, red, and brown, respectively. RmlB is shown in cartoon representation, and ligands are shown
as sticks [22].
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RmlC catalyzes the third step in the dTDP-Rha biosynthetic pathway, in which the C3
and C5 positions of dT4k6dG are epimerized to generate dTDP-4-keto-Rha [48]. The cat-
alytic mechanism of this catalytic reaction is proposed as follows: (1) a proton is abstracted
from C5 of glucose of dT4k6dG accompanied by epimerization, then proton donation to C5,
resulting in a mono-epimerized intermediate; (2) a proton from C3 of glucose is abstracted
accompanied by epimerization, followed by proton donation to C3; (3) a ring flip occurs [49].
These reactions need strict stereo control and a cofactor is not required [50]. RmlC and/or
RmlC co-complex structures have been obtained with dTDP-phenol, dTDP, dTDP-Glc and
dTDP-D-xylose [49,51]. RmlC functions as a homodimer (Figure 5A). The monomer con-
sists of 11 β-strands and seven α-helices that can be divided into three parts, including an
N-terminal portion, a core active site, and a C-terminal portion. A His-Asp dyad (Figure 5B)
in the active site is crucial in the RmlC catalytic mechanism because a conserved His65
residue from the His-Asp dyad extracts C5 and C3 protons (Figure 5B). Moreover, Tyr134 is
essential for epimerization and for proton incorporation at C5. However, a water molecule
may replace Tyr134 to facilitate C3 proton incorporation (Figure 5B) [49].
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RmlD catalyzes the last step in the dTDP-Rha biosynthetic pathway, in which the
C4 keto group of dTDP-4-keto-Rha is reduced to a hydroxyl group to produce dTDP-Rha
(Figure 1) [52,53]. During the reaction, proton transferred from the nicotinamide ring of the
cofactor to the C4 keto group requires the assistance of Mg2+ [52]. RmlD is a homodimer,
and the monomer consists of two domains: an N-terminal domain that binds NAD(H), and
a C-terminal domain that binds substrate [52]. Various residues are involved in interactions
with NAD(P)H, including (1) a ribose moiety located in the space formed by Ala62, Ala63,
Gly7 and Gly10, in which the 2′- and 3′-hydroxyl groups of the ribose ring and Lys132 from
the conserved YXXXK motif engage in two hydrogen bonds (Figure 6A); (2) the adenine
ring of the cofactor located in a pocket formed by Val31, Asp39, Phe40, Ala62, Ala63,
Leu80, and Phe40, in which Asp39 interacts with adenine via hydrogen bonds (Figure 6A);
(3) Gln11 and Thr 65 interact with diphosphate (Figure 6A) [52]. Three glutamic acids
(Glu15, Glu190, and Glu292) of two monomers bind to Mg2+ [52], and dTDP-Rha binds
in a pocket of RmlD built from the hydrophobic parts of the side chains of Thr65, Tyr106,
Tyr128, and Val67, together with the nicotinamide ring of the cofactor [52]. Additionally,
Thr104, 105, Trp153, the carboxamide group of the cofactor, and a water molecule interact
with L-Rha (Figure 6B) [52].
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Figure 6. Stereo view of RmlD bound to NADH (PDB entry 1KC3) (A) and dTDP-Rha (PDB entry
1KC3) (B). Hydrogen bonds are shown as red lines. Helices, sheets, and loops of RmlD are colored
blue, purple, and beige, respectively. C, N, O, and P elements of ligands are green, blue, red, and
brown, respectively. RmlD is shown in cartoon representation, and ligands are shown as sticks [22].

