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Abstract 

Background:  Partial volume correction with anatomical magnetic resonance (MR) 
images (MR-PVC) is useful for accurately quantifying tracer uptake on brain positron 
emission tomography (PET) images. However, MR segmentation processes for MR-PVC 
are time-consuming and prevent the widespread clinical use of MR-PVC. Here, we 
aimed to develop a deep learning model to directly predict PV-corrected maps from 
PET and MR images, ultimately improving the MR-PVC throughput.

Methods:  We used MR T1-weighted and [11C]PiB PET images as input data from 
192 participants from the Alzheimer’s Disease Neuroimaging Initiative database. We 
calculated PV-corrected maps as the training target using the region-based voxel-
wise PVC method. Two-dimensional U-Net model was trained and validated by sixfold 
cross-validation with the dataset from the 156 participants, and then tested using MR 
T1-weighted and [11C]PiB PET images from 36 participants acquired at sites other than 
the training dataset. We calculated the structural similarity index (SSIM) of the PV-cor-
rected maps and intraclass correlation (ICC) of the PV-corrected standardized uptake 
value between the region-based voxel-wise (RBV) PVC and deepPVC as indicators for 
validation and testing.

Results:  A high SSIM (0.884 ± 0.021) and ICC (0.921 ± 0.042) were observed in the 
validation and test data (SSIM, 0.876 ± 0.028; ICC, 0.894 ± 0.051). The computation 
time required to predict a PV-corrected map for a participant (48 s without a graphics 
processing unit) was much shorter than that for the RBV PVC and MR segmentation 
processes.

Conclusion:  These results suggest that the deepPVC model directly predicts PV-
corrected maps from MR and PET images and improves the throughput of MR-PVC by 
skipping the MR segmentation processes.

Keywords:  Deep learning, Partial volume correction, PET, Amyloid

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

ORIGINAL RESEARCH

Matsubara et al. EJNMMI Physics            (2022) 9:50  
https://doi.org/10.1186/s40658-022-00478-8

EJNMMI Physics

Data used in the preparation 
of this article were obtained 
from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). As 
such, the investigators within 
ADNI contributed to the design 
and implementation of ADNI 
and/or provided data but did 
not contribute to the analysis or 
writing of this report. A complete 
list of ADNI investigators can 
be found at http://​adni.​loni.​usc.​
edu/​wp-​conte​nt/​uploa​ds/​how_​
to_​apply/​ADNI_​Ackno​wledg​
ement_​List.​pdf.

*Correspondence:   
matsubara@akita-pu.ac.jp

1 Department of Management 
Science and Engineering, 
Faculty of System Science 
and Technology, Akita Prefectural 
University, 84‑4 Aza Ebinokuchi 
Tsuchiya, Yurihonjo 015‑0055, 
Japan
2 Department of Radiology 
and Nuclear Medicine, Research 
Institute for Brain and Blood 
Vessels, Akita Cerebrospinal 
and Cardiovascular Center, 
Akita 010‑0874, Japan

http://orcid.org/0000-0003-1823-1651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-022-00478-8&domain=pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Page 2 of 18Matsubara et al. EJNMMI Physics            (2022) 9:50 

Background
Positron emission tomography (PET) has been used to quantify biological processes 
such as the deposition of amyloid-beta plaques [1–4] and neurofibrillary tangles [5–8] in 
the cerebral cortex that occur in neurodegenerative disorders, including Alzheimer’s dis-
ease (AD). The low spatial resolution of PET images, typically 5–8 mm full width at half 
maximum (FWHM), results in a spill-out of radioactivity concentration from regions of 
interest and spill-in from marginal regions; this phenomenon is referred to as the “par-
tial volume effect” [9]. Morphological changes in the regions of interest (ROI) enhance 
the partial volume effect, especially if the size of the target regions decreases; for exam-
ple, thinning of the cortical gyri due to brain atrophy results in a stronger spill-out from 
gray matter (GM) regions, thereby underestimating the cortical radioactivity concentra-
tion. This indicates the need to correct the spillover from GM for quantitative and cross-
sectional studies using amyloid PET.

