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ABSTRACT Prophage-mediated horizontal gene transfer (HGT) plays a key role in
the evolution of bacteria, enabling access to new environmental niches, including
pathogenicity. Citrobacter rodentium is a host-adapted intestinal mouse pathogen
and important model organism for attaching and effacing (A/E) pathogens, including
the clinically significant enterohaemorrhagic and enteropathogenic Escherichia coli
(EHEC and EPEC, respectively). Even though C. rodentium contains 10 prophage
genomic regions, including an active temperate phage, �NP, little was known re-
garding the nature of C. rodentium prophages in the bacterium’s evolution to-
ward pathogenicity. In this study, our characterization of �NP led to the discov-
ery of a second, fully functional temperate phage, named �SM. We identify the
bacterial host receptor for both phages as lipopolysaccharide (LPS). �NP and
�SM are likely important mediators of HGT in C. rodentium. Bioinformatic analy-
sis of the 10 prophage regions reveals cargo genes encoding known virulence
factors, including several type III secretion system (T3SS) effectors. C. rodentium
prophages are conserved across a wide range of pathogenic enteric bacteria, in-
cluding EPEC and EHEC as well as pathogenic strains of Salmonella enterica, Shi-
gella boydii, and Klebsiella pneumoniae. Phylogenetic analysis of core enteric
backbone genes compared against prophage evolutionary models suggests that
these prophages represent an important, conserved family of horizontally ac-
quired enteric-bacterium-associated pathogenicity determinants. In addition to
highlighting the transformative role of bacteriophage-mediated HGT in C. roden-
tium’s evolution toward pathogenicity, these data suggest that the examination
of conserved families of prophages in other pathogenic bacteria and disease
outbreaks might provide deeper evolutionary and pathological insights other-
wise obscured by more classical analysis.

IMPORTANCE Bacteriophages are obligate intracellular parasites of bacteria. Some
bacteriophages can confer novel bacterial phenotypes, including pathogenicity,
through horizontal gene transfer (HGT). The pathogenic bacterium Citrobacter ro-
dentium infects mice using mechanisms similar to those employed by human
gastrointestinal pathogens, making it an important model organism. Here, we ex-
amined the 10 prophages of C. rodentium, investigating their roles in its evolu-
tion toward virulence. We characterized �NP and �SM, two endogenous active
temperate bacteriophages likely important for HGT. We showed that the 10 pro-
phages encode predicted virulence factors and are conserved within other intes-
tinal pathogens. Phylogenetic analysis suggested that they represent a conserved
family of horizontally acquired enteric-bacterium-associated pathogenic determi-
nants. Consequently, similar analysis of prophage elements in other pathogens
might further understanding of their evolution and pathology.
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The nonmotile, Gram-negative, enteric bacterium Citrobacter rodentium is a natural
host-adapted intestinal mouse pathogen, the causative agent of transmissible

murine colonic hyperplasia, and an important model organism for the study of enteric
pathogens of the attaching and effacing (A/E) family (1). C. rodentium was first isolated
in 1972 from an outbreak of diarrhea in Swiss-Webster mice and then “rediscovered” by
Schauer and Falkow in 1993 (2). It was originally classified as Citrobacter freundii biotype
4280 (ATCC 51459). There are two primary reference strains: DBS100 and ICC168 (2, 3).
C. rodentium is a member of the A/E family of gastrointestinal pathogens. A/E members
are characterized by the colonization of intestinal mucosa followed by the formation of
so-called A/E lesions within the intestinal epithelium. These lesions are typified by the
effacement of brush border microvilli and the formation of pedestal-like structures
underneath the adherent bacterium. Lesion formation and epithelial distension are
facilitated by a type III secretion system (T3SS) which injects effectors into infected
epithelial cells, thereby reprogramming cell signaling, reorganizing cytoskeletal struc-
tures, and subverting native immune responses (4, 5).

The human enteric pathogens enteropathogenic Escherichia coli (EPEC) and entero-
haemorrhagic E. coli (EHEC) are also members of the A/E family. EPEC is a major cause
of infantile diarrhea, a leading source of high morbidity and mortality rates in devel-
oping countries (6). EHEC strains, notably serovar O157:H7, express the highly potent
Shiga toxin (Stx), a causative agent of kidney failure, and are prevalent worldwide (7).
Despite their clinical relevance, EPEC and EHEC have been difficult to study primarily
due to their inability to infect mouse models. Importantly, it has been shown that EPEC
and EHEC share a large portion of their genomes as well as their characterized
proteomes with C. rodentium, including the locus of enterocyte effacement (LEE)
pathogenicity island, which encodes several effector proteins and the T3SS required for
A/E virulence (8, 9). Consequently, C. rodentium has become the standard for modeling
human intestinal disease and A/E member pathogens such as EPEC and EHEC (10, 11).

The whole-genome sequencing of C. rodentium ICC168, the most widely studied
reference strain, revealed that the bacterium’s genome is unstable as a result of
repeat-mediated, large-scale genomic recombination due to the active transposition of
mobile genetic elements such as prophages and that the bacterium probably repre-
sents a recently evolved pathogen of mice, possibly having emerged concurrently with
the use of mouse models for human enteric diseases (12). In addition, the study of Petty
et al. first identified a novel, active temperate bacteriophage, �NP, spontaneously
released by C. rodentium (12).

With an estimated global 1031 phage particles, bacteriophages are thought to be
the most abundant biological entities on Earth and are important drivers of bacterial
evolution (13). The injected genomic DNA (gDNA) of some temperate phages can
integrate into a specific locus of the host chromosome. This incorporated phage gDNA
(termed a prophage) can then propagate through bacterial replication into populations
of lysogen daughter cells until environmental cues stimulate excision and replication of
the prophage element, directing the phages into the lytic cycle (14, 15). Prophage
regions often act as mobile elements, and so the acquisition, alteration, and exchange
of prophage-encoded traits through lysogeny represents a major source of horizontally
mediated genomic flux within microbial populations. This mode of horizontal gene
transfer (HGT) is often the primary step in the evolution of a bacterial species toward
a pathogenic lifestyle, with several notable pathogens possessing key virulence traits
encoded within prophage elements (16–18). In some instances, strains of EHEC have
been shown to rely entirely on prophage induction to initiate host infection and renal
disease (19). Genomic integration of foreign prophage elements can also impact the
expression of native coding regions, altering phenotype and adaptively driving bacteria
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toward niches previously inaccessible or unfavorable (20, 21). Prophages can also serve
as loci allowing incorporation and genetic exchange of so-called “fitness factors” (21).
Fitness factors can enhance bacterial adaptation to environmental burdens, thereby
allowing access to novel niches without necessarily contributing directly to pathogen-
esis. However, while prophages are known to be important for virulence phenotypes in
other bacteria, they have not been studied in detail in C. rodentium.

C. rodentium genetics and mechanisms of LEE-facilitated host infection and inter-
action are well characterized (1). A recent study examined the spatiotemporal relation-
ship of C. rodentium infection and the host microbiome, demonstrating a reliance on
commensal gut microbiota for successful colonization of colonic mucosa (22). However,
there is a paucity of information on the nature and importance of C. rodentium
prophage-associated non-LEE virulence traits and genetic exchange in relation to host
infection and the microbiome of the murine gut. Here, we present a detailed investi-
gation of the prophages of C. rodentium ICC168, examining their biology and possible
impact on the evolution of this A/E model organism toward pathogenicity. In addition
to further examining the biology of �NP, we isolated and characterized a second,
spontaneously released, functional temperate phage, �SM. We examined both �NP
and �SM lysogen fitness and found evidence for nondeleterious prophage chromo-
somal integration and widely conserved prophage insertion site sequences across
bacteria for both phages. We also identified the �NP and �SM bacterial surface
receptors as lipopolysaccharide (LPS) residues, GlcII and GlcIII, respectively, common
extracellular surface components in Gram-negative bacteria. We suggest that these
temperate phages are likely key facilitators of HGT within C. rodentium and the enteric
environment. We also provide evidence for functional gene loss and cargo gene
acquisition, including several T3SS effectors, due to prophage integration possibly
associated with C. rodentium’s virulence. Furthermore, we demonstrate the conserva-
tion of similar prophage regions in other known enteric pathogens and show that these
conserved prophage loci are horizontally acquired, candidate virulence effector-
containing elements and, conversely, not components of an ancestral enteric pathogen
backbone. These observations provide new avenues for investigation of the non-LEE-
associated pathogenesis determinants of C. rodentium and suggest that similar, sys-
tematic examination of prophage elements in other pathogenic bacteria, including
strains associated with human disease outbreaks, might provide deeper evolutionary
and pathological insights otherwise obscured by more classical backbone or 16S rRNA
analysis.

RESULTS
Citrobacter rodentium spontaneously releases two temperate bacteriophages.

The genomes of C. rodentium ICC168 and DBS100 both contain 10 prophage regions,
with 5 intact regions and 5 remnants of various degrees: �NP (44,907 bp), CRP28
(40,425 bp), CRP38 (36,759 bp), CRP49 (40,460 bp), CRP99 (37,185 bp), CRPr11 (7,975
bp), lambdoid remnant CRPr13 (10,555 bp), lambdoid remnant CRPr17 (6,476 bp),
CRPr20 (19,000 bp), and CRPr33 (3,912 bp) (see Data Set S1 in the supplemental
material). Despite evidence of induction and excision of CRP28, CRP38, CRP48, and
CRP99 under standard LB growth conditions, only �NP had been previously reported
to spontaneously generate viable temperate phage particles (12). That initial study
characterized �NP as a member of the Myoviridae, identified its integration site as a
25-bp region corresponding to the 3= terminal region of the tmRNA-encoding ssrA
gene, and noted that the host range of �NP includes derivatives of Escherichia coli K-12,
from which �NP lysogens could be isolated. This temperate phage may play a role in
the natural genomic flux of C. rodentium and has potential for use in host strain
engineering through synthetic biology methods. Consequently, we first reexamined
the host range of �NP.