2.2. Biosynthetic Pathway of GDP-Rha

D-Rha is a rare 6-deoxy monosaccharide found in the LPS of pathogenic bacteria [54].
GDP-Rha is the precursor for the biosynthesis of D-Rha-containing compounds, and it is
synthesized in two steps: (1) GDP-mannose-4,6-dehydratase (GMD) catalyzes the conver-
sion of GDP-D-mannose (GDP-Man) to GDP-4-keto-6-deoxy-D-Man; (2) GDP-6-deoxy-D-
lyxo-hexos-4-ulose-4-reductase (RMD) catalyzes the production of GDP-Rha (Figure 7).
Both GMD and RMD are members of the short-chain dehydrogenase/reductase (SDR) fam-
ily. GMD is homologous to RmlB, while RMD is homologous to RmlD. However, GMD and
RMD cannot catalyze the conversion of dT4k6dG to dTDP-Rha, indicating that enzymes
involved in the GDP-D-Rha biosynthesis pathway possess strict substrate specificity. The
functions of GMD and RMD from Aneurinibacillus thermoaerophilus strain L420-91 (T) [55]
and Pseudomonas aeruginosa [56] have been confirmed in vitro.
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GMD is present in bacteria [57], plants [58], and animals [59], and its production
serves as a branch point for several different deoxyhexoses, such as GDP-Rha, GDP-L-
fucose, GDP-6-deoxy-D-talose, and the GDP-dideoxy amino sugars [56]. GMD functions
as a homodimer [60] or a homotetramer [56] in cells. In particular, PBCV-1 GMD be-
haves as a bifunctional enzyme, displaying not only dehydratase activity but also a strong
NAD(P)H-dependent reductase activity toward GDP-4-keto-6-deoxy-D-Man (the dehydra-
tion product), leading to the formation of GDP-Rha [61]. The crystal structures of GMD
from E. coli [62], Arabidopsis thaliana [58], P. aeruginosa [56], and Paramecium bursaria Chlorella
virus 1 (PBCV-1) [63] have been reported. The GMD monomer folds into two domains:
a N-terminal cofactor-binding domain and a C-terminal substrate-binding domain. Residues
of GMDs that contact the GDP moiety are highly conserved, including Val190, Asn179,
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Lys193, Arg218, Arg279, and Glu282. However, the hexose moiety has not been success-
fully crystallized. The crystal structure of RMD from Aneurinibacillus thermoaerophilus was
reported in 2008, but the quality of the crystal structure was not good [64].

2.3. Biosynthesis Pathway of UDP-Rha

UDP-Rha is found in fungi and plants, and its biosynthesis pathway involves dehydra-
tion, epimerization, and reduction, similar to dTDP-Rha (Figure 8) [9]. Three isoenzymes
(UDP-Rha synthases, RHMs) RHM1, RHM2/RHM4 and RHM3 convert UDP-Glc to UDP-
Rha via UDP-4-keto-6-deoxy-glucose (U4k6dG) as an intermediate [65]. All the RHMs
function as the activities of UDP-D-Glc 4,6-dehydratase, UDP-4-keto-6-deoxy-D-Glc 3,5-
epimerase, and UDP-4-keto-L-Rha4-keto-reductase, respectively [66]. Other enzymes, such
as a bifunctional enzyme named nucleotide-Rha synthase/epimerase-reductase (NRS/ER),
can also act on the intermediate U4k6dG to form UDP-Rha [56,65]. Notably, it is not known
what substrates are utilized by Rha-Ts as donors in plants because there are two rhamnose
donors in plants (UDP-Rha and dTDP-Rha).

Molecules 2022, 27, x FOR PEER REVIEW 9 of 21 
 

 

zymes, such as a bifunctional enzyme named nucleotide-Rha synthase/epimerase-reduc-
tase (NRS/ER), can also act on the intermediate U4k6dG to form UDP-Rha [56, 65]. Nota-
bly, it is not known what substrates are utilized by Rha-Ts as donors in plants because 
there are two rhamnose donors in plants (UDP-Rha and dTDP-Rha). 

 
Figure 8. Biosynthesis pathway of UDP-Rha [22]. 

3. Rha-Ts Generating RCCs in Bacteria 
Glycosyltransferases (GTs) are a large family of enzymes that catalyze the transfer of 

saccharide moieties from glycosyl donors to a broad range of acceptor substrates, includ-
ing monosaccharides, oligosaccharides and polysaccharides, lipids, proteins, nucleic ac-
ids, and small organic molecules, to form complex carbohydrates and glycoconjugates 
that are essential to many fundamental biological processes [1]. There are three main 
methods for the classification of GTs: Firstly, based on the anomeric configuration of re-
actants and products, GTs are classified as inverting or retaining enzymes; Secondly, GT-
A, GT-B, and GT-C topologies of GTs are divided based on Rossmann-fold domains and 
the locations of donors and acceptors; Thirdly, according to sequence similarity, GTs are 
divided into 114 different families, as listed in the carbohydrate-active enzymes (CAZy) 
database (http://www.cazy.org accessed on 14th March 2022). Rha-Ts are GTs that gener-
ate RCCs, which are universally present in bacteria [67, 68]. However, biochemical 
knowledge on Rha-Ts is still limited. 