Several partial volume correction (PVC) methods guided by anatomical imaging, such 
as magnetic resonance (MR) and computed tomography imaging, have been proposed 
[10–17]. For example, Rousset et  al. proposed the geometric transfer matrix (GTM) 
method, which involves the calculation of a matrix that includes spillover among ROIs 
drawn on an MR image for region-wise PVC [15]. Furthermore, Thomas et al. proposed 
extending the GTM method to voxel-wise PVC [17]. Some MR imaging-guided PVC 
(MR-PVC) methods have been available with software packages such as PMOD (http://​
www.​pmod.​com/​web/) and FreeSurfer (https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki/​
PetSu​rfer). These methods are widely used in brain PET studies [18–22].

Deep learning, a machine learning method that uses a neural network comprising 
numerous layers [23, 24], recently became an extensively used technique for construct-
ing artificial intelligence. Deep learning techniques have been employed for various 
tasks in medical imaging of the brain, such as brain tumor segmentation [25–28], auto-
mated AD detection [29–31], and stroke lesion segmentation [32–34]. Multiple research 
groups have proposed parcellation of the cerebral cortex with a convolutional neural 
network (CNN) model trained with parcellation maps acquired by FreeSurfer [35, 36]. 
The parcellation estimated by Henschel’s model matched well with FreeSurfer’s parcel-
lation (89.08% in Dice coefficient) and manual segmentation (80.19%), implying that 
the CNN model can learn human brain anatomy and provide accurate cortical region 
parcellation.

We hypothesized that the CNN model would estimate PV-corrected maps from MR 
and PET images. To verify this hypothesis, we trained the U-shaped CNN model with 
skip connections (U-Net) [37] using T1-weighted MR and [11C]PiB PET images as 
inputs and a PV-corrected map as a target. We referred to the trained U-Net model as 
“deepPVC.” To demonstrate the importance of both anatomical and physiological infor-
mation for predicting PV-corrected maps, we compared the model trained with only 
PET images to those trained with MR and PET images. The conventional MR-PVC is 
affected by error sources, such as misregistration between MR and PET images, and 
inaccurate point spread function (PSF). We tested the hypothesis that the effects of the 
PET-MR misregistration and inaccurate PSF on the deepPVC were the same as those 
of the conventional MR-PVC method. Furthermore, we predicted PV-corrected maps 
for brain [18F]FDG PET images using the model trained with [11C]PiB PET images to 

http://www.pmod.com/web/
http://www.pmod.com/web/
https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer
https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer
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demonstrate whether the trained model learned the pure partial volume effect or uptake 
patterns specific to [11C]PiB.

Methods
Dataset

The data analyzed in this study were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database. ADNI primarily aimed to investigate whether a 
combination of measurements from serial MRI, PET, clinical and neuropsychological 
assessments, and other biological markers can be used to measure the progression of 
mild cognitive impairment (MCI) and early AD (for up-to-date information, see www.​
adni-​info.​org).

We downloaded 192 image sets of PiB PET and MR three-dimensional (3D) 
T1-weighted images from the ADNI database. The PET and MR images were acquired 
from 93 participants, including 16 healthy controls (HC), 59 patients with MCI, and 18 
patients with AD. One, two, and three follow-up scans and a baseline scan were per-
formed for 43, 25, and 2 participants, respectively. Only a baseline scan was performed 
for the remaining 23 participants. No participants experienced conversion from HC to 
MCI or AD or from MCI to AD.

For the PET input, we downloaded PET data that were preprocessed by the co-reg-
istration of each frame to the first frame and averaged the frames (5 min × four frames 
starting 50 min after the  [11C]PiB injection; this is termed “Coregister, Averaged” in the 
ADNI database). We smoothed the downloaded PET images using a 3D Gaussian kernel 
to adjust the PSF for similar PET images among all ADNI sites. The smoothing kernel 
employed in this study was the same as that used in the “post-processed” image, named 
“Co-reg, Avg, Std Img, and Vox Siz, Uniform resolution” in the ADNI database. The 
smoothed PET images had a uniform isotropic resolution of an 8 mm FWHM.