To investigate �NP host range, we titrated single plaque-purified �NP E. coli K-12
strain ER2507 lysates on a variety of Gammaproteobacteria, including six derivatives of
E. coli K-12 representing commonly utilized laboratory strains (BW25113 and DH5�),
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well-studied wild-type (WT) strains (MG1655 and W3110), and strains shown to be
highly permissive for phage �NP replication in earlier studies (ER2507 and LE392) (12)
as well as on several strains of Serratia marcescens, Serratia sp. strain ATTC 39006,
Salmonella enterica serovar Typhimurium 5383, Pantoea agglomerans 10Bp14, Citrobac-
ter freundii Ballerup 7851, Pseudomonas aeruginosa PAO1, Kluyvera cryocrescens 2Kr27,
Dickeya solani MK10, Yersinia enterocolitica, Pectobacterium atrosepticum SCRI-1043, and
Photorhabdus luminescens subsp. laumondii TT01. Visible plaques formed only on K-12
derivatives ER2507, MG1655, W3110, and LE392. In contrast to the previous report (12),
�NP did not form plaques on DH5�. To verify these observations and to exclude the
possibility that restriction-modification was preventing infection, we conducted a
two-round efficiency of plating (EOP) assay utilizing four derivatives of K-12 with
chloroform-treated supernatant of an overnight C. rodentium culture instead of phages
isolated from K-12 isolates (Fig. 1). The presence of restriction-modification would be
marked by an increase of apparent titer when phages isolated from an initial host
screen was used to reinfect the same host strain. In addition, decreases in apparent
titers might be observed when other non-phage-derived K-12 host strains were in-
fected.

Interestingly, we observed that plaques could form across all the E. coli strains
tested, including DH5�, albeit at far lower efficiency (with an initial apparent titer of
�103 PFU/ml) (Fig. 1A). Despite intact restriction-modification, the E. coli K-12 strain
MG1655 displayed a 1,000-fold greater susceptibility to plaque formation than DH5�.
Phages from each K-12 strain were single-plaque purified and retested on each of the
four strains (Fig. 1B to E). Phages that were isolated from ER2507, LE392, and MG1655
did not form plaques on DH5� (Fig. 1B, D, and E). Conversely, phages isolated from
DH5� agar top lawns (Fig. 1C) were capable of forming plaques on all four K-12 strains.
Moreover, the apparent reduction in titer first seen from titrating C. rodentium super-
natant on DH5� was recovered (Fig. 1C), while EOPs of phages purified from ER207,
LE392, and MG1655 were largely consistent with initial-round efficiencies (Fig. 1B, D,
and E). Only phages isolated from MG1655 demonstrated a possible restriction-
modification effect due to a decreased apparent viral titer of MG1655 harboring �NP
[MG1655(�NP)] in ER2507 and LE392 hosts (Fig. 1C, �NP*MG1655). These results
suggested that the inability of phages isolated from ER2507, LE392, or MG1655 to
form plaques on DH5� was not a result of strain-specific mutations or restriction-
modification but, more likely, indicated the presence of a second fully functional phage
spontaneously released at a low titer into the supernatant by C. rodentium.

To test this hypothesis, we first analyzed high-titer phage lysates isolated from
single plaques formed by titrating the C. rodentium supernatant on ER2507 and DH5�

using phage genomic fingerprinting (Fig. 1F). Digestion with BamHI revealed two
unique cut patterns for phage gDNA extracted from ER2507 lysates with respect to
those extracted from DH5�. Virtual fingerprint gels were constructed for each of the
intact and (because of its substantially intact nature) CRPr20 C. rodentium prophage
regions to compare digestion patterns (Fig. 1G and Fig. S1). The fingerprint gDNA
isolated from phage lysates propagated on ER2507 corresponded to the predicted
digestion pattern of �NP. In contrast, the fingerprint of phage isolated from DH5�

lysates corresponded to the predicted digestion pattern of prophage CRP38. To verify
this identity, primers SM.P67 and SM.P69, corresponding to the 15,000- and 17,250-bp
regions of CRP38, were used to amplify both the extracted phage gDNA as well as
chromosomal DNA extracted from putative DH5� CRP38 lysogens. These PCR products
were sequenced and confirmed to be amplified fragments of CRP38. This further
showed that the second phage released by C. rodentium was the product of prophage
region CRP38. This newly identified, fully functional temperate phage was named �SM.

Using transmission electron microscopy (TEM), we examined the morphology of
�SM (Fig. 2A). �SM virions had long, noncontractile tails even when in a bound state
(Fig. 2B) and isometric heads, placing them within the order Caudovirales and family
Siphoviridae, the same classification as the well-characterized phage � (23). TEM of �NP
lysates revealed the characteristic short, contractile tail associated with order Caudo-
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virales and family Myoviridae members (Fig. 2C), such as the well-studied phage T4 (24).
Following reannotation, the genetic organizations of both �NP and �SM were shown
to exhibit functional modularity (Fig. 2D), common among bacteriophages (25).

While capable of forming plaques across the K-12 strains examined in this study,
�SM was present in the supernatant of overnight cultures of C. rodentium at a

FIG 1 EOP assays of C. rodentium lysate reveal the presence of two temperate phages. (A) C. rodentium chloroform-treated supernatant from spun-down
overnight cultures was titrated on soft-agar top lawns containing one of four E. coli K-12 strains, ER2507, DH5�, LE392, or MG1655, grown overnight at 37°C,
and the number of PFU/milliliter was determined. Note the low apparent titer in tests conducted with DH5�. (****, P � 0.001, as determined by an unpaired
t test). (B to E) Viral isolates were then single-plaque purified from the top lawns of each strain, increased to high titer, titrated back across the four K-12 variants,
and grown overnight at 37°C, and the number of PFU/milliliter was determined. Phage collected from C. rodentium lysate-treated ER2507), LE392, and MG1655
strains were shown incapable of infecting DH5� (ND, not determinable). Conversely, phage isolated from DH5� top lawns was shown capable of infecting all
four K-12 strains. (F) Genomic fingerprinting via restriction digestion with BamHI of phage gDNA extracted from ER2507 and DH5� phage isolates revealed two
unique cut patterns. The ER2507 phage lysate cut pattern was consistent with that of �NP. The DH5� phage lysate cut pattern was consistent with that of CRP38
(later named �SM). (G) In silico genomic fingerprint following virtual BamHI digestion of prophages �NP and CRP38 (later named �SM). In silico genomic
fingerprints of the other prophage regions can be found in Fig. S1 in the supplemental material. Displayed are means from triplicate EOP assays with error bars
denoting standard deviations. In panels B to E, �NP/�SM*strain indicates the top lawn from which each viral stock was isolated. Gels were run using an NEB
1-kb ladder, HindIII-digested � ladder, and digested/undigested pBAD30. The in silico gel was constructed using Geneious R11.
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significantly lower titer than �NP (�103 PFU/ml for �SM and �106 to 108 PFU/ml for
�NP). Consequently, isolation of pure �SM from plaques generated on strains other
than DH5� or its morphological characterization via TEM using the supernatant of C.
rodentium proved difficult. Moreover, �SM was found to produce small, turbid, pin-
point plaques, indistinguishable from those produced by �NP (Fig. S2). These obser-
vations explained the initial oversight of the presence of �SM in earlier studies.

Cultures made from colonies of putative lysogens, picked and purified from turbid
spots on DH5� agar top lawns, spontaneously released phages into their supernatant
and were immune to �SM superinfection in top agar spot tests, confirming �SM as a
temperate phage. Strains lysogenic for �SM were isolated from E. coli K-12 strains
BW25113, W3110, MG1655, LE392, DH5�, and ER2507. �NP and �SM proved to be
heteroimmune, with �NP capable of infecting and lysogenizing �SM lysogens and vice
versa. This allowed the construction of both single and dual �NP and �SM lysogens.
DH5� strains lysogenic for �NP [DH5�(�NP)] could not be constructed by these
standard methods. Interestingly, adsorption assays of free �NP and �SM using E. coli
K-12 strains ER2507 and DH5� showed similar kinetics (Fig. 3A), suggesting that the
inability of �NP to form plaques on DH5� may involve postinfection mechanisms such
as issues with prophage induction or replication.

�NP and �SM were also differentiated by hydroxylamine sensitivity, with faster
inactivation kinetics seen with �SM, consistent with its smaller (�10 kbp) genome size

FIG 2 C. rodentium spontaneously releases two temperate phages, �NP and �SM. (A) TEM of the newly discovered �SM stained with uranyl acetate. Note the
long noncontractile tail, characteristic of phage of the family Siphoviridae. (B) Grouping of �SM virions around a likely membrane element fragment; note the
noncontracted tails even when virions are in the bound state. (C) TEM of the previously identified �NP stained with phosphotungstic acid. Note the short
contracted tail characteristic of phage of the family Myoviridae. All �NP virions examined were seen in this contracted state. (D) Genetic organization of
reannotated �NP and �SM showing GC content (window size, 100 bp). The clustering of coding domains with shared functionalities (structural, regulatory, etc.)
allows more precise transcriptional control, and the swapping of such domains with other phage allows versatility and evolutionary advantage.
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(Fig. 3B). Both phages were capable of generating viable phage particles via gDNA
transfection of chemically competent E. coli K-12 ER2507 cells (Fig. 3C). Last, the
structural proteome of each phage was visualized by SDS-PAGE following polyethylene
glycol (PEG) 8000 and CsCl gradient purification, with bands corresponding to the sizes
of predicted structural proteins, some of which were verified by matrix-assisted laser
desorption ionization (MALDI) fingerprinting (Fig. S3).