3.1. Rha-Ts from Geobacillus Stearothermophilus 
The S-layer protein of Geobacillus stearothermophilus NRS 2004/3a serves as a model 

for investigating O-glycosylation pathways in bacteria, and the glycans of this protein are 
2-OMe-α-L-Rha-(1→3)-β-L-Rha-(1→2)-α-L-Rha-(1→[2)-α-L-Rha-(1→3)-β-L-Rha-(1→2)-
α-L-Rha-(1→]n=13–18[2)-α-L-Rha-(1→]n=1–23)-α-L-Rha-(1→3)-β-D-Gal-(1→Protein (Figure 9) 
[69, 70]. 

Figure 8. Biosynthesis pathway of UDP-Rha [22].

3. Rha-Ts Generating RCCs in Bacteria

Glycosyltransferases (GTs) are a large family of enzymes that catalyze the transfer of
saccharide moieties from glycosyl donors to a broad range of acceptor substrates, including
monosaccharides, oligosaccharides and polysaccharides, lipids, proteins, nucleic acids,
and small organic molecules, to form complex carbohydrates and glycoconjugates that
are essential to many fundamental biological processes [1]. There are three main methods
for the classification of GTs: Firstly, based on the anomeric configuration of reactants
and products, GTs are classified as inverting or retaining enzymes; Secondly, GT-A, GT-
B, and GT-C topologies of GTs are divided based on Rossmann-fold domains and the
locations of donors and acceptors; Thirdly, according to sequence similarity, GTs are
divided into 114 different families, as listed in the carbohydrate-active enzymes (CAZy)
database (http://www.cazy.org accessed on 14 March 2022). Rha-Ts are GTs that generate
RCCs, which are universally present in bacteria [67,68]. However, biochemical knowledge
on Rha-Ts is still limited.

3.1. Rha-Ts from Geobacillus Stearothermophilus

The S-layer protein of Geobacillus stearothermophilus NRS 2004/3a serves as a model for inves-
tigating O-glycosylation pathways in bacteria, and the glycans of this protein are 2-OMe-α-L-Rha-
(1→3)-β-L-Rha-(1→2)-α-L-Rha-(1→[2)-α-L-Rha-(1→3)-β-L-Rha-(1→2)-α-L-Rha-(1→]n=13–18[2)-
α-L-Rha-(1→]n=1–23)-α-L-Rha-(1→3)-β-D-Gal-(1→Protein (Figure 9) [69,70].

The polycistronic S-layer glycosylation (slg) gene cluster encodes four GTs, of which
three Rha-Ts (WsaC, WsaD and WsaF) catalyze the biosynthesis of the glycan [70]. The
biosynthesis pathway for this glycan is initiated by the transfer of a galactose residue
to a membrane-associated lipid carrier, followed by two steps catalyzed by α-1,3-Rha-Ts

http://www.cazy.org
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(WsaC and WsaD) that add Rha to build up the [2)-α-L-Rha-(1→]n=1–23)-α-L-Rha-(1→3)
linker, and two Rha-Ts (WsaE and WsaF) then extend the glycan chain by adding the
repeating trisaccharide motif [→2)-α-L-Rha-(1→3)-β-L-Rha-(1→2)-α-L-Rha-(1→]n=13–18
through addition of Rha. The complete glycan chain is thereafter transported across the
membrane by an ATP-binding cassette transporter (ABC transporter) and transferred to the
S-layer protein by oligosaccharyltransferase WsaB [70]. The functions of WsaC−WsaF were
proved by using the chemically synthesized β-D-Gal-(1→O)-octyl as substrate. Among
them, both WsaC and WsaD are transmembrane proteins, and the activity of WsaC requires
membranes, while WsaD can only recognize the natural substrate; WsaE is a multifunctional
enzyme, and the N-terminal domain of WsaE possesses methylase activity, whereas the
central and C-terminal domains of WsaE possess Rha-Ts activity, generating α-1,2 and α-1,3
linkages; WsaF is a β-1,2-Rha-T enzyme (Figure 10) [70].
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WsaF is a dimer formed by two monomers that consist of two GT-B-fold domains
and a cleft between the two domains [69]. dTDP-Rha interacts with WsaF, and the dTDP-
WsaF and dTDP-Rha-WsaF complex structures revealed that thymidine contacts with
K302 and L303, while V282 and G283 interact with thymidine via van der Waals forces,
pyrophosphate binds to G63, R249 and K302 through hydrogen bonds, Rha contacts N227,
K225 and E333 directly, and Y329 engages in a stacking interaction with the hydrophobic
face of Rha [69]. The crystal structure of the WsaF–acceptor complex has not been reported.
However, the acceptor fragments of both α-L-Rha-(1-2)-α-L-Rha-(1-3)-α-L-Rha and α-L-
Rha-(1-2)-α-L-Rha-(1-3)-α-L-Rha-(1-3)-α-D-Gal were modeled manually in the tunnel using
PyMOL, suggesting that G63, I65, P54, S55, A140, Q170, D171, E173 and F176 would
form van der Waals interactions with the acceptor fragments. This was confirmed by
mutant studies [69].