For the MR input, we downloaded thin-sliced MR T1-weighted images from the ADNI 
database. The downloaded MR T1-weighted images were resampled to 256 × 256 × 256 
voxels with dimensions of 1 × 1 × 1  mm3. The resampled MR images were analyzed 
using FreeSurfer (https://​surfer.​nmr.​mgh.​harva​rd.​edu) to automatically label the vol-
umes of interest (VOIs) [38, 39] for PVC and subsequent VOI analysis. A total of 113 
labeled VOIs were identified based on the Desikan/Killiany atlas [40] and termed as 
“aparc + aseg” in the FreeSurfer software. To save computation time in the PVC pro-
cesses, we merged the 113 VOIs into 44 regions (22 regions in each hemisphere) based 
on definitions from previous analysis by the ADNI PiB PET Core [41]. Details regarding 
the process of merging VOIs are presented in Additional file  1: Table  S1. To examine 
spillover to non-brain tissues and air in the PVC, we added a VOI comprising a 15 mm 
“shell” surrounding the outer surface of the brain. The VOI map for a representative 
case is shown in Additional file 1: Fig. S1. To avoid memory errors during training, MR 
images were down-sampled to 128 × 128 × 128 voxels with 2 × 2 × 2  mm3 before regis-
tration of PET images and PVC processes as follows.

We considered maps corrected for the partial volume effect based on the region-based 
voxel-wise (RBV) method [17] as the target images for training. RBV PVC is a voxel-wise 
extension for the GTM method. The PVC-optimized registration (PoR) framework [42] 
was applied to compensate for the misregistration between the MR and PET images. 

http://www.adni-info.org
http://www.adni-info.org
https://surfer.nmr.mgh.harvard.edu
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Briefly, the PoR framework iteratively performed PVC and registration between the 
smoothed PV-corrected map and uncorrected PET image. Next, the final PV-corrected 
map was generated by performing RBV PVC using a misregistration-compensated PET 
image.

We considered the 156 image sets of MR and PET images as the training data. Thirty-
six image sets acquired from sites other than the training datasets were regarded as test 
dataset.

Training

The 2D U-Net [37] used in this study is shown in Fig. 1. The 2D U-Net was trained slice-
by-slice using the training dataset containing 156 image sets. In brief, the U-Net contains 
the encoder and decoder parts. The encoder compresses the data to extract the robust 
image features, while the decoder part mirrors the encoder’s structure and restores a 
desirable image from the extracted features. Each level of the encoder and decoder parts 
contains two convolutional layer blocks. Each block includes a convolutional layer, a 
batch normalization layer to prevent internal covariance shifts [43], and an activation 
layer with rectified linear units [44]. Down- and up-sampling were performed of the 
encoder and decoder parts, with convolutional and transposed convolutional layers with 
a stride of two. The number of channels for data was doubled in the down-sampling and 
reduced by half in the up-sampling. We empirically set the number of down- and up-
samplings to three. Skip connections at each level of the network were added to pre-
vent the loss of spatial information. Finally, the output images were recovered from the 
final image features using a convolutional layer with a 1 × 1 kernel. The total number of 
parameters for the U-Net was 8.56 million. The orientation of the input and output slices 
was axial.

Further, we trained the network weights by minimizing the mean squared error 
between the real and predicted output images. The weights were optimized using the 
Adam method [45]. The hyperparameters for Adam, β1 and β2, were set to 0.723 and 
0.999, respectively. The update of the weights was implemented in batches, including 16 
image sets, and iterated with 400 epochs. The initial learning rate was set to 0.0018 and 

Fig. 1  Convolutional neural network model used in this study. The numbers on each data layer indicate the 
number of channels
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linearly decayed from the 200th epoch to the end of the learning process. The final learn-
ing rate in the end was zero. The β1, batch size, number of epochs, and initial learning 
rate were optimized by Bayesian optimization using the Optuna library (https://​optuna.​
org/) [46]. Data augmentation was performed of the training data with rotation by angle 
randomly selected in range between − 30 and 30 degrees, and horizontal flipping. The 
training was implemented using the PyTorch library (https://​pytor​ch.​org/) [47].

Blank slices not showing head and brain on the input and output images were omit-
ted for efficient training and prediction by the U-Net. The intensities on input PET and 
MR images were standardized by dividing with the average of each individual image. The 
output PV-corrected maps were standardized by dividing with the average of the indi-
vidual PET image as input.

