
https://academic.oup.com/jes   1

Journal of the Endocrine Society, 2021, Vol. 5, No. 5, 1–15
doi:10.1210/jendso/bvab021

Research Article

ISSN 2472-1972

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and 
distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the 
work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

Research Article

EDCs Reorganize Brain-Behavior Phenotypic 
Relationships in Rats
Morgan  E.  Hernandez  Scudder,1,* Rebecca  L.  Young,2,* 
Lindsay M. Thompson,3 Pragati Kore,2 David Crews,2 Hans A. Hofmann,1,2 
and Andrea C. Gore1,3

1Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; 2Department 
of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA; and 3Division of 
Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA

ORCiD numbers: 0000-0001-5549-6793 (A. C. Gore).

*These authors contributed equally to this work and are considered co-first authors.

Received: 4 January 2021; Editorial Decision: 10 February 2021; First Published Online: 18 February 2021; Corrected and 
Typeset: 19 April 2021. 

All species, including humans, are exposed to endocrine-disrupting chemicals (EDCs). 
Previous experiments have shown behavioral deficits caused by EDCs that have implica-
tions for social competence and sexual selection. The neuromolecular mechanisms for these 
behavioral changes induced by EDCs have not been thoroughly explored. Here, we tested 
the hypothesis that EDCs administered to rats during a critical period of embryonic brain de-
velopment would lead to the disruption of normal social preference behavior, and that this 
involves a network of underlying gene pathways in brain regions that regulate these behav-
iors. Rats were exposed prenatally to human-relevant concentrations of EDCs (polychlorin-
ated biphenyls [PCBs], vinclozolin [VIN]), or vehicle. In adulthood, a sociosexual preference 
test was administered. We profiled gene expression of in preoptic area, medial amygdala, 
and ventromedial nucleus. Prenatal PCBs impaired sociosexual preference in both sexes, 
and VIN disrupted this behavior in males. Each brain region had unique sets of genes altered 
in a sex- and EDC-specific manner. The effects of EDCs on individual traits were typically 
small, but robust; EDC exposure changed the relationships between gene expression and 
behavior, a pattern we refer to as dis-integration and reconstitution. These findings under-
score the effects that developmental exposure to EDCs can have on adult social behavior, 
highlight sex-specific and individual variation in responses, and provide a foundation for 
further work on the disruption of genes and behavior after prenatal exposure to EDCs.
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Environmental contamination with endocrine-disrupting 
chemicals (EDCs) perturbs hormones and their actions 
in virtually all species and ecosystems [1]. Prenatal EDC 

exposures pose a particular risk due to the extreme sensi-
tivity of the developing brain to gonadal hormones, which 
are required for sex-typical differentiation and development 
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of neural circuits, and the manifestation of behaviors. In 
the hypothalamus of male rodents and other mammals, 
prenatal and early postnatal testicular hormones mascu-
linize and defeminize neural circuits. In females, the ovary 
is relatively quiescent with low gonadal hormone secre-
tion; together with alpha-fetoprotein preventing estrogen 
crossing the blood–brain barrier, the brain undergoes fem-
inization and demasculinization under these female-typical 
conditions [2–5].

The effects of developmental EDC exposure on sexu-
ally dimorphic social behaviors and gene expression pat-
terns in different brain regions have been described for 
several classes of chemicals. Although individual EDCs are 
not pure hormone agonists or antagonists, some (such as 
certain polychlorinated biphenyls [PCBs] and bisphenol 
A [BPA]) mimic or disrupt estrogen signaling [6], and others 
(vinclozolin [VIN] and phthalates) are antiandrogenic [7, 8]. 
Polychlorinated biphenyls, widespread industrial chemical 
contaminants, alter gene expression in the hypothalamus 
[9–11] and change interactions of adult rats with conspe-
cifics [12–16]. Bisphenol A from plastic, and the fungicide 
VIN also change brain gene expression (BPA: [10, 17–19]) 
and sociosexual behavior (BPA: [20–22], VIN: [23, 24]). 
Prenatal exposure to phthalates causes long-lasting changes 
to gene expression in the hypothalamus and beyond [25, 
26]. Phthalate exposure early in life also cause deficits in 
cognitive and social behaviors [25, 27]. In most cases, out-
comes are dependent on the dose, timing, and length of 
exposure, as well as the sex of the animal. This is not sur-
prising considering the dynamic nature of endogenous hor-
mone signaling as the brain develops, and the vulnerability 
of estrogenic and androgenic pathways to EDCs.

Reproductive success is contingent upon sex-appropriate 
differentiation of the brain during early life. For an indi-
vidual to reproduce successfully, appropriate dyadic inter-
actions with another sexually mature potential mate of the 
opposite sex are required. This process involves assessment 
of an opposite-sex animal’s fitness through a variety of 
physical and behavioral cues, including hormonal status, 
as well-documented in rats [28–30]. There is plasticity in 
this behavior, with the decision-making process affected by 
prior sexual experience of both individuals, estrous cycle 
stage, hormone levels, and other factors. Within the brain, a 
complex social decision–making network [31] comprising 
hypothalamic [eg, ventromedial nucleus (VMN), preoptic 
area (POA)] and extra-hypothalamic (eg, medial amygdala 
[MeA]) regions expresses specific genes and proteins that 
modulate these behaviors [32].