3.2. Spinosyn SpnG Rha-T from Saccharopolyspora Spinosa

Spinosyn from S. spinosa is a type of macrocyclic lactone that has been used as an
agricultural antibiotic [71,72]. The entire spinosyn biosynthetic gene cluster contains
19 genes, including 5 large genes (spnA, spnB, spnC, spnD, and spnE) encoding a type I
polyketide synthase, 4 genes (spnF, spnJ, spnL, and spnM) encoding proteins involved in
intramolecular C-C bond formation, 4 genes (spnG, spnI, spnK, and spnH) encoding proteins
involved in Rha attachment and methylation, and 6 genes (spnP, spnO, spnN, spnQ, spnR,
and spnS) encoding proteins involved in forosamine biosynthesis [72]. SpnG is known to
be capable of transferring Rha from dTDP-Rha donors to spinosyn aglycone (AGL) and to
display relaxed substrate specificity [73].

SpnG forms a C2-symmetric homodimer, and each monomer contains two domains
connected by a long loop (residues 183–209) [71]. The C-terminal domain binds the donor
substrate (dTDP-Rha) and the N-terminal domain binds the acceptor substrate [71,73].
Specifically, interactions between dTDP-Rha and SpnG include thymine contacting L279,
V277, P257, and L279; α-phosphate forming hydrogen bonds with G296, T297, and T297;
β-phosphate making hydrogen bonds with M227 and V228; the 3-OH group of deoxyribose
directly forming a hydrogen bond with N202; and Rha contacting with D316, Q317, Y314,
and W142 [71]. The crystal structure of a SpnG–acceptor complex has not been reported.

3.3. WbbL from Mycobacterium Tuberculosis

The cell wall of M. tuberculosis, essential for cell proliferation and growth, is composed
of peptidoglycan, arabinogalactan, and mycolic acids [7]. The galactan of arabinogalac-
tan combines with peptidoglycan via a disaccharide linker, α-L-Rha-(1→3)-α-D-GlcNAc-
(1→P), to form the integrated mycobacterial cell wall [74]. The Rha-T enzyme WbbL forms
the disaccharide linker by transferring Rha from dTDP-Rha to decaprenyldiphosphoryl-α-
D-N-acetyl glucosamine (GlcNAc-PP-DP) [75]. The wbbL gene is essential for mycobacterial
viability and is found in the genomes of all mycobacteria [76]; hence, it is an attractive
target for antituberculosis therapeutics. Activity analysis of WbbL was performed using en-
dogenous GlcNAc-PP-DP as a substrate, and a microtiter plate method was established [74].
The bioinformatics analysis of WbbL showed that it belongs to the GT2 family with a fold
characteristic of the GT-A superfamily [74], members of which can utilize dTDP-β-Rha as a
substrate and produce an α-Rha product. In addition, this protein has a N-terminal GT do-
main, no signal peptide or transmembrane helices, and it is located outside the membrane.