�NP and �SM chromosomal integration is nondeleterious in E. coli K-12 hosts.
In addition to enabling horizontal genetic transfer, phages can also regulate bacterial
populations through lytic action on prey species and fitness effects on lysogenized
hosts (26, 27). Given C. rodentium’s adaptation to the murine intestine and the
expected spontaneous release of two different temperate phages into the local gut

FIG 3 Characterization of �NP and �SM. (A) Representative graph showing the mean results from
triplicate adsorption assays of �NP and �SM over 30 min onto E. coli K-12 strains DH5� and ER2507 with
error bars denoting standard deviations. The y axis shows the amount of phage left unabsorbed as a
percentage of phage at time zero. Despite �NP’s inability to form plaques onto DH5�, adsorption
kinetics analogous to those of �SM suggest that plaque formation is prevented postinfection. (B) Killing
curve constructed from titration of phage particles exposed to hydroxylamine (or phage buffer control)
on ER2507 over time. The number of PFU/milliliter was normalized to that at time zero to determine the
percent surviving phage for each sample. Note the higher rate of inactivation of �SM. (C) Graph showing
the mean of triplicate experiments of transfection efficiency of gDNA isolated from �SM, �NP, and �vir.
No plaque-forming virions were isolated from �SM and �NP samples until 120 min.
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microbiome, we were interested in assessing the effect of prophage integration on
the fitness of lysogen and potential prey species, using E. coli as an appropriate host
candidate.

Growth of E. coli lysogens ER2507(�NP), ER2507(�SM), and ER2507 harboring both
�NP and �SM [ER2507(�NP��SM)] at 37°C in LB medium was recorded over 360 min
with culture samples taken throughout growth for quantification of phage release (Fig.
4A). Growth of single and dual lysogens demonstrated an initial lag but demonstrated
similar growth kinetics to the nonlysogenic ER2507 WT control. Phage release and
accumulation were directly proportional to culture density, with phage titer leveling off
in late exponential and early stationary phases. This suggested a phage-host equilib-
rium in which the spontaneous lysis of lysogenic cells reached a steady state with cell
density and replication as seen in phage � models (28). Next, growth of MG1655(�NP)
and MG1655(�SM) was recorded at 37°C in M9 minimal medium (0.4% glucose) over
15 h (Fig. 4B). Growth of lysogens was similar to that of the MG1655 WT control. Taken
together, these data suggested that �NP and �SM prophage integration and sponta-
neous induction had no discernible deleterious impacts in E. coli K-12 hosts under these
growth conditions.

The phage attachment site (attP) of �NP DNA is a 25-bp (5=-TGGTGGAGCTGGCGG
GAGTTGAACC-3=) sequence corresponding to the chromosomal insertion site (attB)
comprising the 3= terminal region of the ssrA gene in E. coli K-12 (Fig. 4C) (12). The ssrA
gene encodes a transfer mRNA (tmRNA); this class of molecule can act as an interme-
diary between transfer RNAs (tRNA) and messenger RNAs (mRNA), serving to release
stalled ribosomes from the end of defective mRNA with no stop codon (29). Integration
of �NP DNA generates a repeat that reconstitutes an intact ssrA gene (Fig. 4D) (12).
Using random-primed PCR (RP-PCR) and Sanger sequencing, we revalidated the inte-
gration site. Sequencing confirmed the same ssrA chromosomal insertion site across
several lysogens, affirming prior results and demonstrating site conservation across
multiple K-12 derivative strains.

Using similar methods, we found the attP site of �SM to be a 17-bp sequence
(5=-ATCCTTGTTGATGAAAA-3=), corresponding to an attB 6 bp within the 5= terminal
start of the pdxB gene in E. coli K-12 (Fig. 4E). The gene pdxB encodes erythronate-4-
phosphate dehydrogenase, the second catalyzing enzyme in the subpathway of pyri-
doxal 5=-phosphate (PLP) biosynthesis, which is itself part of cofactor vitamin B6

biosynthesis (30). E. coli contains at least 60 enzymes which utilize PLP, and E. coli
mutants lacking PdxB are auxotrophic: they are unable to grow on M9 minimal medium
with glucose as a sole carbon source (31). The insertion of the �SM phage DNA in E.
coli K-12 truncates the pdxB coding region, generating a loss of the ATG (methionine)
start codon and the AAA (lysine) codon and separation of the remaining reading frame
from native regulatory elements upstream. No pdxB homologue is found within the
�SM genome. However, further bioinformatic interrogation revealed a possible in-
frame TTG (methionine/leucine) rare start codon located within the inserted prophage
element 41 bp upstream of the truncated pdxB gene. From this TTG site, a near-
consensus Shine-Dalgarno sequence (32) (5=-AAGGAG-3=) was found at the bp �7
position. In addition, utilizing a database of known phage-regulatory genomic regions,
phiSITE (33), a near-consensus Pribnow box (or �10 box) (5=-TAAAGG-3=) was found at
the bp �10 position with a second near-consensus promoter sequence (5=-TTGCAA-3=)
located at the bp �31 position (Fig. 4E) (34). Despite the apparent truncation generated
by the �SM prophage insertion, MG1655(�SM) strains were able to grow on minimal
medium (Fig. 4B). This suggested that the �SM prophage insertion into the 5= end of
pdxB caused no functional loss of the cognate product.

Further analysis revealed that the 25-bp ssrA and 17-bp pdxB (or traF in C. rodentium;
see below) integration sites and corresponding coding regions are widely conserved
across bacteria (showing 8,349 unique matches for the �NP integration site and 3,668
unique matches for the �SM integration site with 100% base pair identity). Most
sequence conservation for both �NP and �SM was found in species of the Enterobac-
teriaceae (including species of E. coli, Salmonella, Shigella, Klebsiella, and Citrobacter);
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unique taxon matches were also identified for each phage, such as bacteria of Vibri-
onaceae and Pasteurellaceae for �NP and of Terrabacteria and Bacteroidetes for �SM. In
conjunction with nondeleterious phage infection and prophage integration maintain-
ing host fitness, widespread conservation of integration sites (allowing access to a

FIG 4 Integration of �NP and �SM is nondeleterious in K-12 hosts. (A) Growth of E. coli K-12 ER2507 WT and lysogen variants ER2507(�NP), ER2507(�SM), and
ER2507(�NP��SM) in LB at 37°C in a shaking water bath. Samples (200 �l) were taken at growth curve time points, chloroform treated, and titrated to
determine phage release. In each case, the number of PFU/milliliter was found to increase proportionately with the OD600, with phage release showing no
appreciable alteration to growth kinetics in the case of both single- and dual-lysogen species. For growth, the value shown is the mean from triplicate assays
(standard deviations of �0.1). For phage release, the values shown are means from triplicate assays with error bars denoting standard deviations. Phage release for
WT E. coli K-12 ER2507 was consistently undetectable (�0 PFU/ml [data not shown]). Phage release of all other samples at time zero was also undetectable (�0 PFU/ml
[data not shown]). (B) Growth of E. coli K-12 MG1655 WT, ER2507 WT, MG1655(�NP), and MG1655(�SM) in M9 minimal liquid medium (with 0.4% glucose); values
shown are the means from triplicate assays (standard deviations of �0.1). Phage integration proved nondeleterious to lysogen growth. (C) Schematic of prophage,
recombination with, integration into, and excision from the bacterial host chromosome. (D) Genomic organization of �NP integration within MG1655 from the attL
view. Prophage integration produces a duplication event of the 25-bp region corresponding to the 3= terminal end of the ssrA tmRNA. (E) Genomic organization of
�SM integration within MG1655 from the attR view. The 17-bp integration site corresponds to a region 6 bp within the 5= terminal start of the pdxB gene. While
insertion truncates this gene, a predicted, nearly constitutive Shine-Dalgarno sequence, Pribnow box (�10 box), and �35 box are directly upstream of a �SM-encoded
TTG possible initiation codon, which reads into the native pdxB coding frame. Prophage DNA is denoted in red, host chromosomal DNA in blue, coding regions are
shown in green, repeat regions are in orange, predicted RBS is shown in brown, and predicted regulatory units are shown in purple.
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broader range of potential hosts) suggests that these phages evolved in such a way as
to better facilitate HGT within the enteric environment.

The receptor of �NP and �SM is LPS. Bacteriophage host recognition and
binding (adsorption) to a receptor are the first stage of phage infection and the primary
limiting factor of phage propagation and host range. Receptors exploited by phages
can be any component of the bacterial surface ranging from residues of the lipopoly-
saccharide (LPS) in Gram-negative bacteria (one of the most common receptors) to
flagella, pili, or surface membrane proteins (35, 36). Some phages use a dual-receptor
model of adsorption, such as phage T4 which requires both specific LPS residues as well
as the outer membrane protein, OmpC, to infect (37, 38).