Validation

To validate whether the trained deepPVC model learns features for PVC from the MR 
and PET images, we performed training using only the PET images as well as using 
the PET and MR images and named the groups “deepPVCPET” and “deepPVCMRI+PET,” 
respectively. Model performance was subjected to sixfold cross-validation. The 156 
image sets were split into six data subsets—five as training data and one as validation 
data—and trained and evaluated the trained model six times to validate all subsets. 
The data were split with avoiding duplication of subject between training and valida-
tion subsets. We compared the following metrics between the two deepPVC models: (1) 
the structural similarity index (SSIM) [48] between the real and predicted PV-corrected 
maps; and (2) regional standardized uptake values (SUVs) in the VOIs on the real and 
predicted PV-corrected maps. The SSIM assesses the structural and perceptual similar-
ities between the two images. The SSIM was calculated using the scikit-image library 
(https://​scikit-​image.​org/) [49].

The regional SUVs on the VOIs were compared to assess the quantitative corre-
spondence between the real and predicted PV-corrected maps. The intraclass correla-
tion coefficient for absolute agreement of a single measure (ICC[2,1]) between the real 
and predicted PV-corrected SUVs for each individual was calculated as an index for the 
quantitative correspondence of PV-corrected SUVs. The ICC was calculated using the 
pingouin library (https://​pingo​uin-​stats.​org/) [50]. To demonstrate the voxel-level cor-
respondence between the real and predicted PV-corrected maps, we constructed two-
dimensional (2D) histograms between the real and predicted PV-corrected SUVs on 
voxels in the brain for each individual.

Differences in the SSIM and ICC among the trained models were tested using a pair-
wise t test with correction for multiple comparisons using Bonferroni’s method. The 
SSIM and ICC of the uncorrected and real PV-corrected PET images were used as refer-
ences to compare the models and test for differences between them.

Test with [11C]PiB PET data

The trained deepPVC model was tested against the test data: 36 image sets acquired at 
different sites from those of the training data to assess the trained model performance 
upon generalization. Note that the PET scanner used for the test dataset differed from 
that used for the training/validation dataset, while the MR scanners were the same 

https://optuna.org/
https://optuna.org/
https://pytorch.org/
https://scikit-image.org/
https://pingouin-stats.org/
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for both datasets. The lists of PET and MR scanners are presented in Additional file 1: 
Table S2. We tested the model trained with all 156 image sets of the training/validation 
dataset. The SSIM and ICC for the predicted PV-corrected maps were calculated for the 
test data, as for the validation data. The differences in the SSIM and ICC between the 
validation and test data were tested using Welch’s t test.

The computer used in the test had an Intel Xeon E5-1650 v3 3.50 GHz central pro-
cessing unit (6 cores and 12 threads), four graphics processing units (GPUs), GeForce 
GTX TITAN X 12 GB, and eight 8-GB memory cards (total, 64 GB). We measured the 
computation time with versus without the GPU; for reference, the computation time 
required to perform RBV PVC was also measured.

Test with over‑smoothed PET images

To demonstrate the effect of PSF inaccuracy on deepPVC and whether the trained deep-
PVC model learned PSF information, we tested the model on excessively smoothed PET 
images. We hypothesized that, if the trained model learned the PSF information, the PSF 
mismatch between the PSF true and assumed in the training would affect the predicted 
PV-corrected maps as with conventional MR-PVC. We excessively smoothed the PET 
images for the test data using 6.0 and 8.9 mm FWHM Gaussian kernels, resulting in a 
final resolution of 10 and 12  mm FWHM, respectively. We calculated the differences 
between the PV-corrected SUVs predicted for the original and over-smoothed PET 
images using the trained deepPVCMRI+PET model. For reference, we also performed RBV 
PVC for the smoothed PET images and compared the differences in the PV-corrected 
SUV with the deepPVC.

Test with misaligned PET images

To demonstrate the effect of misregistration between the PET and MR images on deep-
PVC, we arbitrarily realigned the PET images for the test dataset. We then predicted the 
PV-corrected maps using deepPVC with the arbitrarily realigned PET and the original 
MR images as input data. The realignment in a single direction, shift, or rotation on the 
x-, y-, or z-axis was performed by ± 4, 8, or 12 mm, or ± 4, 8, or 12 degrees, respectively. 
We calculated the differences in regional PV-corrected SUVs from those without rea-
lignment. To compare the robustness of the misregistration between conventional PVC 
and deepPVC, we also performed RBV PVC for the realigned PET images.