3.4. Rha-Ts from Pseudomonas Aeruginosa

Pseudomonas aeruginosa is a pathogen of plants and animals, and an opportunistic
human pathogen that causes serious nosocomial infections [77]. LPSs are major virulence
factors composed of three distinct regions, i.e., lipid A, core oligosaccharide (OS), and
O polysaccharide (O antigen), which contain diverse repeating saccharide units. In this
section, we focus on Rha found in OS and O antigens.
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OS is divided into two types: one is capped (linked to O polysaccharides) with O
antigen through an α-1,3-linked L-Rha, while the other is uncapped (devoid of O polysac-
charides) and contains an α-1,6-linked L-Rha [78]. Gene knockout analysis showed that
migA and wapR genes encode α-1,3 Rha-Ts and α-1,6 Rha-Ts, respectively, which are re-
sponsible for the biosynthesis of the α-1,3-linked L-Rha and α-1,6-linked L-Rha [78]. O
antigen can also be divided into two types: heteropolymeric O antigen (formerly called B
band), containing mannosuronic acid derivatives with N-acetyl-D-fucosamine (D-FucNAc),
and an alternative LPS containing the common polysaccharide antigen (CPA; formerly
called A band). There are repeating units of O-polysaccharides of A band, namely (→3-α-
D-Rha-(1→2)-α-D-Rha (1→3)-α-D-Rha α-1→), containing a D-Rha moiety [79]. D-Rha-Ts
(including WbpY, WbpX and WbpZ) catalyze the transfer of D-Rha to an acceptor [80,81].

Rhamnolipids are detergents composed of α-D-(α-D-hydroxyalkanoyloxy) alkanoic
acids (HAA) derivatized with one or two Rha sugars (monorhamnolipids and dirhamno-
lipids; Figure 11), which are secreted by P. aeruginosa [82]. Rha-Ts I [83] and Rha-Ts II [84]
generate rhamnolipids, and their mechanism has been determined: (1) Rha-Ts I are encoded
by rhlA and rhlB genes, and gene knockout analysis of these genes indicated that RhlA
forms HAA, while RhlB is a Rha-T enzyme [85], and the heterologous expression of RhlA
and RhlB was achieved [86]; (2) gene knock-in assay proved that RhlC encodes Rha-Ts II,
which transfers the second Rha to dirhamnolipids [84].
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Additionally, a Rha-T EarP derived from P. aeruginosa has been reported that transfers
Rha from dTDP-Rha to Arg32 of the translation elongation factor P (EF-P) [87,88]. This
rhamnosylation of Arg32 by EarP can activate the functions of EF-P, which is important in
the process of protein translation in ribosome. EarP is also discovered in other clinically
relevant bacteria [89,90], indicating that this type of post-translational modification strategy
is crucial for protein translation and bacteria pathogenicity [87,88].

3.5. Rha-Ts from Streptococcus Pneumoniae

Capsular polysaccharides (CPSs) are produced by almost all isolates of S. pneumoniae
recovered from cases of invasive disease, and they are major virulence factors and immuno-
gens [91]. Rha-containing CPS has been identified in at least 27 serotypes. Rha-containing
CPS of S. pneumoniae is particularly attractive: (1) L-Rha may increase the immunogenicity
of CPS based on the immune analysis of 23F CPS, showing that α-(1→2)-linked L-Rha is
a dominant antigen [92]; (2) modified L-Rha may increase the stability of CPS based on
the analysis of a 19F CPS analog in which a residue of carba-L-Rha was inserted into the
natural trisaccharide, and this increased the stability of CPS [93]; (3) Rha-Ts are the most
prevalent GT genes in S. pneumoniae cps loci [94]. Therefore, studies on Rha of S. pneumonia
CPS may provide a new strategy for developing novel drugs to treat anti-pneumococcal
infections. However, new serotypes should be identified, and attempts to determine the
structures of CPSs and Rha-Ts have been reported [95,96].
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3.6. Rha-Tss from Other Bacteria

Although numerous Rha-Ts have been predicted, the in vitro biochemical knowl-
edge of these enzymes is limited. Gene mutants have confirmed the functions of some
Rha-Ts, including RgpF [97], WbgA [97], AceR [98], AntB [99], and GacB [100]. Heterolo-
gous expression has also been used to confirm the functions of Rha-Ts, as exemplified by
HlpA/RtfA [101]. Rha-Ts from Mycobacterium smegmatis [93], Streptococcus anginosus [102],
serotype VIII capsular polysaccharide (CPS) of Group B Streptococci (GBS) [103], and Vibrio
cholera [104] have also been reported.