To provide insight into potential microbiome interactions and host range specific-
ities, we examined the C. rodentium �NP and �SM host receptors. We constructed a
library of randomly inserted transposon mutants of E. coli K-12 and screened them
against �NP and �SM. Mutants displaying elevated resistance to infection were
screened further, and the corresponding transposon insertion sites were identified. For
both phages, sequencing revealed numerous mutants with transposon insertions in
genes responsible for the enzymatic steps of core lipopolysaccharide (LPS) biosynthesis.
E. coli LPS consists of three regions: (i) lipid A, the hydrophobic membrane anchor, (ii)
a short core oligosaccharide (core OS, comprised of an inner and outer region), and (iii)
a polymer of glycosyl units known as O polysaccharide (O-PS). E. coli K-12 lacks an O-PS
(also called an O antigen), and the core OS is the outermost layer (39, 40). Each gene
of the biosynthetic cluster is proposed to catalyze a specific glycosylation step of LPS
core biosynthesis (Fig. S4).

To determine receptor specificity, we employed single in-frame LPS gene knockout
mutants to assess EOP against both phages (Table 1) (38, 41). For both �NP and �SM,
we noted highly resistant mutants. For both phages, the galactose (Gal) side-chain-
deficient JW3603-2 (ΔwaaB::kan) mutants showed no discernible resistance. For �NP,
all other knockouts, except JW3601-3 (ΔwaaR::kan), demonstrated total resistance (with
EOPs of �10�10 PFU/ml). This suggested that glucose II (GlcII), the addition of which
is catalyzed by the product of waaO, is an essential LPS residue for �NP infection.
Interestingly, JW3601-3 (ΔwaaR::kan) mutants demonstrated total resistance to �SM, as
did all other LPS mutants (except the TY0703 ΔwaaO-waaB::cm strains). This suggested
that �SM, like �NP, relies on LPS for infection but utilizes a different set of residues,
namely, GlcIII or GlcI (with no Gal side chain) for infection.

Next, we conducted soft-agar top lawn spot and adsorption assays with comple-
mented waaO in JW3602-1 for �NP and waaR in JW3601-3 for �SM (Fig. 5). Comple-
mentation of waaO in JW3602-1 restored �NP phage sensitivity, as determined by
plaque formation (Fig. 5A to C). Similarly, rescue of waaR in JW3601-3 restored �SM
phage sensitivity (Fig. 5E to G). LPS mutant strains exhibited little to no phage
adsorption in both cases, with sugar transferase complementation restoring phage
binding and kinetics to levels similar to those of the BW25113 WT (Fig. 5D and H). These
data confirmed that �NP and �SM utilize residue-specific LPS components for adsorp-
tion and infection, with �NP utilizing the GlcII residue and �SM utilizing the GlcIII
residue. Interestingly, the alignments of the translated open reading frames (ORFs)

TABLE 1 EOP of �NP and �SM on LPS mutant strainsa

Strain �NP (PFU/ml) �SM (PFU/ml)

BW25113 WT 1.0 � 0.1 1.0 � 0.14
JW3601-3 (�waaR::kan) 1.1 � 0.3 �10�10

JW3602-1 (�waaO::kan) �10�10 �10�10

JW3603-2 (�waaB::kan) 0.95 � 0.23 0.88 � 0.12
TY0703 (�waaO-waaB::cm) �10�10 1.38 � 0.28
JW3606-1 (�waaG::kan) �10�10 �10�10

TY0707 (�waaF::cm) �10�10 �10�10

TY0708 (�waaC::cm) �10�10 �10�10

aShown are the means from triplicate EOP assays with standard deviations.
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FIG 5 The extracellular receptors of �NP and �SM are LPS residues. (A to C) �NP spot tests with serially diluted phage
(initial titer of �109 PFU/ml) on strains BW25113 WT (A), JW3602-1 (ΔwaaO::kan) (B), and complemented waaO in pBAD33
(C) on 0.1% arabinose-containing soft agar LB top lawn plates. Rescue of waaO restored phage sensitivity and plaque
formation. (D) Representative graph showing the mean results of triplicate adsorption assays of �NP over 30 min on E. coli
K-12 strains BW25113 WT, JW3602-1 (ΔwaaO::kan), JW3602-1 (ΔwaaO::kan) containing an empty arabinose-inducible
plasmid, pBAD33, and a complemented JW3602-1 (ΔwaaO::kan) strain containing pBAD33(waaO), with error bars denoting
standard deviations. The left axis shows the amount of phage left unabsorbed as a percentage of the amount of phage
at time zero. All samples were under 0.1% arabinose induction. Complementation of waaO restored phage binding. (E to
G) �SM spot tests with serially diluted phage (initial titer of �109 PFU/ml) on strains BW25113 WT (E), JW3601-3
(ΔwaaR::kan) (F), and complemented waaR in pBAD33 (G) on 0.1% arabinose-containing soft agar LB top lawn plates.
Rescue of waaR restored phage sensitivity and plaque formation. (H) Representative graph showing the mean results of
triplicate adsorption assays of �SM over 50 min on E. coli K-12 strains BW25113 WT, JW3601-3 (ΔwaaR::kan), JW3601-3
(ΔwaaR::kan) containing an empty arabinose inducible plasmid pBAD33, and a complemented JW3601-3 (ΔwaaR::kan)
containing pBAD33(waaR), with error bars denoting standard deviations. The x axis shows the amount of phage left
unabsorbed as a percentage of the amount of phage at time zero. All samples were under 0.1% arabinose induction.

(Continued on next page)
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performed by tblastx of the genomes of �NP and �SM revealed little homology,
suggesting convergent evolution toward LPS binding specificity (Fig. 5I).

In addition, tests were conducted on in-frame knockout mutants defective for other
common phage receptors (ΔfhuA::kan, Δtsx::kan, ΔompF::kan, ΔompA::kan, ΔompW::kan,
ΔuidC::kan, ΔfadL::kan, ΔyicC::kan, ΔlamB::kan, and ΔompC::kan strains) with no drop in
EOP observed. �NP and �SM were also tested against dual ΔompC::kan-LPS::cm
knockout mutants, showing no deviation of results gathered from single-LPS knockouts
(EOPs consistent with those shown in Table 1).

�SM and reservoir CRPr20: a possible means of overcoming functional gene
loss. Previous studies identified functional accessory and core gene loss due to 5 of 10
prophage integrations within the C. rodentium chromosome possibly responsible for
evolution toward its pathogenic niche (12, 42). CRPr20 and CRP28 were identified as
inserted within the Flag-1 and -2 flagellar biosynthetic gene clusters, respectively,
suggesting a direct relationship between prophage integration and C. rodentium’s loss
of motility. CRP49 was noted to have inserted into gatD (encoding galactitol-1-
phosphate dehydrogenase), which is essential for the metabolism of galactitol, and C.
rodentium was unable to grow with this as a sole carbon source (12, 43).

While the function of the gene disrupted by CRP99 insertion remained unclear, our
bioinformatic reassessment of the C. rodentium chromosome suggested a potential
function for the previously hypothetical coding domain perturbed by �SM prophage
integration (Fig. 6A). Unlike the case in E. coli K-12 but utilizing an identical attB
sequence, in C. rodentium �SM integrates into the middle of a gene encoding a
421-amino-acid (aa) putative conjugal transfer protein with a conserved traF domain
(pfam13729, demonstrating 95% identity to the conjugal transfer proteins of other
species of Citrobacter and 85% amino acid identity to that of Salmonella enterica). TraF
is a protein involved in the F-plasmid-specific type IV secretion system (T4SS) and is
required for pilus assembly (44). The immediate upstream and downstream genomic
regions surrounding traF as far as 100 kbp in each direction contain various metabolic
and regulatory coding regions with no apparent coding regions associated with mobile
genetic elements, F-specific conjugative factors, or integrative conjugative elements. It
is unclear if this integration interferes with the capacity for F-specific plasmid conjugal
transfer in C. rodentium as T4SS conjugation families can utilize elements from other
conjugative pathways (45). However, any potential perturbation of mechanisms related
to genetic transfer might help explain the conservation of 10 prophage regions, at least
2 of which, �NP and �SM, could functionally facilitate HGT.

Genomic alignment of the C. rodentium prophage regions to each other revealed
�SM and CRPr20 to contain a high degree of sequence similarity, with 80% of CRPr20
sharing 99% nucleotide sequence identity with the 5= and 3= ends of �SM (with the
other 20% of CRPr20 representing novel open reading frames predominantly found in
the third quarter of the CRPr20 genome) (Fig. 6B). This suggested that CRPr20 might be
the result of a partial �SM translocation or integration event back into the genome of
C. rodentium. Notably, the deletion around the center of CRPr20 was found to occur at
the juncture of ORF12 (corresponding to ORF12 in �SM), a predicted DNA invertase,
and ORF13 (corresponding to ORF37 in �SM), a predicted recombinase (Data Set S1).
The high level of relatedness between the two prophage regions suggests that genetic
recombination could occur within the host genome. In this way, the defective CRPr20
might act as a genetic reservoir of �SM-facilitated horizontal acquisitions, providing an
alternate storage repository for foreign coding domains within the C. rodentium chro-

FIG 5 Legend (Continued)
Complementation of waaR restored phage binding. (I) Whole alignment of reannotated �NP and �SM translated open
reading frames conducted by tblastx. Little protein level homology is seen between the translated open reading frames
(ORFs) of each phage. ORFs predicted to encode structural proteins are annotated. Lack of consensus ORFs suggests that
�NP and �SM evolved convergently to utilize LPS as bacterial receptors. DNA is represented by black bars with coding
regions as arrows. Similarity is indicated by a color scale for high (red) and low (blue) rates of translated amino acid
matches.
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mosome. Such a mechanism has been described with the temperate phage �, with
relaxed homologous recombination occurring with defective prophage regions in E.
coli that confer new accessory genes from/to each region (46). Similarly, in C. rodentium,
this might allow for the maintenance of an important vector of horizontal genetic
exchange while simultaneously facilitating the continued chromosomal incorporation
of new genetic material.