Here, we tested the hypothesis that prenatal EDC ex-
posures would cause disruptions to the pattern of ex-
pression of a suite of genes in 3 brain regions in the 
social decision–making network (VMN, POA, MeA) and 

that this underlies functional deficits in an ethologically-
relevant sociosexual behavioral task. Previous work 
has shown that EDCs have small but significant ef-
fects on individual phenotypic traits, but the complex 
inter-relationships of these phenotypes have not been 
examined in detail. Therefore, the goal of the current 
study was to determine whether these relationships 
would break down (become “dis-organized”) and/or 
become reconstituted into novel patterns, in a sexually 
dimorphic manner.

Methods and Materials

Experimental design

All rat procedures were conducted in compliance with 
protocols approved by IACUC at The University of Texas 
at Austin. Sprague-Dawley rats purchased from Envigo 
(Houston) were housed in colony rooms with a consistent 
temperature (22°C) and light cycle (14:10 dark:light, lights 
off at 11:00 am). All rats had ad libitum access to water 
and were fed a low phytoestrogen rat chow (Teklad 2019; 
Envigo, Indianapolis, IN).

To generate experimental rats, virgin females were 
mated with sexually experienced males. Successful mating 
was indicated by the presence of sperm in a vaginal smear. 
The day after mating overnight was termed embryonic day 
1 (E1). Pregnant rats received intraperitoneal (i.p.) injec-
tions of 1 of 3 treatments daily from E8-E18: (1) Vehicle 
(6% dimethylsulfoxide (DMSO) in sesame oil), (2) the PCB 
mixture Aroclor 1221 (A1221, 1 mg/kg), or (3) VIN (1 mg/
kg). Each dam was exposed to the same treatment daily 
and received a total of 11 injections. The route, timing of 
treatment, and the dosages were selected to match prior 
work, based on ecological relevance, and to span the period 
of hypothalamic neurogenesis, fetal gonadal development, 
and the early stages of brain sexual differentiation [24, 
33–36]. The choice of i.p. injection was made to enable us 
to replicate prior work [24, 33, 34, 37, 38]; since the time 
that this work was initiated we have switched to feeding 
the EDCs to pregnant rats on a cookie [39, 40] and have 
had similar results.

Aroclor 1221, while best studied as a weakly estrogenic 
PCB mixture due to its lightly chlorinated structures [6], 
can also act to disrupt androgen, thyroid, and other hor-
monal and nonhormonal (eg, neurotransmitter) pathways 
[41–43]. Vinclozolin is considered antiandrogenic, as some 
but not all of its effects are mimicked by the antiandrogenic 
pharmaceutical, flutamide [7, 8]. Because neither A1221 
nor VIN is a pure hormone receptor agonist or antag-
onist, we did not include a “positive” control for estrogenic 
(A1221) or antiandrogenic (VIN) effects.
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A subset of offspring (30 male and 29 female) from 9 
DMSO, 10 A1221 (PCB), and 10 VIN dams were included 
in this study. No more than 2 same-sex rats per litter were 
used. We measured body weight and anogenital distance 
(AGD) on days P7 and P14 to calculate the Anogenital 
Index (AGI = AGD/ 3

√
body weight). The 5 males and 

5 females with the median intrasex AGI measurements 
were used for the subsequent experiments. The pups were 
weaned at P21 and re-housed in same-sex groups of 2 to 
3. Beginning on the day of vaginal opening, daily vaginal 
smears were collected from females and cell cytology was 
examined as an indication of estrous cyclicity. Timing 
of pubertal development did not vary across treatment 
groups (analysis of variance [ANOVA]; male age at pre-
putial separation: DMSO 43.5  ±  0.5, PCB 44.2  ±  0.7, 
VIN 44.1  ±  0.7. Female age at vaginal opening: DMSO 
36.4 ± 0.7, PCB 35.3 ± 0.9, VIN 34.6 ± 0.6). Rats were eu-
thanized at ~P120 between 8:00 and 10:00 am (lights out 
at 11:00 am), with females in proestrus, by rapid decapita-
tion and brains removed and processed as described below.

Stimulus Sprague-Dawley rats for the mate preference test 
were purchased as virgin adults. Males were gonadectomized 
(GDX) and females ovariectomized (OVX) under isoflurane 
anesthesia in aseptic conditions [44, 45]. During the surgery, 
stimulus animals assigned to the hormone-replaced group also 
had a 1.5 cm silastic capsule containing testosterone (males: 
100% testosterone (T); GDX + T) or a 1.0 cm silastic capsule 
containing 17β-estradiol (females: 5% E2/95% cholesterol; 
OVX  +  E2) implanted subcutaneously into the nape of the 
neck [44]. All rats recovered from surgery for at least 1 week 
prior to use in behavioral tests. Thirty-two GDX males (no 
hormone replacement), 32 GDX + T males, 32 OVX females 
(no hormone replacement), and 32 OVX + E2 females were 
used as stimuli throughout the study. For the latter group, on 
the day of use, these E2-treated females were primed for sexual 
receptivity by a subcutaneous injection of progesterone (P4, 
0.6 mg) in sesame oil 4 hours before the experiments started.