Test with PET images acquired with a radiotracer other than [11C]PiB

To determine whether the trained model learned uptake patterns specific to [11C]PiB, 
we tested the trained model on the acquired data using a tracer other than [11C]PiB. 
We assumed that the trained model could successfully predict a PV-corrected map for 
the other tracer if the trained model learned the pure partial volume effect on the PET 
images. Subsequently, [18F]FDG PET and MR T1 images from 16 participants were 
downloaded from the ADNI database, including three HCs, 10 with MCI, and three 
with AD. Preprocessing of these MR images was performed using FreeSurfer as for the 
[11C]PiB data; co-registration between PET and MR images using the PoR method as 
well as the RBV PVC method was performed, as for [11C]PiB data. Prediction of the 
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PV-corrected map for the [18F]FDG PET data and comparisons of the real and predicted 
maps were implemented in the same manner as the test for [11C]PiB.

Results
Validation of the deepPVC models

The highest structural similarity (SSIM, 0.884 ± 0.020) to the real PV-corrected maps 
was observed in the PV-corrected SUV maps predicted by deepPVCMRI+PET (Fig.  2, 
Table  1). Significantly higher SSIM values were observed in all predicted SUV maps 
than in uncorrected PET images (p < 0.001). The SSIM of the PV-corrected SUV maps 
predicted by deepPVCPET to the real maps (0.556 ± 0.069) was also significantly greater 
than that of the uncorrected PET images (0.450 ± 0.060). The lowest (0.020) and high-
est (0.069) standard deviations in SSIM were observed using deepPVCMRI+PET and 
deepPVCPET, respectively. The PV-corrected maps predicted using deepPVCMRI+PET 
were structurally more similar to the real PV-corrected maps than the maps predicted 
using deepPVCPET (Figs. 3a, 4a). A blurred structure was observed in the maps predicted 
using the deepPVCPET. Similar trends were observed in cases other than those shown in 
Figs. 3a and 4a. Zoomed images for Figs. 3a and 4a are shown in Additional file 1: Fig. S2.

The highest quantitative correspondence to the real PV-corrected SUV (ICC[2,1]: 
0.921 ± 0.042) was observed in the PV-corrected SUV predicted using deepPVCMRI+PET 
(Fig.  2, Table  1). The standard deviation of the ICC for deepPVCMRI+PET (0.042) was 
much lower than that predicted by deepPVCPET (0.098) and the uncorrected SUV 
(0.097).

Fig. 2  Plots for individual SSIM (left) and ICC(2,1) (right) between the real and predicted PV-corrected SUV 
maps for the cross-validation datasets. Please note that each dot represents an individual data point pooled 
from the six cross-validation datasets. ICC, intraclass correlation coefficient; SSIM, structural similarity index; 
SUV, standardized uptake value

Table 1  Comparison of SSIM and ICC(2,1) among the deepPVC models for 156 subjects pooled 
from the six cross-validation datasets

Each value indicates the mean ± standard deviation of the 156 subjects pooled from the six cross-validation datasets.

ICC, intraclass correlation coefficient; SSIM, structural similarity index

DeepPVCMRI+PET DeepPVCPET Uncorrected PET

SSIM 0.884 ± 0.020 0.556 ± 0.069 0.450 ± 0.060

ICC(2,1) 0.921 ± 0.042 0.720 ± 0.098 0.569 ± 0.097
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Moreover, the 2D histograms for deepPVCMRI+PET were nearest to the identity lines 
(Figs. 3b, 4b). Over- and underestimation of the PV-corrected SUV were observed, even 
in the histogram for deepPVCMRI+PET. For example, overestimation of the PV-corrected 
SUV was observed in low real SUV bins (approximately 0–1) in the histogram in Fig. 3b. 
These bins corresponded to the voxels of the cerebrospinal fluid and outside the brain. 
The underestimation of the PV-corrected SUV in bins with a real SUV near 2 on the his-
togram for deepPVCMRI+PET is shown in Fig. 4b and corresponds to the voxels in various 
regions around the whole brain. Similar trends were observed on 2D histograms other 
than the cases shown in Figs. 3b and 4b.