Reannotation of the C. rodentium prophage regions reveals cargo genes likely
associated with evolution toward pathogenicity. Our reannotation of the 10 C.
rodentium prophages revealed the predicted function of 66 previously uncharacterized,

FIG 6 Prophage insertion sites in C. rodentium ICC168. (A) Genomic organization of the C. rodentium ICC168
prophages (red) and corresponding insertion sites (yellow). Note the integration of CRPr20 and CRP28 into the
Flag-1 and -2 flagellar biosynthesis gene clusters, respectively, of the nonmotile C. rodentium genome. Remnant
prophages CRPr11, CRPr13, CRPr17, and CRPr30 are not depicted due to insertion in noncoding regions. (B)
Whole-genome alignment by blastn of CRPr20 and �SM. The high degree of sequence similarity suggests the
potential for recombination between the active �SM and reservoir CRPr20. (C) Whole-genome alignment by
blastn of P88 and �SM. Both represent active temperate phages isolated in enteric pathogens E. coli K88 and
C. rodentium, respectively. DNA is represented by black bars with coding regions shown as arrows. Similarity
was determined by blastn, with high (red) and low (blue) degrees of sequence match indicated by a color
scale. Bar, 5 kbp.
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hypothetical coding domains (Data Set S1, highlighted in green). While half of the
annotated coding regions corresponded to protein products implicated in phage
replication, assembly, or lysis, 32 genes encoded products of predicted function directly
implicated in either known A/E virulence pathways or potential fitness-conferring
capacities (Table 2). We identified a number of fitness factors, including such putative
metabolic and housekeeping proteins as an oxidoreductase, a sulfate transporter, a

TABLE 2 Prophage cargo genes associated with pathogenic evolution

Prophage and gene Predicted protein functiona

Predicted
propertyb

�NP
ORF1 DNA damage-inducible DinI-like protein Fitness
ORF4 Serine acetyltransferase Fitness
ORF24 Serine peptidase Fitness
ORF28 DNA-directed RNA polymerase subunit �70 Fitness
ORF43 GntR family transcriptional regulator Fitness
ORF48 Putative lipoprotein Virulence
ORF56 ATPase Fitness
ORF59 ATPase Fitness

�SM (formerly CRP38)
ORF1 T6SS VasI family protein Virulence
ORF31 Oxidoreductase Fitness
ORF35 Plasmid stability and chromosome partitioning protein Fitness
ORF42 MarR family transcriptional regulator Fitness

CRP28
ORF10 Multidrug DMT transporter permease Fitness
ORF18 T6SS ATPase ClpV1 family protein Virulence
ORF48 Sulfate transporter Fitness

CRP49
ORF41 Multidrug DMT transporter permease Fitness
ORF51 Sialate O-acetyltransferase Fitness

CRP99
ORF28 Peptidase Fitness
ORF37 Membrane-bound lytic murein transglycosylase Fitness/

virulence
ORF51 Nucleoside triphosphate pyrophosphohydrolase Fitness

CRPr11
ORF11 Primosomal protein N Fitness

CRPr13
ORF3 T3SS effector protein EspX7 (HECT-type E3 ubiquitin

transferase)
Virulence

ORF4 T3SS secreted effector EspN-like protein Virulence
ORF5 T3SS effector Virulence
ORF6 T3SS effector E3 ubiquitin transferase SspH2-like protein Virulence

CRPr17
ORF1 T3SS secreted effector NleC-like protein Virulence

CRPr20
ORF16 Serine protease Fitness
ORF19 MarR family transcriptional regulator Fitness

CRPr33
ORF3 T3SS effector NleG-like protein Virulence
ORF4 T3SS effector NLeG8-like protein Virulence
ORF5 T3SS effector NLeG8-like protein Virulence
ORF6 IpaB/EvcA family bfpT chaperone-regulated protein Virulence

aDetermined by blastp and analysis of conserved domains.
bCoding products not classically ascribed to prophage regulation, assembly, structure, or lysis were
categorized as either fitness or virulence (if the predicted gene product was known to play a role in
pathogenicity) factors.
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serine protease, a member of the multidrug/metabolite transporter (DMT) superfamily,
a sialate O-acetyltransferase, a nucleoside triphosphate pyrophosphohydrolase, a chro-
mosome/plasmid partitioning protein, and a DNA damage-inducible protein as well as
a number of non-phage-associated transcriptional regulators. While not directly linked
to known virulence pathways in an obvious way, such functional duplications of native
chromosomally encoded proteins might increase C. rodentium fitness within the mouse
gut environment. In this way, these potential fitness factors might encourage prophage
maintenance and conservation within the C. rodentium chromosome by counterbal-
ancing seemingly nonbeneficial prophage protein products such as lytic enzymes.

Bioinformatic interrogation on the predicted protein coding level also revealed
several proteins directly linked with known virulence pathways. This included VasI
family-type and ClpV family-type ATPases of type VI secretion systems (T6SS). The T6SS
is a targeting machinery intended for the delivery of toxins into other bacteria and, as
reported in Pseudomonas aeruginosa, eukaryotic host cells (47, 48). The T6SS of C.
rodentium has been shown to confer a fitness advantage within microbial communities,
and, indeed, throughout infection a decrease in the abundance of host-beneficial,
probiotic Lactobacillus species can be seen in addition to other commensal die-off (49,
50). So, it is possible that the C. rodentium T6SS and these associated protein products
are implicated in this step of pathogenesis, if not also in host infection.

In addition, we identified nine prophage-associated coding domains as T3SS effec-
tor proteins, most closely resembling the EHEC/EPEC-coded Esp- and Nle-type effectors.
While multifunctional, acting in the subversion of a variety of host signaling and
metabolic pathways, almost all Esp- and Nle-type effectors studied have proven to be
essential virulence determinants (51). EPEC A/E lesion formation is dependent on
non-LEE-encoded effectors (52). Importantly, �90% of coding regions within the C.
rodentium prophage regions are actively transcribed under standard growth conditions,
an observation marked as unusual for the normally tightly regulated expression asso-
ciated with prophage elements (12). As such, it seems likely that the cargo genes
predicted to be associated with virulence and fitness discussed above represent a
collection of active pathogenicity determinants exogenous to the C. rodentium LEE and
so may be promising candidates for future molecular and mechanistic study. Further-
more, a recent study showed that an EHEC O157:H7 strain 86-24 Stx-containing
inducible prophage possessed a Cro-like transcription factor which activates both the
EHEC and C. rodentium T3SS, enhancing virulence (53). This could suggest that seem-
ingly innocuous non-phage-associated transcription factors and phage-regulatory cod-
ing genes might play a significant role in C. rodentium virulence as well.

C. rodentium prophages are conserved across known human enteric pathogens
in a horizontally acquired manner. Last, we examined the prevalence of C. rodentium
prophage regions within other bacterial species. If these prophage regions are directly
implicated in C. rodentium’s evolution toward an enteric pathogenic lifestyle, they
would likely represent a conserved group of genetic elements found in other bacterial
pathogens and could act as possible genetic reservoirs for the evolution of future
pathogens.

Bioinformatic analysis by nucleotide alignment revealed the conservation of C.
rodentium prophage regions across a wide range of Enterobacteriaceae genomes (Table
3). With the exception of the �NP locus, conserved prophage regions showed relatively
high rates of DNA sequence identity (�80% on average). Notably, these conserved
prophages maintained high degrees of similarity to the C. rodentium prophage regions
encoding possible virulence and fitness factors, with primary differentiations observed
around modules regulating phage structure and assembly. In almost all cases, we
identified the strains containing similar prophage regions as pathogenic. These in-
cluded strains of A/E virulent EPEC and EHEC as well as pathogenic strains of Salmonella
enterica, Shigella boydii, Shigella sonnei, and Klebsiella pneumoniae. Only two of the
identified strains were originally isolated from the mouse gut, including E. coli strains
M8 and M10, with the majority having been isolated from human clinical isolates and
most commonly from patients exhibiting diarrheagenic infection. This observation was
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consistent with the theory that C. rodentium evolved concurrently with the develop-
ment of mouse models for human diseases (12) and suggested active cross-transfer
between bacteria of human and mouse hosts. Deeper analysis of the previously alluded
to EHEC O157:H7 strain 86-24 genome revealed a prophage (genome position, bp
2015661 to 2085889) that shares 40.1% identity to �SM. Although this region is not the
Cro- and Stx-containing induced prophage region shown to enhance EHEC and C.
rodentium virulence (53), this suggests another notable evolutionary link between C.
rodentium and an A/E strain reliant upon genes carried by prophages for T3SS activity
and virulence.

We also compared the C. rodentium prophage regions to a database of viral genome
sequences. Only �SM yielded a substantial match, showing 76.8% sequence identity to
enterobacterial phage P88 (Fig. 6C). Phage P88 is a recently isolated P2-like phage
generated by chemical induction of a porcine enterotoxigenic E. coli K88 prophage
region and has been shown to be capable of lysing a wide range of E. coli strains (54).
The K88 genome contains 40 genomic islands, totaling 814 kb (15%) in total genome
content, and 15 of these islands are prophage-associated loci, including P88 (55).
Studies have found portions of these islands in E. coli O157:H7 to be involved in
colonization of ligated pig intestine (56). In this way, �SM is representative of a
conserved, fully functional temperate phage found across at least two known enteric
pathogens. It is likely that conserved �SM-like prophages are either spontaneously
active, as with �SM, or could be induced, as with P88.