Sociosexual preference behavior

A 1 x 1 m 3-chambered apparatus (Stoelting, Wood Dale, IL, 
USA) was used as the testing arena [15, 46]. Testing was con-
ducted under dim red light approximately 2 hours into the 
dark phase of the light-dark cycle. Each test utilized an ex-
perimental (EDC or vehicle exposed) rat at ~3 months of age. 
This paradigm was selected as a standard model of sexual 
preference wherein a rat is given a choice between opposite-
sex partners of varying attractiveness [11]; we previously 
found this behavior to be affected by prenatal EDCs [16]. 
Two opposite-sex stimulus rats, one with and one without 
hormone replacement, were used. Each stimulus rat was 
placed inside a 7 x 15 cm cylindrical cage positioned in the 

2 far opposite corners of the apparatus. These cages have 
spaced vertical bars, allowing for limited tactile interactions 
between rats. The position of stimulus rats was randomized 
between trials and with respect to hormone status. The bars 
of the stimulus cage allowed for visual, olfactory, auditory, 
and minimal tactile interaction between the confined stimulus 
rat and the freely-moving experimental rat. Each trial began 
with the 2 stimulus rats already in position in their cylindrical 
cages. An experimental rat was placed in the center chamber 
of the apparatus with closed doors preventing entry into ei-
ther side chamber for a 5-minute habituation period. After 
habituation, the doors were removed and the experimental 
rat was allowed to freely explore the entire arena for 10 min-
utes. Each test was recorded by overhead video. ANY-Maze 
(Stoelting, Wood Dale, IL, USA) was used to track the pos-
ition, speed, and distance traveled of the experimental rat in 
each compartment of the chamber [16, 44, 46]. Recordings of 
the tests were scored by a trained investigator blinded to treat-
ment for the following behaviors: nose touching (direct nose-
to-nose contact between the experimental rat and a stimulus 
rat) and stimulus investigation (all other investigation by the 
experimental rat of a stimulus rat or stimulus cage). The time 
the experimental animal spent within 1 body length of either 
stimulus cage without engaging with the stimulus animal or 
cage (time within one body length [time nose touching + time 
investigating]) was defined as “time near.” To avoid testing 
fatigue, stimulus rats were used for no more than 3 rounds 
of testing per day and had 10 minutes of rest with access to 
food and water between each round. Stimulus rats had 2 days 
of rest between each day of testing. The entire apparatus was 
cleaned using 70% ethanol between each test subject.

Hormone radioimmunoassay

Serum concentrations of testosterone and corticosterone 
(CORT) were measured in duplicate samples, and estradiol (E2) 
in single samples (due to larger serum volume needed for this 
assay) using radioimmunoassays (testosterone: MP Biomedicals 
#07189102; CORT: MP Biomedicals #07120102; E2: Beckman 
Coulter #DSL-4800). Assay parameters were: CORT, limit of 
detection 7.7  ng/ml, intra-assay coefficient of variance (CV) 
2.5%; testosterone, limit of detection 30 pg/ml, intra-assay CV 
3.7%; E2: limit of detection 2.2 pg/ml, intra-assay CV 16.8%.

TaqMan Low Density qPCR Array 

TaqMan low density array (TLDA) cards were designed 
and purchased (ThermoFisher Scientific, Waltham, MA) 
to include genes that fell into functional categories such 
as sex steroid hormone signaling, glucocorticoid stress 
axis, nonapeptides, gonadotropin-releasing hormone 
(GnRH)-related genes, neurotrophins, neurotransmission, 
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epigenetics, and clock genes and other transcription factors 
(Supplemental Table 1 [47]).

Brains from experimental rats were rapidly removed, 
chilled on ice, and then coronally sliced at 1 mm using 
a chilled brain matrix. These slices were placed on 
slides and stored at -80 until all samples were collected. 
Bilateral punches were taken of the POA, MeA, and 
VMN using a 1-mm Palkovits punch [48]. Ribonucleic 
acid (RNA) from frozen POA, MeA, and VMN punches 
was extracted using AllPrep RNA/DNA Mini Kit 
(80204; Qiagen, Germantown, MD) according to the 
manufacturer’s protocol. To determine the integrity and 
purity, a subset of samples was run on a Bioanalyzer 
2100 (Agilent, RNA Pico Kit 5067-1513). All samples 
had an RIN of 8.4 or above. RNA (200  ng) was then 
converted to single stranded complementary DNA using 
high-capacity complementary DNA reverse transcriptase 
kit (4374966; Life Technologies, Carlsbad, CA) ac-
cording to the manufacturer’s protocol. Run parameters 
for the qPCR TLDA cards were: 95°C for 10 minutes, 
50 cycles of 95°C for 15 seconds, and 60°C for 1 minute 
[11]. Gene expression cycle threshold (Ct) values were 
normalized using the ΔΔCt method. First, each target 
gene value was normalized to the expression level of the 
reference gene Gapdh within each subject to generate 
ΔCt. To standardize between subjects, the ΔCt of each 
gene was normalized to the median value of a control 
group (DMSO females) to generate ΔΔCt. Data are re-
ported as 2−∆∆Ct. Two genes (Cyp11a1 & Hsd3b1) did 
not amplify and were excluded, leaving 44 target genes 
and 2 housekeeping genes (Gapdh, 18s). In all cases, sig-
nificance was set at P < 0.05 after appropriate corrections 
for multiple comparisons.