Fig. 3  MR images, SUV maps a, and 2D histograms of the PV-corrected map (b) for the representative 
PiB-negative case (84 years old; male; MCI). The 2D histograms, left to right, represent maps predicted with 
deepPVCMRI+PET, deepPVCPET, and uncorrected PET, respectively. The white lines on the histograms indicate 
perfect correspondence with the real PV-corrected SUV. MCI, mild cognitive impairment; MR, magnetic 
resonance; MRI, MR imaging; PET, positron emission tomography; PVC, partial volume correction; SUV, 
standardized uptake value
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We employed the deepPVCMRI+PET model for the tests described below because it 
showed the best SSIM and ICC.

Test with [11C]PiB PET data

High SSIM (0.876 ± 0.028) and ICC (0.894 ± 0.051) values were obtained from the test 
with [11C]PiB data by deepPVCMRI+PET; however, the ICC of the test data was signifi-
cantly lower than that of the cross-validation data (p = 0.010). The structure and uptake 
of the predicted maps were visually similar to those of the real PV-corrected maps in 
cases with a high SSIM and ICC (Fig. 5, top), while a considerable underestimation was 
observed in the higher PV-corrected SUV (Fig. 6). In cases with a low SSIM and ICC, 
differences in uptake were observed between the real and predicted PV-corrected maps 

Fig. 4  MR images, SUV maps (a), and 2D histograms of the PV-corrected map (b) for the representative 
case of PiB-positive (60 years old; male; MCI). The 2D histograms, left to right, represent maps predicted with 
deepPVCMRI+PET, deepPVCPET, and uncorrected PET, respectively. The white lines on the histograms indicate 
perfect correspondence with the real PV-corrected SUV. MCI, mild cognitive impairment; MR, magnetic 
resonance; PVC, partial volume correction; SUV, standardized uptake value



Page 10 of 18Matsubara et al. EJNMMI Physics            (2022) 9:50 

(Fig. 5, bottom); overestimation in the low PV-corrected SUV is also shown in Fig. 6b. 
Scatter and Bland–Altman plots for each VOI are shown in Additional file 1: Fig. S3.

The computation time for training the model was 6 h 53 m. The times to predict the 
PV-corrected map using trained deepPVC were 8 s with GPUs and 48 s without GPUs 
(126  ms/slice with GPUs and 756  ms/slice without GPUs). The computation time of 
deepPVC without GPUs was shorter than that of RBV PVC at 1 min, 50 s.

Test with over‑smoothed PET images

Scatter plots of PV-corrected SUVs with PET images, which had a final resolution of 
8–12 mm FWHM by RBV PVC and deep PVC, are shown in Fig. 7. Underestimation in 
the PV-corrected SUV for 12 mm FWHM was observed for RBV PVC and deepPVC. 
Regression lines were very similar between the RBV PVC (y = 0.883 × x + 0.175) and 
deepPVC (y = 0.874 × x + 0.121).

Fig. 5  MR, PET, and real and predicted PV-corrected maps for cases with the best (top) and worst (bottom) 
SSIM among the [11C] PiB test data. MR, magnetic resonance; PET, positron emission tomography; PV, partial 
volume; SSIM, structural similarity index
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Test with misaligned PET images

We observed trends of significantly lower or equal percentage differences in PV-cor-
rected SUV for deepPVC versus RBV PVC (Fig. 8 and Additional file 1: Fig. S4). Sig-
nificantly higher percentage differences were observed for deepPVC versus RBV PVC 
in some regions and directions: 24/132 directions (132 directions = 22 regions × 6 
directions/region).