This review mainly overviews the research advance of the Rha-Ts derived from bacterial;
however, there are also other enzymes involved in RCC biosynthesis that will not be described
in detail here. For example, several Rha-Ts from plants have been reported [105–107]. Addi-
tionally, in recent years, α-L-rhamnosidase has been found to synthesize RCCs by a reverse
hydrolyzing mechanism, which has attracted extensive attention [108,109].

4. Application of RCC in the Research and Development of New Drugs
4.1. Rha Increases the Immunogenicity of Tumour-Associated Carbohydrate Antigen (TACA) Vaccines

TACAs are carbohydrates expressed at high levels on the surface of tumor cells [110,111],
and anti-TACA vaccines have been well developed [112]. However, the immunogenicity of
TACAs is very low [113]. Saccharide conjugating to proteins can increase its immunogenic-
ity, and this approach was then widely applied in conjugation vaccinations [114]. Although
some glycoconjugate TACA cancer vaccines have shown promising therapeutic potential,
no vaccine has yet achieved a satisfactory survival rate in clinical trials [115,116]. Guo
group developed both positive and negative immunotherapies with unnatural TACAs for
testing against cancers [117,118]. However, the quality control of reactions was difficult,
and unexpected immune responses to proteins and linkages limited their application.

To solve these problems, two strategies have been developed: using a low-molecular-
weight peptide (such as YAF) in place of proteins to increase immunogenicity of TACAs,
and antigens targeting antigen-presenting cells (APCs) [117,118]. Additionally, saccharide
binding to Rha can improve immunogenicity, as demonstrated by Oyelaran et al. who
reported that human serum contains high levels of anti-Rha antibody [119]. Zhang et al.
reported that L-Rha conjugated with truncated MAGE-A3 enhanced the immunogenicity of
melanoma-associated antigen A3, thereby stimulating antitumor immune responses [120].
A study by Sarkar et al. showed that L-Rha binding to carbohydrate antigens enhanced
antigenicity in mice [121]. In 2013, this team also successfully formulated a MUC1 VNTR
TACA conjugate into a liposome-based anticancer vaccine, and the immunogenicity of the
vaccine was further augmented by incorporating surface-displayed L-Rha epitopes onto
liposomes [122]. Li et al. reported a strategy targeting tumor cells using ligand-incorporated
Rha-functionalized liposomes [123]. Additionally, L-Rha epitopes can also enhance cellular
immunogenicity. Partha et al. reported that the Rha-decorated liposomal Pam3Cys-MUC1-
Tn vaccine showed higher cellular immunogenicity [2]. In addition, the immunogenicity
of Rha-decorated liposomal Pam3Cys-MUC1-Tn was further augmented in mice when
received human anti-Rha antibodies prior to its vaccination [124]. Additionally, Rha and
sTn antigen, co-conjugated to bovine serum albumin (BSA), significantly enhanced antigen
uptake through the involvement of Rha-specific antibodies [125]. Together, these studies
showed that TACA vaccines containing Rha can increase immunogenicity. Compared with
Galα1-3Galβ1-4GlcNAc-R (α-Gal epitope), Rha not only increases the immunogenicity of
TACAs, but also can be used directly in wild-type mice [126].

In addition to TACA vaccines, the strategies of enhancing the monoclonal antibodies’
(mAbs) efficacy were also developed by using high levels of anti-Rha antibody of the
human serum [127,128]. MAbs are one of the most rapidly growing drug classes used for
the clinical practice, such as cancer and infectious and autoimmune diseases. Complement-
dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC)
are effector functions for antibodies to deplete target cells [128]. Rituximab is one of the
commercially available mAbs, which is site-specifically conjugated with the Rha hapten
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to generate rituximab–Rha conjugates, to recruit anti-Rha antibodies onto the cancer cell
surface and further form an immune complex that leads to magnifying ADCC and CDC si-
multaneously [128]. Ou et al. reported an efficient chemoenzymatic synthesis of structurally
well-defined conjugates of antibody–rhamnose clusters to recruit natural anti-rhamnose
antibodies for the enhancement of the CDC effects [127]. In addition, Coen et al. reported
on antibody-recruiting glycopolymers (ARGPs) that consist of polymeric copies of a rham-
nose motif, which can bind anti-Rha antibody of the human serum, for the design of potent
immunotherapeutics that mark target cells for destruction by the immune system through
ADCC [129]. These studies developed general and cost-effective approaches to augment
the mAb effector functions with the engagement of anti-Rha antibody of the human serum
that may have broad applications.