Statistics

Gene expression data were analyzed by ANOVA, with cor-
rections by Sidak’s multiple comparisons test for multiple 
comparisons. For behaviors, analyses were performed sep-
arately for each sex. Those behaviors involving a choice 
based on the hormone status of the stimulus rat were ana-
lyzed by a two-way ANOVA (treatment x stimulus hormone 
status). Other behaviors (eg, center time, distance traveled 
of experimental rat) were analyzed by one-way ANOVA. 
To explore sex differences, a two-way ANOVA for treat-
ment x sex was used for stimulus-independent behaviors 
between the sexes. Hormone concentrations, body weight, 
and puberty timing within each sex were analyzed by one-
way ANOVA. Reported p-values of multiple comparisons 
were adjusted using Sidak’s multiple comparisons test.

A hormone preference score was calcu-
lated as (social time hormone − social time replaced rat)

total social time . Social 

preference was calculated as a ratio of time within one 
body length of both stimulus animals out of the total test 
time: time within one body length

total test time . Linear regressions were 
used to determine correlations with significantly nonzero 
slopes.

Principal components analysis

To characterize coordinated phenotypic response to EDC 
exposure, we performed a Principal Components Analysis 
(PCA) on morphological, physiological, and behavioral 
measures, including body weight, CORT, E2, T (the latter 
males only), activity, social preference, hormone preference, 
and social activity (time spent investigating and interacting 
with stimulus rats) using the prcomp function in R. All 
variables were centered and scaled prior to PCA.

Weighted gene co-expression network analysis

To capture coordinated gene expression changes associ-
ated with EDC exposure we performed a Weighted Gene 
Co-expression Network Analysis (WGCNA) on the 44 
target genes measured [49, 50]. WGCNA was performed 
independently for the 2 sexes and 3 brain regions, with 
a minimum module size of 5 genes. Expression values of 
each module were summarized as module eigengenes (ie, 
the first principal component of each gene co-expression 
module). Thus, each eigengene is the linear combination 
of gene expression values that explains the most vari-
ation in the expression levels of the genes contained in 
the module. We assessed coordinated changes in pheno-
types and gene expression across treatments using gen-
eral linear models.

Co-variance patterns between neural gene 
expression, physiology, behavior, and 
morphology

To assess systems-level response to EDC treatment and 
the potential dis-integration and/or reconstitution, de-
fined as loss or change of correlations by EDCs, re-
spectively, we examined co-variance patterns among all 
neural gene expression and physiological, behavioral, 
and morphological measures for each control and treat-
ment conditions separately and visualized changes in the 
correlation structure across treatments. We calculated 
Spearman’s rank correlations between all pairwise vari-
ables. Variables were clustered using 1-correlation scores 
as distance variables. To visually assess the extent of inte-
gration or re-organization (or lack thereof) for each EDC 
treatment across levels of biological organization, neural 
gene expression and phenotype clustering of the control 
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condition was maintained for treatment animals for each 
sex and brain region.

Results

Embryonic exposure to EDCs affected 
sociosexual behavior in a sex-dependent manner

The mate preference task was performed on 29 females (9 
DMSO, 10 PCB, and 10 VIN) and 30 males (10 DMSO, 10 
PCB, 10 VIN). Twelve male rats (4 DMSO, 4 PCB, and 4 VIN) 
failed to investigate both of the stimulus rat options during the 
allotted 10 minutes. We refer to these males as “nonresponders” 
in all subsequent analyses. All males were included regardless 
of responder status in analyses of sex differences, PCA analysis, 
and gene expression analysis. However, Fig. 1 shows analyses of 
only the responder males (6 DMSO, 6 PCB, and 6 VIN), as that 
test required rats to interact with both opposite-sex stimulus 
animals to calculate a score. Other figures are inclusive of the 
entire cohort of males, regardless of responder status.

There was a main effect of hormone status of the 
stimulus rat on the time experimental females spent as-
sociating (within 1 body length) with the stimulus rats 
(F(1, 52) = 18.77; P < 0.0001). Females prenatally exposed 
to DMSO or VIN preferred the hormone-replaced male. 
Prenatal exposure to PCB, however, abolished this pref-
erence in females (Fig. 1A). There was no effect of treat-
ment on the total time that the experimental rats spent 
investigating both stimulus rats (Social Time).

In males, there was a significant interaction be-
tween treatment and hormone status of the stimulus 
rat on the time spent associating with the stimulus rats  
(F(2, 30)  =  7.113; P  <  0.01). Males exposed prenatally 
to DMSO spent more time investigating the stimulus 

female with hormone replacement over the one without. 
However, the time males exposed prenatally to PCB or 
VIN spent near the 2 stimulus rat options did not differ 
significantly within each treatment group (Fig. 1B). These 
findings replicated those in our recent publication [16].