Test with [18F]FDG PET data

Significantly lower SSIM and ICC values were observed in the test with [18F]FDG PET 
data versus [11C]PiB PET data (Table 2). Uptake values in the predicted PV-corrected 

Fig. 6  Scatter plot (left) and Bland–Altman plot (right) between the real and predicted PV-corrected SUV 
for the test data. Each dot indicates the regional SUV for one VOI for one subject. The dashed line indicates 
perfect correspondence between the real and predicted SUVs. The red line indicates a regression line. PV, 
partial volume; SUV, standardized uptake value; VOIs, volumes of interest

Fig. 7  Scatter plots of SUVs PV corrected with PET images, which had final resolutions of 8–12 mm FWHM by 
RBV PVC (gray circle) and deep PVC (blue triangle). Regression lines for RBV PVC and deepPVC are indicated 
with red and pink lines, respectively. FWHM, full width half maximum; PV, partial volume; PVC, partial volume 
correction; RBV, region-based voxel-wise; SUV, standardized uptake value
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Fig. 8  Trends of the percentage differences in PV-corrected SUV on left (first and second columns) and right 
(third and fourth columns) parietal cortices in response to the shifts and rotations for RBV PVC and deepPVC. 
Asterisks indicate significant differences between RBV PVC and deepPVC (paired t test; *p < 0.05; **p < 0.001). 
PV, partial volume; PVC, partial volume correction; RBV, region-based voxel-wise; SUV, standardized uptake 
value

Table 2  SSIM and ICC(2,1) of [11C]PiB versus [18F]FDG data

Both results are for the prediction with deepPVCMRI+PET.

ICC, intraclass correlation coefficient; SSIM, structural similarity index

[11C]PiB [18F]FDG t values p values

SSIM 0.876 ± 0.028 0.782 ± 0.040 8.452  < 0.001

ICC(2,1) 0.894 ± 0.051 0.794 ± 0.059 5.858  < 0.001

Fig. 9  MR, PET, and real and predicted PV-corrected maps for cases with the best ICC among the [18F]FDG 
test data. CN, cognitively normal; MR, magnetic resonance; PET, positron emission tomography; PV, partial 
volume
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maps were lower than those in the real PV-corrected maps and similar to those in the 
uncorrected PET images (Fig. 9). Similar trends were observed in other cases.

Discussion
We hypothesized that the deep CNN model could learn features that allow it to predict 
PV-corrected maps, including anatomical information of the individual brain, physiolog-
ical information of the tracer uptake, and PSF on PET. The much higher SSIM and ICC 
observed with deepPVCMRI+PET than those with deepPVCPET imply that the deepPVC 
model learned the anatomical information from MR images as well as the physiologi-
cal information from PET images. These findings are supported by previous studies that 
employed U-Net for MR segmentation [35, 36] and suggest that the deepPVC model 
implicitly learns anatomical information to perform brain segmentation.

Moreover, the much lower variability in SSIM and ICC observed with deepPVCMRI+PET 
versus deepPVCPET use implies that features from both MR and PET images are neces-
sary for a stable prediction of PV-corrected maps using the deepPVC model. Because of 
the high stability of the prediction and the high correspondence between the predicted 
and RBV PVC maps, the deepPVCMRI+PET model trained with the MR and PET images 
was used for the tests in this study.

The underestimation in the PV-corrected SUV for deepPVC by excessive smoothing 
of the input PET images can reflect mismatches between each learned and actual PSF of 
the input PET images. These results are consistent with those of a previous report that 
demonstrated the effect of PSF errors on PV-corrected SUVs [51]. Similar trends in the 
changes of PV-corrected SUV between deepPVC and RBV PVC imply that the deepPVC 
model learned information for PSF from PET images. These findings also support the 
hypothesis that the deepPVC model learns the features required for MR-PVC and, thus, 
can predict PV-corrected maps from the MR and PET images.

The high SSIM and ICC in the test data acquired using other PET scanners from sites 
other than the training/validation datasets suggest that the trained deepPVC model 
could be successfully generalized for PET scanners. However, the PET scanners used 
for the dataset in this study were old-generation models. Further studies are required to 
demonstrate the applicability of the deepPVC model to more recent PET scanners, such 
as scanners with time-of-flight and silicon photomultiplier detectors [52, 53].

The computation time for predicting an individual PV-corrected map in this study 
(48  s without GPU) was shorter than the time required to perform RBV PVC (1  min 
50  s), and the total computation time of MR-PVC with MR segmentation processes, 
which was 4–8  h using FreeSurfer. The computation time in this study was similar to 
those previously reported for volumetric segmentation using the U-Net and the pro-
posed pipeline (1 min) [35]. These results suggest that the deepPVC models improve the 
throughput of MR-PVC by shortening the time it takes to perform PVC and by skipping 
the MR segmentation processes.