These data suggest that the C. rodentium prophages represent a set of genetic
elements conserved across enteric bacteria that evolved toward pathogenicity. We next
examined whether these prophage regions existed as a function of a shared patho-
genic enteric backbone or represented horizontally acquired, mobile determinants of
enteric pathogen evolution. We conducted a phylogenetic analysis utilizing the whole-
genome sequences of C. rodentium and the strains listed in Table 3. First, we generated
a multilocus sequence analysis (MLSA) based on the DNA sequences of seven con-
served backbone genes (adk, fumC, gyrB, icd, mdh, purA, and recA) located in core
regions of the genome and a maximum likelihood phylogenetic tree constructed with
PhyML (57) and verified by Bayesian modeling with BEAST2 (58) (Fig. 7A). Our results
were consistent with previous constructions of the Enterobacteriaceae phylogeny (42,
59). Next, the matching genomic prophage regions of the strains were determined
using PHAST (60) and aligned to generate maximum likelihood trees corresponding to
each C. rodentium prophage region (Fig. 7B to G). The branch organization of prophage
phylogenetic trees diverges significantly from those of the backbones of corresponding
prophage host genomes generated by MLSA, with no MLSA-consistent order of C.
rodentium prophage lineage emerging from analysis. This observation was consistent
with the typically mobile nature of prophage elements and the observed differing GC
contents between corresponding prophages and hosts (Table 3). Moreover, it sug-
gested that the prophages of C. rodentium are not associated with a common patho-
genic enteric backbone, but, rather, they represent a family of horizontally acquired,
enteric-bacterium-associated, and transferable pathogenicity determinants.

DISCUSSION

C. rodentium is a natural host-adapted intestinal mouse pathogen and an important
model organism for studying EPEC, EHEC, and A/E pathogenicity as well as a variety of
intestinal disorders and diseases (10, 11). Previous studies focused predominantly on
the examination of LEE-associated molecular mechanisms of host-bacterium infection
and interaction (1). Little was known about the nature and importance of C. rodentium
prophage-mediated virulence factors or their role in genetic exchange and intermicro-
bial effects in relation to infection and the murine gut microbiome. In this study, we
examine all 10 identified prophage regions of C. rodentium and their potential roles in
directing C. rodentium toward a pathogenic lifestyle.

An earlier study identified a fully functional active temperate prophage, phage �NP,
which was spontaneously released by C. rodentium into the extracellular environment
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FIG 7 Phylogenetic analysis of the C. rodentium prophages. (A) Maximum likelihood tree of C. rodentium showing the phylogenetic
relationship of C. rodentium to enteric bacteria containing conserved prophage regions (Table 3) based on the nucleotide sequences of
seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). The tree was rooted using the outgroups of Yersinia, Serratia, and
Dickeya. (B to G) Maximum likelihood trees of the six predominantly intact C. rodentium prophages, as indicated, showing the phylogenetic
relationship of the conserved prophage regions of the bacteria examined in panel A. No apparent consistency of backbone and prophage
tree organizations was noted. Trees were constructed using PhyML with default parameters and the general time reversible (GTR) model
with gamma distribution. Branch support was tested using an approximate likelihood ratio test (aLRT) based on the Shimodaira-
Hasegawa-like (SH-like) procedures and retested using 1,000 bootstrap replicates. Tree structures and root positions were verified by
Bayesian phylogenetic analysis using BEAST2 under a GTR substitution model, which yielded results consistent with PhyML. Trees are
drawn to scale. Scale bars represent the number of substitutions per site. C. rodentium and its corresponding prophages are in red.
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(12). Through characterization of �NP, we discovered a second novel and fully func-
tional temperate phage encoded by CRP38, named �SM. The host ranges of both �NP
and �SM were E. coli strain dependent with host recognition mediated by LPS in a GlcII
and GlcIII residue-specific manner, respectively. It was also found that �SM was capable
of infecting mutants possessing a GlcI residue lacking a Gal side chain, suggesting that
this LPS structure, when lacking the Gal side chain and remaining outer core sugars,
possesses similar chemistry to the GlcIII residue as “seen” by the phage. Interestingly,
this observation might also suggest an evolved resistance to spontaneous host muta-
tion of the LPS biosynthesis operon which might perturb the immediate and adjacent
coding regions of waaR (product catalyzes addition of GlcIII), including the directly
upstream waaO (product catalyzes addition of GlcII) and waaB (product catalyzes
addition of Gal side chain) coding regions. The residue-specific manner of �NP and
�SM LPS adsorption might also suggest that the C. rodentium phages evolved to allow
for dual infection, as consistent with their heteroimmunity. Identification of common
extracellular surface elements (LPS residues) as phage receptors, the nondeleterious
integration of both �NP and �SM observed in K-12 lysogens, and the wide conserva-
tion of �NP and �SM attB loci suggested that �NP and �SM are important mediators
of HGT in C. rodentium.

These observations may be pertinent to a recent model suggesting that C. roden-
tium relies on commensal gut microbiota for successful colonization of colonic mucosa
(22). Expression of colonization and virulence factors of A/E pathogens is regulated by
a variety of external stimuli, including microbiota-derived metabolites (61, 62). It is
possible that C. rodentium prophage integration, viral gene expression, and phage-
induced lysis, although nondeleterious in terms of the bacterial population, alter the
metabolic profile of commensals, exacerbating enteric infection. Correspondingly, ge-
netic exchange mediated by �NP and �SM might facilitate the acquisition of com-
mensally encoded colonization determinants. As such, the role of CRPr20 as a likely
reservoir of �SM-facilitated horizontal acquisitions might be implicated in a wider
context than simply as a means of overcoming prophage-induced functional gene loss.
It is currently unknown if �NP and/or �SM play active roles in gene transfer or
metabolic interaction between enteric commensals and C. rodentium during coloniza-
tion. Nevertheless, the characterization presented here of two fully functional pro-
phages of C. rodentium with widely conserved integration sites that can replicate
efficiently in E. coli strains provides an obvious and potentially facile route to the
development of novel viral vectors for genome engineering and synthetic biology
applications in this murine pathogen. This provides opportunities to enhance the value
of experimental investigations using this tractable infection model for human enteric
pathology.

Prophages can also play a direct role in bacterial pathogenicity by encoding
virulence and fitness factors promoting access to a niche environment (18, 21). Our
study revealed several C. rodentium prophage-encoded putative metabolic and house-
keeping proteins not obviously associated with phage propagation or life cycle. Fur-
thermore, several T6SS assembly pathway factors were identified as well as several T3SS
EHEC/EPEC-homologue effector proteins (Esp and Nle type). Given that a previous
study found that �90% of coding regions within the C. rodentium prophage regions
were actively transcribed under standard growth conditions (12), these prophage-
encoded factors are candidate pathogenicity determinants exogenous to the C. roden-
tium LEE and could be promising for future molecular and mechanistic study. With a
recent analysis demonstrating the dependence of EPEC A/E lesion formation on non-
LEE-encoded effectors (52), it is possible that these C. rodentium-encoded prophage
effectors represent significant virulence determinants. It seems plausible that acquisi-
tion and maintenance of these prophages in C. rodentium were initial steps toward its
host-adapted pathogenic lifestyle as these effectors and fitness factors would have
helped facilitate access to a previously unfavorable niche, the murine gut. In the
context of prophage insertion site location, the bacterium’s nonmotility due to pro-
phage integration into key flagellar genomic sites might have furthered this evolution-
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ary advantage by inhibiting a metabolically costly process (it is estimated that 2.1% of
biosynthetic energy is utilized for flagellar biosynthesis processes in E. coli) (63).
Moreover, the inherent motility provided by physiological peristalsis of the murine
intestine and spread through fecal excretion could likely compensate for the loss of
movement generated by flagellar biosynthesis disruption. In a similar fashion, pro-
phage conservation and maintenance might have further been supported by the
insertion of prophage elements, like �SM, into sites associated with forms of natively
encoded HGT mechanisms, possibly increasing reliance on prophage-facilitated HGT for
genetic diversification and adaptation in new environments.

Importantly, we observed conservation of these prophages across a wide range of
Enterobacteriaceae genomes, with almost all strains examined identified as pathogenic,
primarily to humans. We identified only three nonpathogenic bacterial genomes
containing conserved prophage regions, two of which (E. coli M8 and M10) were murine
isolates. This suggests that the C. rodentium prophages were predominantly represen-
tative of a family of genetic elements conserved across enteric bacteria that evolved
toward pathogenicity. Phylogenetic analysis revealed that these conserved genetic
regions were unlikely to be part of a common pathogenic enteric backbone but, rather,
may represent a family of horizontally acquired enteric-bacterium-associated patho-
genic determinants. While the acquisition of �NP- and �SM-like conserved prophages
can be explained by their functional nature, it is less clear by which means the other
prophage regions have propagated. However, as previously noted, the nonfunctional
but intact prophages CRP28, CRP38, CRP48, and CRP99 had been shown to be induced
and excised under standard LB growth conditions; this study also noted the presence
variable genomic regions intermingled with these prophage elements, suggesting
illegitimate excision if not active transposition (12). This could be a means by which
horizontal transfer of these virulence determinant-associated prophages might have
been facilitated. Alternatively, imprecise integration events could have rendered once-
active phages incapable of forming functional virions. An earlier prokaryotic-wide
phylogenetic study concluded that horizontal transfer, not duplication, drives the
expansion of protein families and functionality in prokaryotes (59). As evidenced here,
this model can be expanded to the evolution of enteric pathogens. Accordingly, similar
systematic examinations of prophage elements in other pathogenic bacteria, including
strains associated with outbreaks of human disease, might provide deeper evolutionary
and pathological insights.