There were significant sex differences in several behav-
ioral measures (Fig. 2). Throughout the test duration, fe-
males traveled significantly farther than males (Fig. 2A;  
F(1, 52) = 55.94; P < 0.0001). Females spent more time in close 
proximity to but not interacting with both stimulus rats (Fig. 
2B; F(1, 52) =  10.49; P  <  0.01). Females spent more time dir-
ectly investigating the stimulus rats than males (Fig. 2C; F(1, 

52) = 10.43; P < 0.01). For hormone preference score, females 
preferred the hormone-replaced stimulus animals more strongly 
than did males (Fig. 2D; F(1, 52) = 13.21; P < 0.001). VIN males 
spent less time in close proximity to the stimulus rats without 
interacting than DMSO males, shown in Fig. 2E as the social 
preference score (F(1, 52) = 20.66; P < 0.0001).

EDCs did not affect circulating steroid hormone 
levels, but PCBs resulted in reduced body weight 
in males and females

We measured body weight and serum hormone concentra-
tions (CORT, E2, and T) of behaviorally characterized rats 
on the day of euthanasia (Fig. 3). Prenatal PCB exposure 
significantly reduced the body weight of both female  
(F(2, 26) = 3.506; P < 0.05; Fig. 3A) and male (F(2, 27) = 6.080; 
P  < 0.01; Fig. 3D) rats. There were no significant effects 
of treatment on hormone concentrations within males or 
females (Fig. 3B and 3C [females], Fig. 3E–3G [males]). In 
females, there was a nonsignificant trend for PCB exposure 
to increase E2 levels (F(2, 26) = 2.916; P = 0.07; Fig. 3C).
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6  Journal of the Endocrine Society, 2021, Vol. 5, No. 5

Integration across levels of biological 
organization revealed high levels of individual 
variation with treatment groups

A principal components analysis of behavioral and physio-
logical measures in females (12 measures) and males (13 
measures) revealed variation between the sexes in coord-
inated phenotypic response to EDC treatment, as the prin-
cipal components (PCs) characterized different aspects of 
the phenotype (Fig. 4). Eigenvectors describing the load-
ings, or contribution, of phenotypes to PC variation re-
vealed patterns of coordinated phenotypic variation that 
differed in strength (absolute value of the eigenvector) and 
directionality (positive or negative).

In females, the first 4 PCs described 78% of the total 
variation in morphology, behavior, and physiology within 
and across treatments (Fig. 4A and 4B). Social Time, Social 

Preference, and Stimulus Explore loaded strongly and con-
cordantly on PC1 (35%), indicating that PC1 primarily 
represents variation in time spent engaging in sociosexual 
behavior. With strong and concordant loadings of Hormone 
Preference and Near Time, PC2 (20%) represents Social 
Preference and Social Interaction. PC3 (12%) is strongly 
loaded by sex steroid (E2) levels and time spent near a 
stimulus rat with opposing effects. Finally, with strong and 
opposing loadings of CORT and body weight, PC4 (11% 
of the variation) may be an indicator of condition. Within 
treatment, females varied in their integrated response to 
EDC treatment; however, there were no significant differ-
ences across treatments for the first 4 PCs (Supplemental 
Figures 1 and 2 [47]).

In males, the first 4 PCs described 75% of the total 
variation in morphology, behavior, and physiology 
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within and across treatments (Fig. 4C and 4D). PC1 
(38%) primarily described the variation among males 
in the time they spent in the center of the apparatus, 
and thus represents differences between responder and 
nonresponder males. PC2 (15% of the variation) pri-
marily represented, in opposing fashion, CORT levels 
and time spent engaging in nonsocial activity. PC3 
(12% of the variation) characterized opposing vari-
ation in body weight and T among males. With strong 
loadings of nose touch, stimulus explore, and hormone 
preference, PC4 (10% of the variation) characterized 
variation in preference and social interaction. Because 
nonresponders failed to approach 1 or both of the 
stimulus rat options during the allotted 10 minutes 
biasing their hormone preference and other sociosexual 
behavioral scores, responder and nonresponder males 
differed across PC4.

Genes and their relationships in VMN, POA, 
and MeA

The effect of EDC treatment and sex on the expression of 
the 44 detectable candidate genes in 3 brain regions was 
examined using the TLDA qPCR array. A subset of genes 
was significantly affected by treatment after correction for 

multiple comparisons (Table 1). Raw data for the entire 
dataset are provided in Supplemental Table 1 [47].

In the VMN of females, PCB-exposed rats had higher 
expression of Cyp19a1, Oxt, Avp, and Kiss1 than DMSO 
females. In VIN females, Hsd17b1 and Oxt were higher 
than levels in DMSO females. In the female POA, only 
Grin2b was changed significantly by EDCs (higher in both 
PCB and VIN than DMSO females). Two genes were af-
fected in the female MeA: Kiss1 (PCB > DMSO) and Oxt 
(PCB < DMSO; VIN > DMSO).