4.2. Rha-Containing Tumor-Killing Agents

Many natural products are known to have human health benefits, such as saponins and
tumor-killing agents. The relationships between biological activity and chemical structure
of some tumor-killing agents indicate that Rha may play a crucial role in determining bio-
logical properties. For example, kaempferol-3-O-(3′′,4′′-di-O-acetyl-α-L-rhamnopyranoside;
SL0101) from Forsteronia refracta can inhibit the activity of Ser/Thr protein kinases (RSKs)
that are closely related to the proliferation and metastasis of many tumor cells [130]. During
this process, acylation of the Rha moiety of SL0101 is required for high-affinity binding
and selectivity [118]. In addition, the Rha moiety of solamargine and solasonine is a key
factor in anticancer activity [131,132]. Lou group demonstrated why Rha plays an impor-
tant role in the anticancer activity of solasodine-derived rhamnosides; they reported that
Rha-binding lectins (RBLs) on the surface of tumor cells conjugated with Rha to mediate
the transportation of rhamnosides [133].

Furthermore, due to specificity of the interactions between carbohydrates and cell
receptors, a lectin-directed enzyme-activated prodrug therapy (LEAPT) strategy was devel-
oped [134]. Specifically, in the first phase of this strategy, a glycosylated enzyme is targeted
to specific cell types or tissues; in the second phase, prodrugs capped with sugars are
administered; the glycosylated enzyme is then able to activate the prodrugs at the site of
interest by cleaving the prodrug linkage; the interaction of both prodrug and enzyme relies
on their precise glycosylation, and Rha-doxorubicin and Rha-5-fluorouracil are effective
examples [134]. Although the Rha of tumor-killing agents is a key factor in tumor killing,
L-Rha cannot kill tumor cells directly because it does not affect energy metabolism [135].

4.3. Inhibitors of Rha Synthetases as Drug Targets

Many prevalent and opportunistic pathogens, including M. tuberculosis, P. aeruginosa,
and S. pneumoniae, are particularly difficult to treat due to their intrinsic chemo-resistance
and their ability to acquire further resistance mechanisms against antimicrobial agents.
Rha biosynthesis pathways have been discovered in numerous bacteria and fungi, but
they have not been discovered in humans, hence they might be potential therapeutic
targets [136,137]. The first nanomolar inhibitors of RmlA from P. aeruginosa were thymine
analogs, and some inhibitors also showed inhibitory activity against M. tuberculosis [138].
In addition, L-Rha-1-C-phosphonate is the best inhibitor of Cps2L, and a fluorine atom at
C1 can increase inhibition by 25%, but two fluorine atoms at C1 had an adverse effect [139].
Furthermore, RmlC is the most promising therapeutic target because it possesses high
substrate specificity and it does not require a cofactor [140].

5. Conclusions

RCCs are present in bacteria but not in humans and other mammals, making them
valuable for tumor immunotherapy and treating antibacterial infections. To date, RCCs
have been studied extensively, and produced a series of excellent results, i.e., the discovery
of the biosynthetic pathways of three rhamnose donors, the discovery of Rha-Ts, and their
application to the treatment of various diseases. In this review, the biosynthesis pathways
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and the properties of the related enzymes from three donor substrates, including dTDP-Rha,
GDP-Rha, and UDP-Rha, were reviewed in detail, which is of great significance for the
development of the strategies for the preparation of donor substrates of Rha-Ts in vitro.
In addition, the functions and properties of Rha-Ts were also reviewed, which provides
theoretical guidance for the development of Rha-Ts and the enzymatic synthesis of RCCs. It
is important to note the complex and diverse structures of the receptor substrates of Rha-Ts,
which need to be further studied. However, the research of the synthesis pathways of RCCs
from different cells, the properties of related enzymes and their catalytic mechanisms is
rather little; therefore, further studies on the biosynthesis and applications of RCCs are
being carried out at present and subsequently via the latest biochemical technologies, such
as molecular biology, structural biology, and computational biochemistry techniques.
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