MATERIALS AND METHODS
Bacterial strains and culture conditions. The bacterial strains used in this study are listed in Table

4. Strains of Citrobacter, Escherichia coli, Salmonella, and Pseudomonas were grown at 37°C; all other
strains listed were grown at 30°C. Overnight cultures were grown in 5 ml of Luria broth (LB) in sterile
25-ml culture tubes placed on a rotary wheel. Bacterial growth was determined by measuring the optical
density of the culture at a wavelength of 600 nm (OD600) using a Unicam He�ios spectrophotometer and
cuvettes with a 1-cm path length. Solid medium contained 1.5% (wt/vol) agar with soft-medium overlay
(top agar) using 0.35% agar; both were made with LB unless otherwise noted. For long-term storage,
800 �l of overnight cultures was mixed with 200 �l of 80% (wt/vol) vacuum-sterilized glycerol. Samples
were briefly vortexed, appropriately labeled, and stored at �80°C. Phage buffer was composed of 10 mM
Tris-HCl, pH 7.4, 10 mM MgSO4, and 0.01% gelatin. Phages used in this study are listed in Table 5.

Phage and lysogen isolation. �NP and �SM were isolated by titration of chloroform-treated
supernatants of C. rodentium overnight cultures on appropriate K-12 host strain top lawns grown at 37°C.
Single plaques were then picked with a sterile toothpick into 1.5-ml Eppendorf tubes containing 120 �l
of phage buffer and 20 �l of chloroform, vortexed, spun down, and then titrated on LB agar (LBA) top
lawns at 37°C. Lysogen strains were isolated by spotting 10 �l of high-titer phage lysates on LBA plates
containing top agar overlays of the relevant bacterial host at 37°C. A sterile toothpick was then used to
pick cells from turbid spots, and cells were then struck out onto LBA plates and allowed to grow
overnight at 37°C. Lysogen identity was then confirmed by resistance to viral superinfection and
spontaneous release of phages into the supernatant.

Phage host range determination and effectiveness of plating. Top agar overlays on LBA plates
of the bacterial strain to be tested were spotted with a 10-�l sample of a high-titer lysate of the relevant
phage, allowed to dry, and grown overnight at the temperature optimal for the bacterial strain. As a
dilution control, 10-�l spots of only phage buffer were also added. Bacterial strains showing turbid
clearance were then titrated in serial dilution in top agar overlays to achieve single, isolated plaques to
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confirm permissive host range. Efficiency of plating (EOP) was calculated as a ratio of the apparent titer
of phage on the control strain to the observed phage titer on the test strain.

Phage genomic DNA extraction. Phage DNA was extracted using a phenol-chloroform protocol. In
a phase-lock gel (PLG) tube, 450 �l of high-titer phage lysate was incubated with 4.5 �l of 1 mg/ml DNase
I and 2.5 �l of 10 mg/ml RNase A and incubated at 37°C for 30 min. The mixture was then added to 11.5
�l of 20% SDS and 4.5 �l of 10 mg/ml proteinase K and incubated for another 30 min. DNA was extracted
by adding 500 �l of a phenol-chloroform-isoamyl alcohol 25:24:1 mix and centrifuged at 1,500 	 g for

TABLE 4 Bacterial strains used in this study

Strain Relevant characteristics
Source or
reference

Citrobacter rodentium ICC168 Reference strain 12

Escherichia coli
MG1655 K-12 derivative; F� �� rph-1 73
W3110 K-12 derivative; F� �� IN(rrnD-rrnE)1 rph-1 74
ER2507 K-12 derivative; F� ara-14 leuB6 fhuA2 �(argF-lac)U169 lacY1 glnV44 galK2 rpsL20

xyl-5 mtl-5 �(malB) zjc::Tn5(kan) �(mcrC-mrr)HB101
New England

Biotech
DH5� �� �80dlacZΔM15 Δ(lacZYA-argF)U169 recA1 endA hsdR17(rK

� mK
�) supE44 thi-1

gyrA relA1
Invitrogen

LE392 K-12 derivative; F� e14 mutant (mcrA mutant) hsdR514(rK
� mK

�) glnV44 supF58 lacY1
�(lacIZY)6 galK2 galT22 metB1 trpR55

75

�2163 (pDS1028) K-12 derivative, donor strain for random transposon mutagenesis containing pDS1028;
F� RP4-2-Tc::Mu ΔdapA::(erm-pir)

67

cc118 �pir Laboratory-maintained K-12 derivative used for replicon cloning; phoA20 thi-1 rspE
rpoB argE(Am) recA1 �pir�

76

MG1655(�NP) MG1655 �NP lysogen This study
MG1655(�SM) MG1655 �SM lysogen This study
ER2507(�NP) ER2507 �NP lysogen This study
ER2507(�SM) ER2507 �SM lysogen This study
ER2507(�NP��SM) ER2507 dual �NP and �SM This study
BW25113 K-12 derivative; rrnB3 �lacZ4787 hsdR514 �(araBAD)567 �(rhaBAD)568 rph�1 41
JW3601-3 BW25113 ΔwaaR::kan 41
JW3602-1 BW25113 ΔwaaO::kan 41
JW3606-1 BW25113 ΔwaaG::kan 41
JW3603-2 BW25113 �waaB::kan 41
TY0703 BW25113 ΔwaaO�waaB::cm 38
TY0707 BW25113 ΔwaaF::cm 38
TY0708 BW25113 ΔwaaC::cm 38
TY0721 BW25113 ΔwaaR ΔompC::kan 38
TY0722 BW25113 ΔwaaO ΔompC::kan 38
TY0723 BW25113 ΔwaaO�waaB::cm ΔompC::kan 38
TY0726 BW25113 ΔwaaG ΔompC::kan 38
TY0727 BW25113 ΔwaaF::cm ΔompC::kan 38
TY0728 BW25113 ΔwaaC::cm ΔompC::kan 38
JW0146-2 BW25113 �fhuA::kan 41
JW0401-1 BW25113 �tsx::kan 41
JW0912-1 BW25113 �ompF::kan 41
JW0940-6 BW25113 �ompA::kan 41
JW1248-2 BW25113 �ompW::kan 41
JW1607-1 BW25113 �uidC::kan 41
JW2203-1 BW25113 ΔompC::kan 41
JW2341-1 BW25113 �fadL::kan 41
JW3619-1 BW25113 �yicC::kan 41
JW3996-1 BW25113 �lamB::kan 41

Serratia marcescens
DB10 Wild type; nonpigmented 77
Sma395 Wild type Clinical isolate
Mu378 Wild type Clinical isolate
Msu497 Wild type Clinical isolate
S421 Wild type Clinical isolate
Others

Citrobacter freundii Ballerup 7851 Wild type; Vi capsule positive M. Popoff, Institut
Pasteur

Dickeya solani MK10 Wild type 78
Kluyvera cryocrescens 2Kr27 Wild type 79
Pantoea agglomerans 10Bp14 Wild type 80
Pectobacterium astrosepticum SCRI-1043 Wild type 81
Photorhabdus luminescens subsp. laumondii TT01 Wild type 82
Pseudomonas aeruginosa PA01 Wild type 83
Salmonella enterica serovar Typhimurium Wild type Sanger Institute strain

collection
Serratia sp. strain ATCC 39006 Wild type 84
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5 min. The supernatant was transferred to a new PLG tube, and the previous step was repeated. In a new
PLG tube, the supernatant was supplemented with 500 �l of chloroform-isoamyl alcohol at 24:1 and
centrifuged at 1,500 	 g for 5 min. The aqueous phase at the top was then incubated with 45 �l of
sodium acetate (3 mol/liter, pH 5.2) and 500 �l of 100% isopropanol at room temperature for 45 min. The
mixture was then subjected to centrifugation at 12,000 	 g for 20 min, after which the pellet was washed
at least twice with 70% ethanol and then resuspended in distilled H2O (dH2O).

Transmission electron microscopy. Glow-discharged, carbon-coated copper grids (obtained from
the Multi-imaging Center, Department of Anatomy, University of Cambridge) were placed on 5-�l drops
of high-titer phage to be imaged for 5 min. They were then washed briefly with water droplets three
times before being blotted dry with sterile filter paper and placed on 5 �l of either 2% (wt/vol)
phosphotungstic acid (PTA) for 10 min or uranyl acetate (UA) for 1 min. Grids were blotted to remove
excess liquid, allowed to air dry, and visualized in a Phillips Tecnai G2 80- to 200-kV transmission electron
microscope.

Phage chemical mutagenesis. Chemical mutagenesis was conducted utilizing hydroxylamine con-
taining phosphate-EDTA buffer as previously described (64).

Transfection of phage gDNA. Transfection of viral gDNA into chemically competent cells was
performed as previously described (65). As a control, �vir gDNA was used. Transfected cells were
examined for virus production by spinning down the transfectant recovery culture and removing 100 �l
of the supernatant, treating it with chloroform, and titrating the crude supernatant lysate on top lawns
of the relevant host species. This was repeated every hour for 3 h. Single plaques were counted and the
number of PFU/(milliliter ·microgram of DNA) was determined.

Structural phage proteome analysis. Following purification by PEG 8000 and CsCl gradient, phage
particles were analyzed by SDS-PAGE as previously described (24). Mass spectrometry was carried out at
the University of Cambridge, Department of Biochemistry, according to the protocol noted on the
departmental website (http://www3.bioc.cam.ac.uk/pnac/proteomics.html).