Three genes were significantly affected in males, 1 
in each region (Table 1). These genes were: in the male 
VMN, Cyp19a1 (PCB  <  DMSO, VIN  <  DMSO); in the 
POA, Grin2b (VIN  >  DMSO); and in the MeA, Kiss1 
(VIN < DMSO).

Four significant sex differences were identified in con-
trol DMSO rats after correcting for multiple comparisons 
(Table 2); the entire dataset is in Supplemental Table 2 [47]. 
In the VMN, males had significantly higher expression of 
Cyp19a1 compared with females. In the POA, females 
had significantly higher Kiss1 expression, while males had 
higher Grin2b expression. In the MeA, males had signifi-
cantly higher Kiss1 expression than females.

To identify potential relationships among correlated genes, 
we conducted a weighted gene co-expression network analysis 
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(WGCNA), which allowed us to identify modules of correl-
ated genes and calculated eigengene values [50]. This analysis 
showed that co-expression modules spanned functional gene 
groups and varied across brain regions and sexes (Supplemental 
Figure 3 [47]). However, treatments did not differ in eigengene 
expression for either sex or brain region after adjusting for mul-
tiple hypothesis testing (Supplemental Figure 4 [47]).

Embryonic exposure to EDCs caused dis-
integration and reconstitution across levels of 
organization

The individual variation in behavior and gene expres-
sion allowed us to examine co-variance patterns between 

phenotypic measures (behavior, body weight, hormones) 
and gene expression, in order to identify any systems-level 
effects of EDC treatment and ask if behavioral, physio-
logical, and neuromolecular correlations are maintained 
across treatments. Correlation strengths and phenotypic 
clustering are illustrated as heatmaps. An example of 
such a heatmap is shown Fig. 5 (in this case for gene ex-
pression in the VMN of females). Heatmaps for the POA 
and MeA in females, and for all 3 regions in males, are 
shown in Supplemental Figure 5 [47]. To interpret these 
heatmaps, the ordering of phenotypic traits along the axes 
was determined by hierarchical clustering based on cor-
relation relationships among traits in the female DMSO 
group as shown in Fig. 5A. This ordering of traits in 5A 
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was preserved to illustrate the extent of “dis-integration,” 
as shown in the heatmaps in panels 5B (PCB) and 5D 
(VIN), in which the traits in the DMSO control females 
have lost those correlations in EDC females. To generate 
“reconstitution” heatmaps shown in panels 5C (PCB) and 
5D (VIN), hierarchical clustering was done independently 
for each treatment, resulting in a novel pattern of clusters 
that is in a different order from the female DMSO control 
group. These same analyses were applied to the 3 regions 
and both sexes, with the remaining heatmaps provided in 
the Supplement [47]. In all cases, both dis-integration and 
reconstitution were evident.

For each set of heatmaps, we observed that correlations 
between gene expression levels are stronger (females: me-
dian r = 0.3–0.43; males: median r = 0.28–0.43) than be-
tween genes and behavior (females: median r = 0.2–0.28; 
males: median r =  0.2–0.32); this result may be partially 
influenced by the larger number of variables in the gene 

expression (44 traits) than the behavioral/hormonal (15 
traits) analysis. Nevertheless, for both sexes and all brain 
regions the co-variance structure was strongly integrated 
in control animals (in terms of number and size of robust 
clusters), whereas with EDC treatment these patterns ap-
peared to “dis-integrate” and/or reorganize. While the 
present study is underpowered to perform a quantitative 
analysis of this “dis-integration hypothesis,” the pattern of 
correlation loss and reorganization in both sexes and in all 
three brain regions reveals striking qualitative differences 
between the DMSO and EDC-treated rats.

To further illustrate this dis-integration effect we con-
ducted correlation analyses between individual traits, with 
an example shown here for total distance traveled during 
the mate preference test and VMN Grin2b expression in fe-
males (Fig. 6). A  robust correlation between these factors 
was found for the DMSO group (F

(1,7) = 19.60; P < 0.01; 
R2 = 0.74; Fig. 6A) but not the PCB (R2 = 0.005; Fig. 6B) or 

Table 2. Sex differences in gene expression in vehicle (DMSO) rats

Region Gene Females Males Directionality

Mean SEM Mean SEM  

VMN Cyp19a1 2.14 0.79 23.68 14.16 Male > Female
POA Kiss1 2.14 0.87 0.42 0.22 Female > Male
 Grin2b 1.04 0.06 2.19 1.19 Male > Female
MeA Kiss1 1.06 0.32 6.08 1.57 Male > Female

Sex differences in gene expression in DMSO rats. Abbreviations: DMSO, dimethylsulfoxide; MeA, medial amygdala; PCB, polychlorinated biphenyl; POA, preoptic 
area; VIN, vinclozolin; VMN, ventromedial nucleus.