The lower SSIM and ICC in the test with [18F]FDG PET versus [11C]PiB PET data 
implies that the deepPVC model learned tracer-specific features from the [11C]PiB PET 
images, not merely features of the partial volume effect. These results suggest the need 
to train the deepPVC model with PET images for the target tracer. The construction of a 
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deepPVC model for multiple tracers, by training on PET images acquired using multiple 
tracers, is an alternative consideration.

Considerable underestimation of PV-corrected SUV with deepPVC reflects insuffi-
cient correction for spill-out from the target region, whereas overestimation of PV-cor-
rected SUV in low real SUV reflects insufficient correction for spill-in from surrounding 
regions. These results suggest that the recovery of radioactivity with deepPVC is not as 
perfect as that achieved with PVC; thus, the quantitative accuracy of the predicted PV-
corrected maps with deepPVC remains inferior to that of maps corrected by RBV PVC. 
The lower differences in PV-corrected SUV for deepPVC than RBV PVC in the test for 
misaligned PET images were due to insufficient recovery. Underestimation in PV-cor-
rected SUV may be observed in case of combination of the misalignment on a single 
direction, as actual application. We suppose that slice-by-slice training and prediction 
with 2D U-Net resulted in the quantitative inaccuracy of the PV-corrected maps because 
a partial volume effect occurs on PET images in 3D space. However, the computational 
cost for the training and prediction of volume data using a 3D CNN is extremely high. 
Actually, we cannot optimize hyperparameters for 3D U-Net because training of the 3D 
U-Net with 400 epochs spends approximately 7 days with our GPU workstation. Over-
fitting due to the small data size of the training data in this study can be the other reason 
for the underestimation of PV-corrected SUV. Further studies are required to predict 
PV-corrected maps using a 3D CNN in a high-specification computation environment 
and larger training dataset.

The deepPVC cannot avoid some error sources in maps PV-corrected by MR-PVC as 
a training target. For example, segmentation errors in MR segmentation processes can 
propagate from the PV-corrected maps used as training targets to the maps predicted 
using the trained deepPVC model. Other error sources, such as patient motion and 
attenuation–emission mismatches, can also propagate from the training target to the 
maps predicted using the deepPVC model. To avoid misregistration between PET and 
MR images, we applied the PoR framework to compensate for misregistration errors in 
the calculation of PV-corrected maps used as training targets. Much attention should be 
given to the quality control of PV-corrected maps used as training targets for the deep-
PVC model. One possible solution to make the deepPVC model robust for the error 
sources is adding these errors in data augmentation on the training. For example, shift-
ing and rotating either PET or MR images in data augmentation can make the trained 
model robust for the misalignment error between PET and MR images.

We applied U-Net for generating partial volume-corrected maps in this study because 
the U-Net is the most popular network architecture in the generation of medical images. 
Recently, residual network and transformer architectures have been utilized for medi-
cal image segmentation [54, 55]. Generative adversarial network framework [56] has 
the potential to improve performance to generate partial volume-corrected maps. Fur-
ther studies applying these techniques for generating partial volume-corrected maps are 
required.

Another limitation of this study is that the features learned by the deepPVC model are 
too complicated for humans to understand. Therefore, the discussion on model learn-
ing in this study is speculative. However, the success of predicting PV-corrected maps 
observed in this study suggests that the deepPVC model learned some useful features 
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for the correction of partial volume effects from MR and PET images. Further studies 
are required that interpret the model using techniques such as the attention mechanism 
[57, 58].

Conclusions
We successfully predicted the PV-corrected maps using the deepPVC model trained 
with both MR and PiB PET images. The study results suggest that the deepPVC model 
learns useful features from the MR and PiB PET images, allowing the prediction of PV-
corrected maps. However, the quantitative accuracy of PV-corrected maps predicted 
with deepPVC is imperfect compared to that of RBV PVC. Further improvement is 
required to ensure the accurate quantification of PV-corrected maps using deepPVC.
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