Lysogen growth and phage release. Overnight bacterial cultures to be tested were diluted to an
OD600 of 0.05 in 25 ml of prewarmed LB or M9 minimal medium in 250-ml conical flasks and incubated
at 37°C in a water bath with shaking at 185 rpm. Samples (1 ml) were taken every 30 min, and bacterial
growth (optical density) was measured. Concurrently, 100-�l samples were collected into 1.5-ml Eppen-
dorf tubes containing 900 �l of phage buffer and 30 �l of chloroform, vortexed, and stored at 4°C. Each
time point sample was then titrated on two bacterial top lawns, containing either E. coli DH5� or ER2507
(as �NP can form plaques only onto ER2507, DH5� served to differentiate viral titer in the dual lysogen
and served as a control for single-lysogen species). Plates with single plaques were then assessed, and
the number of PFU/milliliter was recorded as a function of time.

DNA manipulations, oligonucleotides, and sequencing. Unless otherwise stated, standard mo-
lecular biological methods were used for all DNA manipulations. Genomic and plasmid DNA were
purified using a GeneJET Genomic DNA purification kit (Thermo Scientific) and GeneJET Plasmid Miniprep
kit (Thermo Scientific) according to manufacturer’s instructions. All restriction enzymes used were
obtained from New England Biolabs and used according to the manufacturer’s protocols. DNA fragments
were ligated using T4 DNA ligase (NEB). Oligonucleotides were obtained from Sigma-Aldrich and are
listed in Table 6. DNA sequencing of PCR and plasmid products was performed by GATC Biotech utilizing
their LightRun Tube barcodes for Sanger equencing.

Random-primed PCR. The random-primed PCR (RP-PCR) protocol was based on that previously
described (66). In brief, colony or standard PCR was performed using the random primers PF106, PF107,
and PF108 together with a phage-specific primer (Table 6). The reaction mix and PCR program used for
the first round are described below. A second round of PCR amplification using the product of the first
round as the template was performed under the same RP-PCR conditions using the primers PF109 and
the nested phage-specific primer.

Generation of plasmids used in this study. The plasmids used in this study are listed in Table 7.
LPS genes for complementation assays were amplified from E. coli K-12 gDNA using primers (Table 6)
designed with 19 to 22 bp of complement and containing flanking regions holding either the SacI cut site
and ribosomal binding site (RBS) or the SalI cut site. pBAD33 and these fragments were then digested
with SacI and SalI, ligated, and used to transform the relevant K-12 strain. Successful transformants were
then selected using appropriate antibiotic selection, sequence verified using primers SM.P22 and SM.P23,
and moved into appropriate mutant background.

Generation and screening of random transposon mutants. Using E. coli �2165 (pDS1028) as a
donor strain and ER2507 as a recipient strain, generation of a random transposon insertion mutant library
was carried out as previously described (67). In brief, a 30-�l conjugation mix of 1:3 donor/recipient cells
was spotted onto a plate containing LBA plus 2,6,-diaminopimelic acid (DAP), allowed to dry, and grown
overnight. The mating patch was then harvested in 1 ml of LB, washed twice to remove residual DAP, and
plated on LBA-Cm plates. Single colonies were then picked into 96-well plates containing 200 �l of
LB-Cm and screened for phage resistance.

TABLE 5 Bacteriophages used in this study

Phage Description Origin Reference

�NP Temperate phage of C. rodentium C. rodentium supernatant 12
�SM Temperate phage of C. rodentium C. rodentium supernatant This study
T4 Virulent coliphage Lab stock 24
�vir Virulent mutant of the temperate coliphage � Lab stock 23
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Mutant ER2507 cells were first screened for phage resistance in a mini-top-lawn format. Using a
Corning 12-well tissue culture flat-bottom plate, 2 ml of LBA-Cm was added to each well. After this,
mini-top lawns containing 10 �l of the phage to be tested (of the appropriate titer to see single plaques),
20 �l of the mutant to be tested, and 400 �l of top agar were overlaid onto each well containing LBA-Cm,
and cultures were grown overnight. Mutant strains demonstrating resistance to plaque formation were
then noted and further assessed with full-size plate assays in serial dilution. Those demonstrating full
resistance or partial resistance were subjected to replicon cloning.

Replicon cloning of transposon mutants. Replicon cloning of pDS1028 ER2057 transposon inser-
tion mutants was carried out as previously described (67). In brief, gDNA extractions of mutants to be
sequenced were digested with restriction enzymes that were unable to cut within the transposed region
(typically, XmnI and StuI were used [NEB]), ligated, and cloned into E. coli cc118 �pir-containing cells.
Transformants were then streaked out for purification and grown in liquid culture with the appropriate
antibiotic; the plasmid was then extracted and sequenced using primer oREM7 (Table 6).

Adsorption test. Triplicate overnight cultures of strains to be tested were grown up in 5 ml of LB on
a tube roller at 37°C. Premade Eppendorf tubes containing 900 �l of phage buffer and 30 �l of
chloroform were labeled and set out for each sample and time point to be collected. To each sample of
5 ml of overnight bacterial culture of a high-titer phage was added to obtain a multiplicity of infection
(MOI) of 0.01 and mixed immediately. From these mixtures 100 �l was removed for time point 0 min and
added to the premade sample tubes and quickly vortexed for 5 s. Sample collection occurred in a similar
fashion for the next 55 min every 5 to 10 min. Vortexed samples were then spun down, and supernatant
was removed. These supernatants were then titrated in serial dilution on bacterial top lawns. The final
adsorption curve was plotted by calculating the percentage of free phages in the culture against time.
An LB-only sample was infected with phages as a negative control. In instances of complementation, all
samples were induced with 0.1% arabinose at mid-log phase and allowed to grow for 3 h or until they
reached an OD600 of 1.0 before use in adsorption studies.

Bioinformatic analysis. Coding sequences and ORFs were determined by a combination of prior
annotations and the Geneious R7 predictive ORF function on known C. rodentium IIC168 genome and
prophage sequences (GenBank accession number NC_013716) (68). Protein functionality and homology
were predicted using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Genome comparisons were gen-
erated by the Artemis Comparison Tool (ACT) (69) and EasyFig (70). Prophage regions were determined
using PHAST (60), and PhiSITE (33) was used to determine bacteriophage regulatory units.

Phylogenetic analysis. Multiple-locus sequence analysis was conducted by individually extracting
seven core housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) from bacterial genomes of
interest, including Yersinia, Dickeya, and Serratia outgroups. These genes were then individually aligned

TABLE 6 Oligonucleotides used in this study

Name Sequence (5=–3=) Comment(s)
Reference
or source

SM.P67 TATCGAACTGCACCCGCAG Forward primer; prophage CRP38 bp 15000 This study
SM.P69 GGTTCTGGCAACCATACTCATG Reverse primer; prophage CRP38 bp 17250 This study
SM.P70a AGAGGCTGGCTTGATTG Primer for round 1 of RP-PCR for �NP This study
SM.P70b TACTGGTGCTGTCCTTG Nested primer for round 2 of RP-PCR for �NP This study
SM.P71a TCAGATTAAACAGCAGTTTG Primer for round 1 of RP-PCR for �SM This study
SM.P71b TGTCAGAGACTGAAAAAGG Nested primer for round 2 of RP-PCR for �SM This study
PF106 GACCACACGTCGACTAGTGCNNNNNNNNNNAGAG RP-PCR primer 1 66
PF107 GACCACACGTCGACTAGTGCNNNNNNNNNNACGCC RP-PCR primer 2 66
PF108 GACCACACGTCGACTAGTGCNNNNNNNNNNGATAC RP-PCR primer 3 66
PF109 GACCACACGTCGACTAGTGC RP-PCR adapter primer 66
oREM7 CTAGAGTCGACCTGCAGGC pDS1028 replicon clone sequencing primer 67
SM.P22 GCCATAGCATTTTTATCC Forward primer; pBAD33 sequencing primer This study
SM.P23 TGATTTAATCTGTATCAGGC Reverse primer; pBAD33 sequencing primer This study
SM.P96 ACTGGTGGTGAGCTCGGTACAAAGAGGAGAAAACTAGATGCAG

CAGGTGTTTT
Forward primer; waaO with RBS plus SacI cut site This study

SM.P97 TACCTGCAGGTCGACGGATCCTTTAATGCTTTATCTTTTCAATAAA Reverse primer; waaO with SalI cut site This study
SM.P98 ACTGGTGGTGAGCTCGGTACAAAGAGGAGAAAACTAGGTGGAC

TCATTTCCTGC
Forward primer; waaR with RBS plus SacI cut site This study

SM.P99 TACCTGCAGGTCGACGGATCCTTTATTTACGGTAATATTTTCGG Reverse primer; war with SalI cut site This study

TABLE 7 Plasmids used in this study

Plasmid Relevant characteristic(s) Reference

pDS1028 Cmr Tcr Tnp oriR6K vector used for random
transposon mutagenesis

67

pBAD33 Arabinose-inducible Cmr plasmid 85
pBAD33(waaO) pBAD33 E. coli K-12 waaO� This study
pBAD33(waaR) pBAD33 E. coli K-12 waaR� This study
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using ClustalW (71), and the alignments were concatenated and cured using Gblock (72). Phylogenetic
trees were constructed by the maximum likelihood method using the general time reversible (GTR)
model with gamma distribution in PhyML (57) and verified using Bayesian likelihood using the GTR
model plus gamma with BEAST2 (58). Branch support was tested using an approximate likelihood ratio
test (aLRT) based on the Shimodaira-Hasegawa-like (SH-like) procedures and retested using 1,000
bootstrap replicates. Assessment of conserved prophage regions was conducted using a similar work-
flow. Root positions of both MLSA and prophage were verified using Bayesian modeling.
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