Table 1. Genes significantly affected by treatment

Females Gene DMSO PCB VIN

Region Mean SEM N Mean SEM N Mean SEM N

VMN Cyp19a1 2.14 0.80 9 11.93 6.99 10 2.96 0.97 10
 Hsd17b1 2.94 1.94 9 1.63 0.50 10 7.74 5.87 10
 Oxt 0.93 0.18 9 5.74 2.23 10 4.50 1.75 10
 Avp 0.93 0.16 9 4.40 2.01 10 2.87 1.04 10
 Kiss1 2.75 1.10 9 6.38 1.78 10 5.00 1.35 10
POA Grin2b 1.04 0.06 9 4.26 2.18 10 2.60 1.53 10
MeA Oxt 3.15 1.37 9 1.83 0.70 10 4.78 1.72 10

 Kiss1 1.06 0.32 9 2.85 0.45 10 1.68 1.12 10

Males Gene DMSO PCB VIN

Region  Mean SEM N Mean SEM N Mean SEM N

VMN Cyp19a1 23.68 14.16 10 3.89 1.13 9 4.81 1.47 10
POA Grin2b 2.19 1.19 10 1.83 0.78 10 5.22 4.11 10
MeA Kiss1 6.08 1.57 10 5.84 1.22 10 4.94 0.97 10

Bolded numbers indicate significantly different from DMSO after adjusting for multiple comparisons. Abbreviations: DMSO, dimethylsulfoxide; MeA, medial 
amygdala; PCB, polychlorinated biphenyl; POA, preoptic area; VIN, vinclozolin; VMN, ventromedial nucleus.
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VIN (R2 = 0.0008; Fig. 6C) females. Conversely, we found 
strong evidence of reconstitution in males, where the dir-
ection of correlations present in the DMSO group were 
reversed by EDC treatment. Figure 6D shows one such ex-
ample: the negative correlation between hormone preference 
score and Hsd17b1 expression in the POA of DMSO males 
(F(1,8) = 13.56; P < 0.01; R2 = 0.63). The direction of this 
correlation was reversed by PCB treatment (F(1,7) = 17.68; 
P < 0.01; R2 = 0.72; Fig. 6E) and abolished by VIN treat-
ment (R2 = 0.03; Fig. 6F). Furthermore, there was consid-
erable individual variation in both gene expression and 
behavior, and the correlation heatmaps demonstrate that 
there are many stronger correlations between genes than be-
tween genes and behavior.

Discussion

The current study is an innovative analysis of the effects of pre-
natal EDCs on phenotypic relationships among neural gene 
expression and behavior. Our finding that there is wholesale 
dis-integration and reconstitution among related sociosexual 
behavioral measures and neuromolecular networks indicate 

that while individual traits may be modestly affected, the ge-
stalt of those traits is fundamentally different in treated vs con-
trol rats. Furthermore, the results were both sex-, EDC- (VIN 
and PCB) and region- (POA, VMN, MeA) specific. Our work 
underscores the importance of evaluating multiple phenotypic 
traits across levels of organization in assessing the long-term 
outcomes of EDC exposures. What determines the pattern of 
dis-organization or reorganization is not known, but these re-
sponses may reflect compensatory allostatic mechanisms in the 
face of external perturbations.

Prenatal EDCs changed mate preference in a 
treatment- and sex-specific manner

Due to their high investment in reproduction, female mam-
mals seek out mates with the best likelihood of producing 
fertile offspring. For example, males with the typical adult 
range of concentrations of testosterone [32], and odors from 
such males, are preferred by sexually active female rats over 
low- or no-testosterone male counterparts [51, 52]. In the cur-
rent study, sociosexual preference behaviors were impaired 
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by PCBs in both sexes, and by VIN in males. This difference 
between the EDCs is interesting and may reflect the different 
modes of action by which the EDCs act [2–5, 7, 8].

More specifically, prenatal exposure to PCBs abolish the 
females’ preference for a stimulus male with testosterone 
replacement over a male without testosterone replacement, 
thereby replicating results from another study [16]. This 
outcome could translate into compromised reproductive 
success if a female were unable to discriminate between op-
timal and suboptimal males in more naturalistic conditions. 
Interestingly, VIN treatment had no effect in the females.

While males tend to be less choosy about mates, the 
process of mating still involves mutual interactions and co-
ordination between both members of the dyad. Females 
exhibit proceptive behaviors to solicit the sexual attention 
of males, and males are also able to discriminate the odor 
of urine from receptive females [30, 53–55]. In the cur-
rent study, and unlike in females, exposure of experimental 
males to both classes of EDCs (PCB or VIN) abolished the 
preference for the hormone-primed female over the female 
without hormone-replacement. The male rat brain de-
velops under the influence of relatively high concentrations 

of both androgens and estrogens [2–5], perhaps conferring 
greater sensitivity to disruption of these pathways by both 
VIN and PCBs, respectively.

Previous work on prenatal A1221 exposure shows dis-
rupted sex behavior in female rats, and decreased sexual 
motivation in male rats [11, 12]. Exposure to other PCBs 
also cause reduced sexual motivation and receptivity in fe-
males and altered sexual behavior in males [10, 13, 14, 56, 
57]. In male rabbits [58, 59] exposure to VIN during the 
prenatal period and during postnatal life (E14 to adult-
hood) results in a lack of sexual motivation and deficits 
in sexual performance (reduced erections and ejaculations). 
Our current finding adds to this literature on sex-specific 
effects of EDCs on sociosexual behaviors. As a whole, the 
perturbations by EDCs of conspecific interactions have im-
plications for social preference and sexual selection [60].

Prenatal EDCs altered the neuromolecular 
phenotype in the hypothalamus and amygdala

Prenatal EDCs affected the expression of a small number 
of genes in the VMN, POA, and MeA. It is notable that 
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the identified genes, kisspeptin (Kiss1), nonapeptides (Avp, 
Oxt), steroidogenic enzymes (Cyp19a1, Hsd17b1), and the 
glutamatergic NMDA receptor subunit 2b (Grin2b) have 
previously been shown to be disrupted by EDCs. These genes 
also play roles in social behaviors and are hormone-sensitive. 
For example, the hypothalamic kisspeptin system is highly 
responsive to the estrogenic milieu [61, 62], making it an ob-
vious target for estrogenic EDCs. Consistent with the current 
results, other studies have shown that PCBs and other EDCs 
affect kisspeptin protein and gene expression [63, 64]. Our 
finding that VIN affects Kiss1 in males is also consistent with 
this neuropeptide’s regulation by androgens [65].

Oxytocin gene expression was decreased in the MeA of 
PCB females; this was the same group of rats that showed 
deficits in the mate preference test. The MeA has been char-
acterized as an important target of oxytocin in mate and 
odor preference behaviors [66]; although it has relatively 
sparse oxytocin fibers, there is evidence for a role of oxy-
tocin expression in the amygdala in social behavior [67]. 
Oxytocin knockout mice have deficits in social recognition 
associated with reduced activity in the MeA and its projec-
tion targets [68]. By contrast, in the current study Oxt is 
increased by both PCBs and VIN in the female VMN and 
vasopressin by PCBs in the female VMN. Other labs have 
reported effects of EDCs on the nonapeptides vasopressin, 
oxytocin, and their receptors in several brain regions [69–
71], implicating these as targets for perinatal endocrine 
disruption.

Both PCB and VIN males had lower Cyp19a1 
(aromatase) expression in the VMN compared to DMSO 
control males. This region exhibits some of the highest 
levels of aromatase in the brains of rats along with the 
POA and the bed nucleus of the stria terminalis (BNST) 
[72]. In the hypothalamus, aromatase expression and ac-
tivity is sexually dimorphic, with males having denser 
expression and higher activity [72]. Prenatal exposure to 
a similar PCB, Aroclor 1254, reduces aromatase activity 
in the hypothalamus of neonatal male rats [73]. Prenatal 
exposure to another EDC, the phthalate di(2-ethylhexyl)-
phthalate (DEHP), also reduces Cyp19a1 expression in the 
hypothalamus of neonatal rats [73].

The N-methyl-D-aspartate (NMDA) glutamate re-
ceptor subunit 2b (Grin2b) is expressed widely throughout 
the rat hypothalamus [26], and its presence and abun-
dance affects functional properties of NMDA recep-
tors. In the POA, PCBs resulted in the overxpression of 
Grin2b in both sexes; VIN also increased Grin2b in the 
female POA. Hypothalamic Grin2b expression is sensi-
tive to circulating estradiol levels and naturally decreases 
during reproductive senescence [74]. The activation of 
GnRH neurons in the POA by glutamate is necessary for 

reproductive function, and administration of a specific 
antagonist of the NMDAR2b subunit alter GnRH and 
downstream luteinizing hormone (LH) release in rats [75]. 
Limited work also suggests that EDCs may change Grin2b 
expression [63, 76]. Our finding provides further support 
that glutamatergic neurotransmission may be altered by 
prenatal EDC exposure.

EDC treatment can dis-integrate and/or 
reconstitute the relationships of behavior and 
gene expression phenotypes

The concept of an “essential phenotype” of an individual 
was introduced in the context of transgenerational 
effects of EDCs as a functional readout of the com-
bination of underlying traits (genetic, hormonal, 
physiological, etc.) acquired from multiple measures 
[77]. This idea is equally applicable to the current study 
on prenatally exposed rats. Here, it is not each compo-
nent part of the phenotype that defines an individual, 
but, rather, it is the unique way that each part interacts 
with one another across the developmental trajectory. 
Our evaluation of the essential phenotype of exposed 
individuals in adulthood revealed that each treatment 
had specific effects on females as well as males. This 
was illustrated as the disorganization of traits nor-
mally correlated with one another in control animals; 
and the emergence of novel relationships in the EDC-
exposed animals, ie, the emergence of a novel essential 
phenotype in each sex, and specific to each EDC.

Previous work has demonstrated the emergence of un-
expected relationships caused by EDCs interacting with 
other factors within an animal’s life cycle or across gener-
ations. In a transgenerational model of EDCs, Crews et al 
reported a history of EDC exposure in a transgenerational 
model, together with stress in the F3 descendants’ own 
adolescence, elicited a new phenotype referred to as the 
“synchronicity” of the 2 insults [48, 78]. Similarly, Bell et al 
using a two-hit model showed that prenatal and postnatal 
(adolescent) PCB exposure led to outcomes on behavior, 
physiology, and gene expression that could not be predicted 
by either hit alone [15, 79]. Our dis-integration/reconstitu-
tion analysis in the current study adds to this body of work 
by providing a new way of ascertaining complex relation-
ships caused by EDCs.
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